Title
Networked Infomechanical Systems (NIMS)

Permalink
https://escholarship.org/uc/item/6sf999tv

Authors
Undergraduates: Ahmadi
Burke
Chan
et al.

Publication Date
2003
Networked Infomechanical Systems (NIMS)

Introduction: Robotic Networked Wireless Sensing for Environmental Monitoring

• New Requirements
 – Measurement and detection in complex environments
 – Sampling of air, water, and soil.
 – Coverage of large spatial and temporal scales

• Fundamental Challenges
 – Unpredictable and large sensing uncertainty
 – Limited energy and operating lifetime

• Research Goals
 – Enable Sensor Diversity and Coordinated Mobility for self-awareness of sensing uncertainty and autonomous adaptation to maximize sensing fidelity.

• Application Goals
 – Distributed sensing in Natural and Civil Environments

• Education Goals
 – High School, Undergraduate, and Graduate programs

Solutions: NIMS Nodes and Infrastructure

Information Technology Research, Applications, and Education

Information Technology Research

• Information Theory Foundations
 • Hierarchical System Ecology of fixed and mobile nodes with infrastructure.

• Sensor Diversity
 • Diversity in sensor node location, orientation, and sensor type.
 • Enables distributed mapping of sensing uncertainty.
 • Enables distributed calibration of sensing channel

• Coordinated Mobility
 • Physical transport of nodes and modification of infrastructure.
 • Enables proactive methods for reducing sensing uncertainty through optimized diversity and sampling.
 • Enables reactive methods that bring optimized sensing resources to bear.

• NIMS Tools
 • NIMS System emulation
 • NIMS System Operation Authoring

Environmental Science and Public Health

• Natural Environment
 • Fundamental studies of ecosystems
 • Focus on meteorology, phenology, carbon budget, global change indicators
 • Sensing, imaging, and spectroscopy.
 • Sampling of atmosphere, water.

• Public Health Environment
 • Constantly vigilant monitoring and distributed detection of pathogens
 • Focus on coastal wetlands and urban water resources

Education Programs

• Undergraduate and Graduate Courses
 • Embedded Computing
 • Sensing and Imaging
 • Networked Robotic Systems

• Undergraduate Research Programs
 • Multidisciplinary undergraduate research teams

• Grade 7-12 Education Programs
 • Engage student and teacher communities in science and engineering
 • Real-time, remote Web access to active, controllable NIMS systems