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On the Development of Rod-Based Models for

Pneumatically Actuated Soft Robot Arms: A

Five-Parameter Constitutive Relation

Kristin M. de Payrebrunea, Oliver M. O’Reillya

aDepartment of Mechanical Engineering, University of California at Berkeley, Berkeley
CA 94720, USA

Abstract

While soft robots have many attractive features compared to their hard coun-

terparts, developing tractable models for these highly deformable, nonlinear,

systems is challenging. In a recent paper, the authors published a non-classic,

five-parameter constitutive relation for a rod-based model of a widely used,

pneumatically actuated soft robot arm. It is natural to ask if the complexity

of the relation can be eliminated by redesigning the actuator? To this end,

finite element models and experimental results are used to further explore the

five-parameter constitutive relation. For multiple designs of the pneumati-

cally actuated soft robot arm, we are able to demonstrate how finite element

models can be employed in place of experiments to specify the constitutive

relations and how the relations are scalable by actuator length and applied

pressure. Our primary result is the finding that the five-parameter consti-

tutive relation is germane to pneumatically actuated soft robot arms and

the parameters for this relation can be determined by three finite element

simulations.

∗Corresponding author, Tel.: +1 510 642 0877,oreilly@berkeley.edu
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1. Introduction1

As a novel field of robotics, the enormous potential of soft actuators to2

assist mobility, handle fragile objects, and enable new design strategies has3

resulted in a surge of design, fabrication, and research activities. Ambulating4

soft robots (Shepherd et al. (2011); Tolley et al. (2014); Yang et al. (2015)),5

swimming soft robots (Marchese et al. (2014); Suzumori et al. (2007)), as well6

as elephant trunk-like actuators (Calisti et al. (2011); Martinez et al. (2013)),7

gripping devices (Stokes et al. (2014); Suzumori (1996)), and biomedical de-8

vices for rehabilitation (Polygerinos et al. (2013)) are among the many re-9

search topics considered in this area in the past two decades. While the10

theoretical framework for modeling soft robots is based on well-known con-11

cepts in continuum mechanics, developing tractable, yet faithful, models is12

challenging (Kim et al. (2013); Pfeifer et al. (2012); Majidi (2013)). For13

soft robots with long, slender geometries, nonlinear, rod-based models have14

been examined to explore the dynamics of these actuators (cf., e.g., Webster15

and Jones (2010); Gravagne et al. (2003); Plaut (2015); Renda et al. (2012);16

Zhou et al. (2015); Santillan et al. (2006)). By way of contrast, design stud-17

ies examining the influence of the geometry on performance have primarily18

featured models based on the finite element method (cf., e.g., Suzumori et al.19

(2007); Polygerinos et al. (2013); Suzumori et al. (1997)). We also note that20

complementary quantitative measurements of the deformation of soft robot21

actuators are now starting to appear (cf., e.g., Majidi et al. (2013); de Payre-22
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brune and O’Reilly (2016b)).23
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Figure 1: Finite element model of the pneu-net soft actuator with fixed boundary condition,

pressurized cavities and defined end-deformations.

Of particular interest to the authors is the development of rod-based mod-24

els for soft robot actuators. As a first example, we considered the popular25

pneu-net actuator that features in the work of George Whitesides and his26

research group (Shepherd et al. (2011); Ilievski et al. (2011)). For a given27

actuator, such as the one shown in Figure 1, we measured the intrinsic cur-28

vature κ0 induced by a change in pressure, and then, for a given pressure and29

terminal load, measured the moment-curvature relations. We expected the30

classical result that the internal moment would be linearly proportional to31

a constant flexural rigidity and the difference in the curvature and intrinsic32

curvature: κ − κ0. However, as discussed in de Payrebrune and O’Reilly33

(2016b), the relations we found for the flexural rigidity were far more com-34

plex and required five parameters to approximate. It is natural to ask if such35

a constitutive relation is only applicable to the pneu-net actuator or if it is36

germane to all pneumatic actuators? A related issue is the possibility of de-37

signing an actuator that has a simple constitutive relation with a minimum38
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number of parameters. In the present paper, we use finite element models39

and experiments to explore a broad range of designs in the hopes of finding40

actuators with the simplest possible constitutive relations. However, we find41

that the five-parameter constitutive relation is germane to the wide range of42

actuator designs we consider. In addition, we note that the parameters for43

this relation can be determined by three finite element simulations.44

In the sequel, we outline the parameterization routine and give detailed45

information on the finite element simulations and the rod model in Section46

2. Then, using the example of a well-known soft pneu-net actuator, we show47

how the constitutive relations are computed in Section 3 and validate the48

finite element-based results using experiments. We then explore modified49

geometries and designs in Section 4. Our conclusions and a summary of our50

main results are presented in Section 5.51

2. Material and Methods52

In order to use a model based on rod theory to describe the mechanics53

of a deformable soft robot actuator, various parameters in the model need54

to be prescribed. Among the parameters required for the rod-based model55

are those relating the bending moment to a change in curvature. The pre-56

scriptions are obtained using a series of comparisons with experiments and57

finite element models. In this section of the paper, the prescription of the58

parameters and the benchmarking experiments are discussed.59

2.1. Elastic Rod Model60

Development of a rod-based model for the soft actuator starts by identi-

fying the centerline of the rod with a material curve on the soft actuator. In
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Figure 2: (a) Rod model of the pneu-net soft actuator where one end is clamped and the

other end is subject to a terminal load Fℓ. (b) Illustration of the non-classical and position

dependent constitutive relation, obtained from finite element simulations, for the bending

moment M that was discussed in de Payrebrune and O’Reilly (2016b). The parameters

α1 and α2 are discussed in Section 3 of the present paper.

this endeavor, we assume that the actuator lies in the horizontal plane and

we closely follow our earlier works Zhou et al. (2015); de Payrebrune and

O’Reilly (2016b), and Majidi et al. (2012). We assume the material curve is

inextensible and of length ℓ. Referring to Figure 2(a), a material point on the

centerline of the rod can be identified by the arc-length coordinate s ∈ [0, ℓ]

and its position vector r relative to a fixed origin has the representation

r (s) = x (s)E1 + y (s)E2. (1)

To characterize the bending of the rod, we define an angle θ = θ(s), which

is subtended by the unit tangent vector to the centerline of the rod with

the horizontal: ∂r
∂s

= cos(θ(s))E1 + sin(θ(s))E2. We also note the integral

relations between the Cartesian coordinates x = x(s) and y = y(s) and the
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angle θ = θ(s):

x (s = si) = x(s = 0) +

∫ si

0

cos(θ(ξ)) dξ,

y (s = si) = y(s = 0) +

∫ si

0

sin(θ(ξ)) dξ. (2)

To model the experiments of interest, the end s = 0 of the rod is clamped, and61

the pressure-induced deformation of the actuator is modeled by a pressure-62

dependent intrinsic curvature field: κ0 = κ0(s, p). We also allow situations63

where the other end (s = ℓ) of the rod is subject to a terminal load Fℓ,64

as illustrated in Figure 2, which results in the force-induced curvature field65

κ(s, p) of the current state.66

The deformed shape of the rod can be found from the balance laws of the

static case for linear and angular momentum:

∂n

∂s
= 0,

∂

∂s
(M+ r× n) = 0. (3)

Here, n = n(s) is the contact force in the rod, M = M(s)E3 is the bending

moment in the rod, and we have assumed that no body forces or tractions

on the lateral surface of the rod are present. We assume that the bending

moment M = M(s) is linearly dependent on the difference between the

curvature κ of the current state and intrinsic curvature κ0 of the reference

state:

M = D(s) (κ− κ0) +M0. (4)

Here, D(s) is a position-dependent flexural rigidity and M0 is a constant. In67

our work de Payrebrune and O’Reilly (2016b) on the pneu-net actuator, we68

found that the constitutive parameters D and M0 were piecewise constants69
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(cf. Figure 2(b)). As a result, five parameters were needed to prescribe (4),70

for which we introduced s = d, the position of discontinuity in D(s). In71

addition, it is important to note that the intrinsic curvature κ0 is not only72

dependent on the pressure p, but also varies along the length of the rod:73

κ0 = κ0(s, p).74

For a rod subject to a terminal load Fℓ at s = ℓ, we can use (3)1 to find

that n(s) = Fℓ: that is, n(s) is constant throughout the rod. Noting that the

bending moment vanishes at s = ℓ, we can then use (3)2 to show that M(s)

can be determined from a measurement of r(s) and the terminal loading:

M(s) = M (ℓ)
︸ ︷︷ ︸

=0

+ (r(ℓ)− r(s))× Fℓ. (5)

This identity is independent of the constitutive relation for the elastic rod75

and we exploit this independence in the sequel by using (5) to determine the76

constitutive relation for the rod.77

2.2. Finite Element Model78

We developed a finite element model of the soft robot actuator using79

a standard explicit model in Abaqus\CAE 6.14. (Dassault Systems). The80

model is similar to the one described in Holland et al. (2014) and the asso-81

ciated online resource Soft Robotics Toolkit (2017). After the geometry of82

the soft actuator was loaded and assembled, we then defined the boundary83

conditions and introduced air pressure into the cavities (cf. Figure 1).84

In addition to the simulation of a purely pressurized actuator with free85

boundaries (Test I), two simulations were performed and compared to the86

experiments from de Payrebrune and O’Reilly (2016b):87
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Test I: The soft robot is deformed by changing the pneumatic pressure88

in the free-free arm. In combination with Test II, this test is de-89

signed to analyze the dependence of the intrinsic curvature profile90

κ0 (s, p) on the boundary conditions (cf. Figure 3(a)).91

Test II: One end of the actuator is clamped, the other end is free, and the92

soft robot is then deformed by changing the pneumatic pressure93

in the arm. This test of the cantilevered actuator is designed to94

measure the intrinsic curvature profile κ0 (s, p) (cf. Figure 3(b)).95

Test III: One end of the actuator is clamped, and on the other end either96

a force Fℓ is applied (for experiments ), or the displacement is de-97

fined (finite element simulation). The soft robot is then deformed98

by changing the pneumatic pressure in the arm. This test is de-99

signed to measure the curvature profile κ(s, p) and the bending100

moment M(s) (cf. Figure 3(c)).101

To facilitate comparisons with experiments, the reaction force at the end102

point in the finite element models is recorded for Test III.103

A variety of constitutive relations for the finite element model are possi-104

ble. To examine the optimal selection, we performed monotonic and cyclic105

tensile tests according to ISO 37 on dumb-bell samples of Elastosil M4601 sil-106

icone rubber at our partner’s facility, the Institute for Machine Elements, De-107

sign and Manufacturing (IMKF) at the Technische Universität Bergakademie108

Freiberg (Germany). Figure 4 illustrates a typical measurement of a mono-109

tonic tensile test with a change in the stiffness for higher stretches exceeding110

150 %. With a least-square approximation, we computed the Young’s moduli111
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Figure 3: Illustration of the deformation of the initially pressurized actuator which is

unrestrained (Test I) in (a), clamped at one end (Test II) in (b) and clamped at one end and

constrained in the vertical direction at the other end (Test III) in (c) for a pressurization

of 37 kPa.

EL = 6.5×105 N/m2 and EH = 1.2×106 N/m2 and assumed a Poisson ratio112

of ν = 0.495 for the rubber material.113

After evaluating other constitutive models, such as the Neo-Hookean,114

Mooney-Rivlin, and Yeoh models, using cyclic tensile tests, we concluded115

that the best constitutive relation for the applications in this paper was a St.116

Venant-Kirchhoff constitutive relation for the silicone rubber where E = EH117

and ν = 0.495.118

To validate the selected St. Venant-Kirchhoff model, we calculated the de-119

formation of the soft actuator design provided in Holland et al. (2014)1, and120

compared the pressure-dependent deformation with experiments (cf. Fig-121

ure 5). The experiments and concomitant protocols were identical to those122

discussed in de Payrebrune and O’Reilly (2016b). During experiments, the123

actuator was aligned horizontally on a smooth surface in order to reduce124

1See, in addition, the online resource Soft Robotics Toolkit (2017).
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Figure 4: Measurement of the stress-strain relation of Elastosil M4601 silicone rubber

obtained from a quasi-static tensile test with a deformation rate of 200mm/s. The Young’s

moduli for low strain EL(ε < 1.5) and large strain EH(ε > 1.5) are indicated by the black

lines.

gravitational effects, and, so, we ignored gravity in our finite element simu-125

lations. Further, for Test III, a force was applied at the end of the actuator126

using strings and the two components of the force were measured by spring127

dynamometers. In the finite element simulation, the end-position of the ac-128

tuator was defined according to the measurements and the resulting reaction129

forces were compared with the experimental measurements. Figure 6 illus-130

trates the deformation of the soft actuator for different pressures. We found131

very good agreement between the finite element simulation and the experi-132

ment for both Tests II and III.133

3. Prescriptions for the Parameters for the Rod Model134

The parameters needed for the rod model include its overall length ℓ,135

mass m, and a constitutive relation that relates the bending moment M to136

the change in curvature κ−κ0. In addition, a relation between the air pressure137
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50.8 mm

Figure 5: The pneumatically actuated soft robot limb. (a) Schematic of the actuator with

the labeling of its dimensions; and (b) the actuator which is clamped at one end and loaded

with a force FA+FB = 0.175E1+0.07E2 at the other end while subject to an air pressure

of 31 kPa. The dimensions of the arm featured in (a) and (b) and throughout this paper

are w = 15 mm, H = 12 mm, t = 3 mm , t1 = 2 mm, t2 = 8 mm, and ℓ = 112 mm. The

experimental set up is identical to that used in de Payrebrune and O’Reilly (2016b).

p and the intrinsic curvature profile κ0(s) is required. In this section of the138

paper, a series of three tests on the actuator are described. These tests help139

to determine the aforementioned parameters and curvature profile, and are140

identical to those described in de Payrebrune and O’Reilly (2016b). Several141

details from this paper are recalled here. In contrast to the comparisons142

performed in our earlier work, here the experiments are compared to a finite143

element model of the actuator. The finite element model will enable us to144

make conclusions for a wide variety of designs in the later sections of this145

paper.146

The first pair of tests, Test I and Test II, is designed to determine κ0(s)

as a function of p. To this end, a material curve A of length ℓ is identified

that runs the length of the actuator, and the corresponding curve is identified

11
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y/ℓ y/ℓ
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Figure 6: Measured and simulated (using a finite-element model) displacements of a mate-

rial line of (a) a pressurized cantilevered actuator (Test II) and (b) of a terminally loaded

actuator (Test III). The pressure p in this figure takes the values 5, 17, 31 and 45 kPa and

the arrows indicate increasing values of p. The dotted lines correspond to the experimental

data.

(a) (b)

κ
0
ℓ

s/ℓ
−4

x/ℓ

y/ℓ

0

0

0

0 11

−0.6

Figure 7: (a) Calculated displacements using the finite element model and (b) computed

intrinsic curvature of a material line of a pressurized cantilevered actuator. The results

where the actuator is not clamped (Test I) are drawn as solid blue lines and those for the

case where the actuator is clamped at one end (Test II) are drawn as a dashed red line.

The pressure p in this figure takes the values 1, 5, 10, 17, 24, 31 and 37 kPa and the

arrows indicate increasing values of p.
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in the companion finite element model. If we denote the position vector of

a point on this curve by R(s), then by measuring X(s) = R(s) · E1 and

Y (s) = R(s) · E2, the curvature κE of the curve can be found using the

identity

κE(s) =
X ′Y ′′ −X ′′Y ′

(X ′2 + Y ′2)3/2
, (6)

where the prime denotes the partial derivative with respect to s and the sub-147

script E denotes experimental data. To eliminate effects of local deformation148

of the cavities in the finite element model, or, of irregularities of optically149

measured marker positions in the case of measurements, we smooth the nodal150

values by performing a Gaussian process regression (cf. Aissiou et al. (2013)).151

We use (6) in conjunction with Test II to determine the intrinsic curvature152

profile κ0 (s, p) by identifying κE = κ0 for a given pressure and location s153

along the material curve.154

To verify that the curvature profile κ0 (s, p) is not related to the bound-155

ary conditions, we compared the deformation and the intrinsic curvature156

produced in Tests I and II (cf. Figure 7). After some initial alignment, we157

found that the deformations for a given pressure coincided in both cases.158

That is, the function κ0 (s, p) was not affected by the clamping conditions159

present in Test II. This independence justifies our use of experiments fea-160

turing a clamped actuator to determine the intrinsic curvature profile. A161

representative sample of experimental results along with a comparison to a162

finite element model is shown in Figure 8.163

To determine the parameters for the constitutive relation (4) for the bend-

ing moment, we turn to Test III. For a given pressure, we assume that κ0(s, p)

is determined when Fℓ = 0 in Test II. Then, in Test III, for a given Fℓ, the

13



position vector R of the material curve A on the actuator is recorded. The

moment M(s) is determined using an identity and an identification:

M(s) = (r(ℓ)− r(s))× Fℓ, r(s) = R(s), (7)

where M(ℓ) = 0. The curvature κ can be determined using the identity164

(6). For the finite element model, the moment can also be calculated by a165

weighted integration of the traction vector through a cross-section. However,166

we found that such a procedure gave noisy data, especially when the actuator167

contains cells of isolated air chambers.168

(a) (b)

κ
0
ℓ

κ
ℓ

s/ℓ s/ℓ

0

0 01 1

1

−2

−5

Figure 8: Curvature of measured and simulated (a) pressurized actuator and (b) addition-

ally loaded actuator. The pressure p in this figure takes the values 5, 17, 31 and 45 kPa

and the arrows indicate increasing values. The dotted lines correspond to the measured

data from experiments for Test II and Test III. The respective deformed shapes of the

centerline were shown earlier in Figure 6.

A representative set of results for the relation (4) for the bending moment169

is shown in Figure 2(b) and typically we find that we need five parameters:170

a pair of flexural stiffnesses α1,2, two intercepts m01,2 , and the position s = d171

of the discontinuity. We emphasize that these parameters must be sup-172
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plemented by the function κ0 (s, p). Figure 8 shows the intrinsic curvature173

profile κ0(s, p) and the current curvature profile κ(s, p) computed from the174

experiments and finite element simulations displayed in Figure 6. Observe175

that the middle section of the soft actuator has an almost constant intrinsic176

curvature which leads to a circular deformation. By way of contrast, the177

curvature in Test III changes its sign and has a curvature with a non-zero178

slope in the middle section.179

(a) (b)

M
/(
m
g
ℓ)

α
1
,2

α1

α2

β1

β2

(κ− κ0) ℓ p0

0

0

1

−0.1
6

0.2

50 kPa

Figure 9: Measured and simulated (a) dimensionless bending moment M/(mgℓ) as a func-

tion of (κ − κ0) ℓ with the flexural rigidity α1,2 (slopes of bisected curve) and increasing

values of pressure indicated by the arrow, and (b) the flexural rigidity as a linear function

of pressure with slope β1,2 indicated by the dashed lines. The gray lines correspond to the

measured data.

The graphical representation of the relation (4) for the bending moment

is displayed in Figure 9(a). This figure shows the non-linear relation of the

moment and curvature that we observed in our earlier experimental work

that is reported in de Payrebrune and O’Reilly (2016b). For convenience,

the bending moment is non-dimensionalized using the length ℓ and weight

mg of the unpressurized actuator. Clearly, two distinct sections are visible
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with distinct flexural rigidities, which we denote by α1 and α2, two intercepts

which we denote by m01 and m02 , and an arc-length parameter d at which

the flexural rigidity changes:

D(s) =







α1(s) s ∈ [0, d),

α2(s) s ∈ (d, ℓ].

(8)

Values for the rigidities as the pressure is varied are shown in Figure 9(b). For180

the investigated geometry, d should not exceed the position of the maximum181

curvature (Figure 8(b)) and this parameter typically takes values ranging182

between 0.126ℓ and 0.134ℓ.183

4. Validation and scalability of the rod model184

To validate the parameterization, we compared results from the rod model185

and those from the finite element model for a given set of end loads. As can186

be seen from Figure 10(a,b), there is good agreement between the results for187

both Test II and Test III.188

We also note that in addition to the intrinsic curvature and the flexural189

rigidity, the position d of the discontinuity is an important parameter of the190

rod model. and is strongly related to the pressure and geometry of the ac-191

tuator. Complementary investigations of d related to the pressure p and the192

cavities height H (cf. Figure 11(a)) of the actuator gives a linear approxi-193

mation within the observed limits of 5 ≤ p ≤ 40kPa and 4 ≤ H ≤ 19mm.194

Further information are also provided in our earlier work de Payrebrune and195

O’Reilly (2016a).196
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Figure 10: Deformation obtained by the finite element ((a) blue and (b) red curves) and the

rod (black curves) models of (a) a pressurized actuator and of (b) an additionally loaded

actuator. The pressure p in this figure takes the values 5, 17, 31 and 45 kPa and the

arrows indicate increasing values. The dashed lines illustrate the rod model with the label

m1 indicating d = 0.1ℓ and the label m2 indicating d = 0.125ℓ.

(a) (b)

x/ℓ

y/ℓ

0

0 1

0.1

5

40kPa
p

0.03

0.17

H/ℓ

0.1

0.15

d/ℓ

Figure 11: Deformation obtained by the finite element (red curve) and the rod (grayscale

curves) models of a loaded and pressurized actuator with p = 24 kPa and varying d/ℓ =

0.05, 0.1, 0.125, 0.15, and 0.175 (a), increasing values indicated by the arrows. Linear

relation of d/ℓ on pressure p and cavity height H/ℓ with optimal values of d/ℓ displayed

as dots (b).
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4.1. Scalability of the Parameters197

From Figure 9(b), which illustrates the flexural rigidities α1,2 (p) from198

Figure 8(a) as a function of pressure, it is observed that the flexural rigidities199

are linear functions of p. A related conclusion, which we will document later200

in Figure 15(a), for the intrinsic curvature κ0 (s = ℓ/2, p) at position s = ℓ/2201

can be inferred from Figure 8(a). These circumstances reduces the number202

of finite element simulations necessary to parameterize the rod model to203

three. From the simulation of the pressurized actuator (Test II), we obtain204

the intrinsic curvature profile. Subsequently, two simulations of the loaded205

actuator (Test III) are necessary to derive the slopes β1,2 =
α1,2(p2)−α1,2(p1)

p2−p1
of206

the flexural rigidity α1,2(s, p).207

We investigated the dependence ofM , κ−κ0, and α1,2 on the actual length

ℓi of the actuator with respect to the reference length ℓ0 of the actuator used

in our earlier experimental and numerical investigations. Figure 12 displays

a linear dependence of the moment and curvature on the change of length ℓi
ℓ0

and we can state the relations

κ0(s, pi, ℓi) = κ0(s, p0, ℓ0) ·
pi
p0

ℓi
ℓ0
,

α1,2(pi, ℓi) =

[

α1,2(p0, ℓ0) + (pi − p0) β1,2(ℓ0)

](
ℓ0
ℓi

)2

, (9)

with the reference parameters p = p0 and ℓ = ℓ0. Regarding the limits of

α1,2 (·, ℓi) as the length of the actuator was varied and ∆p = pi − p0 stays

fixed, we found that

α1,2(·, ℓi) = lim
ℓi→0

[

α1,2(·, ℓ0) + ∆pfix β1,2(ℓ0)

](
ℓ0
ℓi

)2

= ±∞,

α1,2(·, ℓi) = lim
ℓi→∞

[

α1,2(·, ℓ0) + ∆pfix β1,2(ℓ0)

](
ℓ0
ℓi

)2

= ±0. (10)
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Here, we have denoted ∆p by ∆pfix to emphasize that it remains constant208

during the limiting process. Thus, a soft actuator behaves like a rigid body209

for ℓi → 0, and as a string without flexural rigidity as ℓi → ∞ (cf. Figure 13).210
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Figure 12: Influence of the length ℓi of the actuator obtained by the finite element model

for (a) the difference of current and intrinsic curvature, (b) the moment for an actuator

with the boundary condition y (ℓi) = 0, and (c) the moment as a function of (κ− κ0) ℓi.

Values scaled by ℓ/ℓ0 are indicated by the dashed lines. The labels u, v, and w correspond

to the following lengths: u: ℓi = 0.64ℓ0, v: ℓi = ℓ0, and w: ℓi = 1.8ℓ0.

With the scaling relations (9)1,2, the rod model can be easily parame-211

terized and used to evaluate the deforming behavior of a soft actuator for212

various pressures and lengths. As indicated in Figure 12(c) by the dashed213

lines, the 5-parameter model remains valid.214

4.2. Adaptation to Other Geometries215

To validate the parameterization and scalings discussed, we modeled ac-216

tuators similar to those developed in Suzumori et al. (2007) and Holland217

19



(a) (b)

(κ− κ0) ℓi

solid

string

α
1
,2
(ℓ

i)

M
/(
m
g
ℓ i
)

ℓi/ℓ0

α2(ℓi)

α2(ℓi)α1(ℓi)

α1(ℓi)

0
0 0

3

3

2

−2
8

Figure 13: Development of (a) the moment M/ (mgℓi) as a function of (κ − κ0)ℓi for

various lengths of the actuator and (b) the flexural rigidity α1,2 as a function of ℓi/ℓ0.

The increasing length of the actuator is indicated by the arrow and the three finite element

simulations highlighted by colors from Figure 12.

et al. (2014). Preliminary analyses of different geometries show that the 5-218

parameter constitutive relation (shown in Figure 2(b)) is applicable for these219

designs as well. The linear dependence of the intrinsic curvature and flexural220

rigidity on the pressurization, however, is strongly related to the actuator’s221

design. For the geometries illustrated in Figure 14, we repeated the finite222

element simulations to determine the intrinsic curvature profile and flexu-223

ral rigidities. Figure 15 illustrates the intrinsic curvature κ0 (s = ℓ/2, p) at a224

specific position s = ℓ/2 of the actuator and the flexural rigidities α1,2 as a225

function of pressure. While the intrinsic curvature has a linear trend for the226

entire pressure regime for geometry (a), for the geometries (b), (c) and (d)227

of Figure 14 the pressure needs to be greater than 20 kPa for such a linear228

trend to occur.229

In the case of the flexural rigidity α2, this stiffness increases with ris-230

ing pressure p for geometries with separated cavities (geometries (a) and231
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Figure 14: Deformation of (a) a rectangular actuator with 11 cavities, (b) a semicircular

actuator with 11 cavities, (c) a semicircular actuator with one cavity, and (d) a bisected

circular actuator. The pressurization is p = 37 kPa. One end of the actuator is fixed and

the vertical displacement of the other end is prescribed.

(b)), whereas the rigidity decreases with increasing pressure for geometries232

with just one cavity along the axis (geometries (c) and (d)) as shown in233

Figure 15(c). For the case of α1, this trend is reversed. The non-linear char-234

acteristic of rigidity and intrinsic curvature consequently restricts the scaling235

arguments presented for parameterizing rod models to higher pressure with236

p ≥ 20 kPa and makes a closer examination of the geometry necessary. How-237

ever, the parameter values in the lower pressure regime can be easily obtained238

by additional finite element simulations.239

5. Concluding Remarks240

The five-parameter constitutive relation found in de Payrebrune and241

O’Reilly (2016b) for a specific geometry is also applicable to other soft actu-242

ator designs. For instance, we simulated the deformation of the four afore-243

mentioned designs using rod and finite element models. The results, shown244
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Figure 15: Pressure dependent (a) change of intrinsic curvature at s = ℓ/2, (b) change

of the flexural rigidity α1 and (c) of the flexural rigidity α2 for the actuator geometries

shown in Figure 14.

in Figure 16 demonstrate good agreement between the finite element model,245

which uses a St. Venant-Kirchhoff constitutive relation, and a rod model246

which uses a 5-parameter constitutive model. The precise parameters of the247

constitutive relation can be determined using finite element simulations and,248

for distinct regimes of pressure, can be found using scaling arguments. The249

constitutive model can be used in rod-based models for pneumatically ac-250

tuated limbs in ambulatory soft robots and gripping soft robots and is not251

restricted to pneunet actuators.252

Depending on the geometry of the soft actuator and its deformation dur-253

ing pressurization, the intrinsic curvature and flexural rigidity can be linear254

functions of the pressure and the length of the actuator. We found that actu-255

ators with a single cavity tend to have a non-linear dependence on pressure256

in the low pressure regime. Further, the dependence on the parameter d is257
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strongly related to supporting effects of the structure of the soft actuator. In258

particular, for the pneu-net actuator, the chamber walls tended to contact259

each other during some modes of deformation, which led to a difference in260

stiffness compared to those segments where no self contact of the chambers261

occurred.

(a) (b) (c)
κ

dmax

000

0

00
60 kPa11

0.1 1.5

−3
px/ℓx/ℓ

y
/ℓ

F
/m

g

Figure 16: Calculated deformation using the finite element model (solid lines) and rod

model (dashed lines) for p = 37 kPa (a), final curvature for p = 37 kPa (b), and forces

at the end position in vertical direction (c), with respect to the pressurization for the four

geometries shown in Figure 14. The length of section α1(s) with s ∈ [0, d) is d = 0.14ℓ

for the soft actuator shown in Figure 3 and d = 0.048ℓ for the additionally investigated

geometries.
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