Title
SOLID-STATE EFFECTS ON PIONIC ATOM X-RAY SPECTRA

Permalink
https://escholarship.org/uc/item/6tk7903z

Authors
Grin, Georges-Andre
Kunselman, Raymond.

Publication Date
1969-05-01
SOLID-STATE EFFECTS ON PIONIC Atom X-RAY SPECTRA

Georges-André Grin and Raymond Kunselman

May 1969

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

LAWRENCE RADIATION LABORATORY
UNIVERSITY of CALIFORNIA BERKELEY
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
SOLID-STATE EFFECTS ON PIONIC ATOM X-RAY SPECTRA*

Georges-André Grin† and Raymond Kunselman

Lawrence Radiation Laboratory
University of California
Berkeley, California

May 1969

Solid-state or chemical effects were observed on the intensities of lines in pionic atom x-ray spectra of several compounds and mixtures. A possible explanation of the deviations from the Z law is discussed.

Solid-state or chemical effects have been observed in muonic atoms [1-4] and recently in pionic atoms [5] by looking at the x-ray intensities of transition lines in a spectrum. Line intensities of an element are generally different, according to whether the element under consideration is pure or a part of a compound; in particular the ratios of line intensities are different [2-5]. Apart from this result, it is known that the so called Fermi-Teller Z law [6] (the prediction of capture on the constituents of a compound in proportion to their atomic number) is valid only as a general and approximate rule; the nature of the chemical bond appears to be a factor influencing the atomic capture ratio [1].

It seemed interesting to us to use the favorable \(\pi^- \) intensity available at the Berkeley 184-inch cyclotron to further study such effects. The use of \(\pi^- \) rather than \(\mu^- \), apart from the superior intensity, has some drawbacks. The nuclear capture perturbs the lower transitions to a point where the 2p-1s, 3d-2p, and, in high-Z nuclei even 4f-3d, x-ray transitions are difficult to observe or cannot be measured. Furthermore, the nuclear capture \(\gamma \) rays cannot be distinguished from the genuine x rays by a delayed coincidence measurement, as with \(\mu^- \). However, for high enough orbits—in particular
where the atomic capture takes place—the behavior should be the same for
\(\pi^- \) and \(\mu^- \), again apart from the nuclear capture, which may affect noncircular
low-\(l \) orbits for pions (3s, for example).

We used the conventional method of producing and identifying stopped
\(\pi^- \). The x rays were detected and their energy measured by means of a
1.0-cm-thick by 3.0-cm-diameter Ge(Li) detector. The detector was about
15 cm from the target and surrounded by a lead shielding. The energy resolu­
tion was 1.3 keV FWHM for the \(^{57}\text{Co} 122\text{-keV line}. The targets were
usually disks of 7.5 cm diameter and 1.25 to 2.0 cm thick (1.5–3.5 g/cm\(^2\)).
A fast coincidence (\(\approx 100 \text{ nsec} \) was required between the stopped pion signal
and the fast output of the Ge amplifier system [7]. The coincident pulse­
height spectrum from the slow Ge amplifier output was recorded on a pulse­
height analyzer. The fast coincidence was shown to cause no loss of good
events above 50 keV while appreciably reducing the background due to chance
coincidences. Typical instantaneous rates for the 60% duty cycle of the
stretched cyclotron beam were \(10^5 \text{ sec}^{-1} \) for the stopped \(\pi^- \) and \(3.5\times10^3 \text{ sec}^{-1} \)
on the Ge detector (above a 30-keV threshold).

The spectra were scanned and the peak areas evaluated after back­
ground subtraction. Two methods for evaluation were used and cross­
checked. The first was a hand-and-eye method and the second an on-line
computer fitting procedure. The data were corrected for the self-absorption
of the x rays in the target and for the efficiency of the detector. The efficiency
curve as a function of energy was carefully measured with sets of calibrated
sources [8] and by use of the known relative intensities of the lines of \(^{75}\text{Se}\)
and \(^{177}\text{mLu} \) sources. An x-ray spectrum was measured not only for a
particular compound but also for the corresponding mixture (when available)
of the same atomic ratio. Figure 1 shows examples of x-ray spectra for a compound and a mixture.

The results are displayed in the table. Several types of line intensity ratios have been calculated. The ratios are either for lines associated with the same element, or for pairs of lines (one from each element) in a compound or mixture. The errors include the contributions due to the background subtraction and to the uncertainties with which the detector efficiency and the target attenuation factor could be known. When a ratio of ratios is calculated for a compound and mixture pair, the uncertainties on the efficiency and the attenuation factors cancel or are reduced. In every case in which it was necessary a correction was made to take into account the difference in the yield (number of x rays of a particular transition per stopped pion) of the elements because of nuclear capture of the pions. It was difficult to determine an absolute yield with an overall uncertainty smaller than ±10%, because of difficulty in evaluation of the true number of stopped π⁻; but the relative yields are known better, to ±5%. These yields were measured by using the elements as targets whenever possible.

Before discussing the results, we wish to emphasize that the ratio of capture on the two constituents of a compound can be only indirectly deduced from a measurement of two x-ray line intensities. The intensity covers two effects: one, the initial atomic capture itself, the other, the subsequent process of the cascade. Several measurements [2-5] as well as ours have shown that the cascade is not the same for a pure element and for that element in a compound. This remarkable fact probably reflects two influences, one, the initial capture's taking place on common levels, and, two, the cascade's being dependent on the symmetry of the potential (i.e., the Δf = ±1 selection
rule for radiative transitions applies only to spherical symmetry and not to
the nonspherical symmetry of the potential for some compounds).

What could be noticed at first is that the line ratio of the two elements
of a compound usually differed from the line ratio in the corresponding mi-
ture. However, a compound and the corresponding mixture should not be
compared directly, because the mixture was not on the atomic level. The
grain size for all constituents of the mixtures was smaller than 100 mesh
(0.149 mm) except for Te, which was 65 mesh (0.210 mm), and they were
all larger than about 325 mesh (0.044 mm). In a first approximation for
these real mixtures, the ratio V_1/V_2 of the volumes of the constituents of
the mixture, as well as the ratio of the rates of energy loss (dE/dx), is
effective in the capture ratio. Using the known density of the elements in the
mixtures and assuming that the ratio of the rates of energy loss is propor-
tional to Z_1/Z_2, one obtains the capture ratio proportional to V_1Z_1/V_2Z_2,
and one can roughly explain the measured ratios for the mixtures.

A second effect is that of the binding on the intensity ratios for each
element of a compound. This supports the previous observations done with
μ^-, in particular for Ti/TiO [2-4] and C/CH$_2$ [4]. The effect, if any, for Ti
is much smaller in our case, in agreement with ref. 5. The effect for C is
in agreement with the previous μ^- results; it is large and opposite to that for
Ti, and probably from the H to C transfer of mesons. Transitions between
circular orbits ($\ell = n - 1$) appear to be slightly favored in the compounds (see,
for example, Ti/TiO$_2$, CdTe/Cd+Te, InSb/In+Sb).

If we attempt to compare our capture ratios with a Z-law prediction
[6], we see that a Z law is valid only as a rough rule.
As noticed previously with μ^- for oxides [1], there seems to be an appreciable modulation of the Z law.

Au-Yang and Cohen have studied this problem [9] and shown that the capture takes place on high common molecular orbits and that solid-state effects cannot be neglected. They have performed numerical calculations for a few cases, in particular for ZnS, for which they expect a ratio of 3.0, which compares well with our experiment. In agreement with these authors, we find that the atomic capture is influenced by the Z ratio, the ratio of the radii of the two types of ions or atoms, and the effective charge parameter Z_f. The effective charge parameter is an estimate of the charge transfer; it characterizes the chemical bond and is defined as the amount of ionic character times the number of valence electrons. The ionic character of a bond is related to the difference in electronegativity of the atoms; these parameters are from Pauling [10]. For $Z_1/Z_2 \leq 1$, Z_f might be the most important factor, as in ZnSe, where the deviation from the Z law is large. But the additional effect of Z_f, in favor of the positive ion, is perhaps small when $Z_1/Z_2 > 1$; it can also be counterbalanced by the effect of the ratio of the radii, usually smaller than 1, favoring the negative ion. The comparison of FeS with FeS$_2$ is direct evidence for the effect of Z_f.

The KCl and CaCl$_2$ compared as solutions in water and as the anhydrous salts, also show the effect of Z_f, but with the complication brought by the dissociation. Concerning the Cu$_3$Au alloy, from the most reliable ratio, 4f-3d Cu/7i-6h Au, one might conclude that the potential of the unordered sample is more like that of the mixture 3 Cu+Au. The ordered sample was characterized by a factor-of-2 increase in the electrical conductivity after the thermal ordering process.
Beside studying isotope effects on the shifts and widths [11] with 44CaCl$_2$ and 40CaCl$_2$ targets (our results [11] show smaller line shift and width in 44Ca than for 40Ca), we searched for a possible nuclear-mass lattice-recoil effect on the atomic capture ratio, following a suggestion by E. Teller. Our results might show an effect (≈5%), seen in three different ratios, but the uncertainties are as large as the effect. Again, apart from the intensity, a study with μ^- would be preferable.

We thank Professor Emilio Segrè and Dr. Clyde Wiegand for their interest, guidance, and support. We also thank Dr. R. Pehl, who provided excellent Ge(Li) detectors, Dr. F. Goulding, Dr. D. Landis, Professor M. Cohen, Dr. M. Y. Au-Yang, and the 184-inch cyclotron crew, under J. Vale and L. Houser, for their help and interest in the experiment. One of us (G.-A. G.) thanks Professor Ch. Haenny and Professor J. P. Blaser for granting the fellowship.

FOOTNOTES AND REFERENCES

*Work done under auspices of the United States Atomic Energy Commission.

†On leave from Lausanne, Switzerland, with a fellowship from SIN-ETH, Zürich (Prof. Blaser). Presently at the Swiss Embassy in Washington, D.C.

8. International Atomic Energy Agency, Vienna; Sets of sources Nos. 95 and 130 containing 241Am, 57Co, 203Hg, 22Na, 137Cs, and 60Co.

11. Raymond Kunselman and Georges-André Grin, Measurement of X-Ray Line Shift and Width in 40Ca, 44Ca, 232Th, and 238U Pionic Atoms (in preparation).
Fig. 1. Pionic atom X-ray spectrum of a compound and a mixture.
Table 1: Experimental Results

<table>
<thead>
<tr>
<th>Sample</th>
<th>Line ratio</th>
<th>First sample</th>
<th>Second sample</th>
<th>Ratio of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.48 ± 0.04</td>
<td>0.93 ± 0.01</td>
<td>1.30 ± 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.46 ± 0.05</td>
<td>0.64 ± 0.01</td>
<td>2.29 ± 0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.04 ± 0.05</td>
<td>0.57 ± 0.01</td>
<td>1.82 ± 0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.94 ± 0.04</td>
<td>0.60 ± 0.01</td>
<td>1.57 ± 0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.23 ± 0.05</td>
<td>0.64 ± 0.01</td>
<td>1.92 ± 0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.30 ± 0.05</td>
<td>0.74 ± 0.01</td>
<td>1.76 ± 0.03</td>
</tr>
</tbody>
</table>

The radiant ratio is given in a non-grievous composition.

p<0.05

All of the quantities in this table are given in a non-grievous composition. The radiant ratio in the first element of column 4 defined as number of X-rays per stopped plane.

Effective charge parameters defined in text:

Effective charge parameters defined in text.

Table 1: Experimental Results

<table>
<thead>
<tr>
<th>Sample</th>
<th>Line ratio</th>
<th>First sample</th>
<th>Second sample</th>
<th>Ratio of samples</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2.48 ± 0.04</td>
<td>0.93 ± 0.01</td>
<td>1.30 ± 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.46 ± 0.05</td>
<td>0.64 ± 0.01</td>
<td>2.29 ± 0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.04 ± 0.05</td>
<td>0.57 ± 0.01</td>
<td>1.82 ± 0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.94 ± 0.04</td>
<td>0.60 ± 0.01</td>
<td>1.57 ± 0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.23 ± 0.05</td>
<td>0.64 ± 0.01</td>
<td>1.92 ± 0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.30 ± 0.05</td>
<td>0.74 ± 0.01</td>
<td>1.76 ± 0.03</td>
</tr>
</tbody>
</table>

The radiant ratio is given in a non-grievous composition.

p<0.05

All of the quantities in this table are given in a non-grievous composition. The radiant ratio in the first element of column 4 defined as number of X-rays per stopped plane.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.