Lawrence Berkeley National Laboratory
Recent Work

Title
RF Power Sources for Linear Colliders

Permalink
https://escholarship.org/uc/item/6s81082j

Author
Allen, M.A.

Publication Date
1990-06-01
Accelerator & Fusion Research Division

Presented at the 2nd European Particle Accelerator Conference, Nice, France, June 12–16, 1990, and to be published in the Proceedings

RF Power Sources for Linear Colliders

M.A. Allen et al.

June 1990

FOR REFERENCE

Not to be taken from this room

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
RF POWER SOURCES FOR LINEAR COLLIDERS*


Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA


University of California, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

D. B. Hopkins and A. M. Sessler

University of California, Lawrence Berkeley Laboratory, Berkeley, CA 94720, USA

J. Haimson and B. Mecklenburg

Haimson Research Corporation, Palo Alto, CA 94305, USA

Abstract: The next generation of linear colliders requires peak power sources of over 200 MW per meter at frequencies above 10 GHz at pulse widths of less than 100 nsec. Several power sources are under active development, including a conventional klystron with RF pulse compression, a relativistic klystron (RK) and a crossed-field amplifier. Power from one of these has energized a 0.5 meter two-section High Gradient Accelerator (HGA) and accelerated a beam at over 80 MeV per meter. Results of tests with these experimental devices are presented here.

1. Introduction

The RF power needed for the next generation of linear colliders in the center of mass range of 1 TeV requires the development of new sources. The parameter set presently being considered at Stanford Linear Accelerator Center (SLAC) calls for power sources every one-and-one-half meters of about 300 MW, with pulse width of 100 nsec, at 180 Hz repetition rate. This provides accelerating gradient in disc-loaded waveguide of 100 MeV/m. This paper is a report on some of the work in progress on power sources at SLAC, Lawrence Berkeley Laboratory (LBL), and Lawrence Livermore National Laboratory (LLNL). The approaches covered are the relativistic klystron (RK), conventional klystron with RF pulse compression and the crossed-field amplifier (CFA). All of the experiments were conducted at 11.4 GHz, which is four times the frequency of the overall accelerator system. Frequencies around 1 GHz at 11.4 GHz, which is four times the output port is a standard output cavity, but is somewhat detuned from the drive frequency to permit additional bunching. The second output consists of a six cavity traveling wave section. With these modifications, a maximum total RF power of 330 MW is attained. In addition, the focusing parameters can be adjusted to permit a balanced output power of 100 MW from each port. This is suitable for testing two high gradient accelerator sections since this power level corresponds to 100 MV/m.

A two-section accelerator energized by the modified two-output RK is shown in fig. 1. Each accelerator section (HGA) is energized from a separate RK port. A beam of electrons is produced by a 50 KV electron gun. The peak electron energy is measured by bending the exiting electrons with a magnet spectrometer and capturing these electrons with a Faraday cup. Peak electron energies of 26 MeV were measured for the case where the first HGA is driven with 40 MW and the second with 80 MW. The energy spectrum at the Faraday cup is shown in fig. 2. Figure 1: High gradient two-stage accelerator test.

* Work supported by Department of Energy contract DE-AC03-76SF00515 (SLAC), DE-AC03-76SF00098 (LBL), and W-7405-ENG-48 (LLNL), and by the US-Japan Collaboration on High Energy Physics.

† Permanent address: University of California, San Diego, Department of Physics, B-019, La Jolla, CA 92033, USA.

Contributed to the 2nd European Particle Accelerator Conference, Nice, France, June 12-16, 1990.
structures), most of the acceleration takes place in the second HGA. The measured electron peak energy is therefore consistent with the expected accelerator gradient (100 MV/m at 100 MW). The maximum power we can use to accelerate electrons is currently limited by accelerator cavity breakdown. It is expected that this limitation will be somewhat ameliorated as we process the devices. Earlier, dark current was measured in both HGA sections when moderate amounts of RF power were used. For power levels of 12–14 MW in the first accelerator section and 55–60 MW in the second, 12–14 mA dark current was measured.

Peak accelerated current as a function of frequency and relative phasing between the two structures was also measured. This phasing can be varied by changing the separation of the two HGAs with a bellows arrangement in conjunction with a stepping motor. Thus, sequential acceleration at high gradient (100 MV/m) at 11.4 GHz was demonstrated.

3. Conventional Klystron

As an alternative to the RK, also under investigation at SLAC is the scheme of using a conventional klystron with an output pulse width of about 800 nsec, followed by three stages of RF pulse compression in order to obtain several hundred megawatts peak power of about 80 nsec duration. The first experimental klystron, designed for 100 MW output at 11.42 GHz, has been tested. Peak power output of 66 MW with 30 nsec pulse width has been attained, as shown in fig. 3. As the pulsewidth is lengthened, the achievable power output decreases as a result of beam interception and RF breakdown in the output gap. Figures 4 and 5 show the measured threshold breakdown power and the corresponding threshold breakdown gradient as a function of RF pulse width. It is seen that RF processing has a significant effect on the breakdown threshold. At 800 nsec RF pulse width, 25 MW output was available and was put to use in testing a three-stage binary pulse compressor as described below. The goal in klystron development is to produce a practical device that is a sealed-off tube capable of being repetitively pulsed at 120 pps with relatively wide pulse width, as contrasted to nanosecond sources which are essentially single-shot devices. Many of the conventional tube technologies are being pushed to their limits. For example, the power density in the electron beam is 316 MW/cm² at one microsecond pulse width. The focusing of a beam with these properties requires great care, or damage can easily be done to the tube. RF cavity gradients are in excess of 1 MV/cm and RF output ceramic windows are highly stressed. It is believed that the objective of 100 MW output from a conventional klystron appears to be feasible. One of the major problems is high RF gap gradients, and this can be reduced by about 40% through the use of a double-gap output cavity. Further reduction, if needed, can be obtained by use of a multicell traveling-wave output circuit, as used in the RK.

4. Crossed-Field Amplifier

While magnetron oscillators have generated single-shot powers of the order of gigawatts at nanosecond pulse widths, phase-coherent crossed-field amplifiers (CFA) with multimegawatt outputs at X-Band are not common. CFAs have inherent characteristics of low impedance, compactness, high efficiency, and relatively low cost of manufacture, and as such are good potential candidates for linear collider applications where large quantities of tubes are needed. Therefore, SLAC has undertaken the development of a CFA at 11.4 GHz. The first tube was designed to operate at the backward-wave space harmonic (with a phase shift of 225°/section) and with a cold platinum cathode. Preliminary results show that a peak power of 10 MW was generated at 95 kV, 415 A, at 11.5 GHz with a pulse width of about 80 nsec. Waveforms of RF power, anode voltage and anode current are shown in fig. 6. One of the problems encountered is that the cathode current is considerably lower than expected from extrapolation of lower power CFAs. Multimode computer simulations of crossed-field interaction revealed that this may be due to interference by the underlying fast-wave forward-wave component which has a relatively strong electric
field at the cathode. As the RF power builds up along the circuit, this component of electric field causes the energy of the back-bombarding electrons to be so high that the secondary-emission coefficient of the platinum cathode falls below unity, thus limiting the current available. To overcome this limitation, another design is being studied which synchronizes with the forward-wave fundamental component instead of the emission circuit, this component of electric field causes the energy of the wave space harmonic. This design will have an RF circuit with back-bombarding electrons to be so high that the another design is being studied which synchronizes with the a tapered impedance, resulting in constant power generated. Thus shown in fig. 7. This circuit per unit length. An example of hundreds of megawatts of voltage along the circuit is then held below a certain level, the back-bombardment energy is relatively constant. Also, multiple between the anode circuit and the waveguide. Because the RF of high multiplied by 5.5. This technique is applicable to the requirement can be produced which is 1.8 times higher power than either of lower field at the cathode. tiplied by 5.5. This technique is applicable to the requirement

5. Binary RF Pulse Compression

A high-power, X-band, binary RF pulse compressor has been tested at SLAC. It is shown in schematic form in fig. 8 and is reported on in detail in these proceedings. In each of three successive stages, the RF pulse length is compressed by half, and the peak power is multiplied by 1.8. RF pulses have been compressed to 70 nsec and the peak power has been multiplied by 5.5. This technique is applicable to the requirement of high peak power and short accelerator filling times.

Low Power Tests

The peak power gain and efficiency of the binary pulse compressor have been measured using as input a 1 kW traveling wave tube (TWT). Each binary pulse compression stage has two inputs and two outputs. Power from the TWT was divided equally and fed to the two inputs of Stage 1. For each of Stages 1–3, the peak power gain is 1.8/stage; the compression efficiency is 88%/stage. (Power gain of 2/stage corresponds to efficiency of 100%.) The peak power gain and efficiency of the first three stages, taken together, are 58 and 68%, respectively.

Each of the two outputs of Stage 3 normally would be used to power an accelerator section. However, this binary pulse compressor has a fourth stage which permits the two Stage 3 outputs to be combined into a single output (by adjusting a high power phase-shifter). While some power is lost in the power combiner, this highest-power single output is expected to be useful for RF-breakdown studies. A single combiner output can be produced which is 1.8 times higher power than either of the Stage 3 outputs.

6. Conclusions

The RK has provided an excellent experimental source for the initial experiments with accelerator structures at very high gradients. However, the induction accelerator necessary to provide the beams for these klystrons is so costly as to probably prohibit their use in a TeV collider. Much more promising is the conventional klystron with pulse compression. However, this does require stable operation at 800 nsec with compression to 100 nsec pulses. This has yet to be demonstrated. The CFA, which is in the early stages of development, will only be of use if stable operation can be achieved above 200 MW. If one of these two approaches appears to be more feasible than the other, then the focus of further effort will be toward producing that source at low cost.

References
