Lawrence Berkeley National Laboratory

Recent Work

Title
CALCULATED FRACTIONAL INDEPENDENT YIELDS OF PRODUCTS FORMED IN THE SPONTANEOUS FISSION OF 252Cf

Permalink
https://escholarship.org/uc/item/6w98k0qt

Authors
Watson, R.L.
Wilhelmy, J.B.

Publication Date
1969-02-01
CALCULATED FRACTIONAL INDEPENDENT YIELDS OF PRODUCTS FORMED IN THE SPONTANEOUS FISSION OF 252Cf

R. L. Watson and J. B. Wilhelmy

February 1969
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
CALCULATED FRACTIONAL INDEPENDENT YIELDS OF PRODUCTS
FORMED IN THE SPONTANEOUS FISSION OF 252Cf

R. L. Watson and J. B. Wilhelmy

February 1969
CALCULATED FRACTIONAL INDEPENDENT YIELDS OF PRODUCTS
FORMED IN THE SPONTANEOUS FISSION OF 252Cf

R. L. Watson† and J. B. Wilhelmy

Lawrence Radiation Laboratory
University of California
Berkeley, California 94720

February 1969

I. DEFINITIONS

a) The absolute fission yield of a product of mass M is given by

\[Y_M(i) = \frac{R_M(i)}{R_F}, \tag{1} \]

where $R_M(i)$ is the rate of formation of the product and R_F is the fission rate.

b) The independent yield of a product, $Y_M^I(i)$, is its yield by direct formation from the fissioning nucleus.

c) The cumulative yield of a product is its yield by direct formation plus its yield of formation from precursors;

\[Y_M^C(i) = \sum_{n=1}^{i} Y_M^I(i). \tag{2} \]

*Work performed under the auspices of the U. S. Atomic Energy Commission.

†Present address: Cyclotron Institute, Texas A. and M. University,
College Station, Texas 77843.
Hence the cumulative yield of a product is equal to the sum of
the independent yields of all precursors plus the independent
yield of the product itself. The secondary yield of a product
is its yield of formation from precursors alone and thus is
given by

$$y_{M}^{S(i)} = \sum_{n=1}^{i-1} y_{M}^{I(n)} .$$ (3)

d) The chain yield is given by the sum of the independent yields of
all members of the same mass chain. For a mass chain containing
K members, the chain yield is

$$y_{M} = \sum_{n=1}^{K} y_{M}^{I(n)} .$$ (4)

e) The element yield is given by the sum of the independent yields
of all products having the same atomic number;

$$y_{Z} = \sum_{M=1}^{n} y_{M}^{I(Z)} .$$ (5)

f) The fractional independent yield of a product is its absolute
fission yield divided by the chain yield of the mass chain to
which it belongs;

$$\frac{y_{M}^{I}(i)}{y_{M}^{I}} = \frac{y_{M}^{I(i)}}{y_{M}} .$$ (6)

the fractional cumulative yield is
The present calculations have incorporated the prescription given by Wahl et al.\(^1\) in which the charge distribution of direct formation products is assumed to be Gaussian. Based upon the experimental information currently available, it was assumed that a single charge dispersion curve may be used to represent all charge dispersion data (i.e., that the width of the Gaussian is approximately a constant).

In the formulation of a Gaussian distribution in the cumulative form (i.e., with the Gaussian normalized such that the area under the curve is unity), the fractional cumulative yield of a fission product with charge \(Z\) is given by:

\[
Y^C_{M_f}(Z) = \sum_{n=0}^{Z_f} Y^I_{M_f}(n) = \frac{1}{\sqrt{2\pi} \sigma} \int_{-\infty}^{Z_1^{1/2}} e^{-\frac{(Z_1-Z_p)^2}{2\sigma^2}} dZ .
\]

The fractional independent yield of a fission product with charge \(Z\), then, is given by:

\[
Y^I_{M_f}(Z) = \frac{1}{\sqrt{2\pi} \sigma} \int_{Z_1^{-1/2}}^{Z_1^{1/2}} e^{-\frac{(Z_1-Z_p)^2}{2\sigma^2}} dZ .
\]

Changing variables such that

\[
t = \frac{(Z_1 - Z_p)}{\sigma}
\]

\[
dZ = \sigma dt
\]
Eq. (9) may be re-expressed by:

$$Y_{M_p}^{I}(Z_i) = \frac{1}{\sqrt{2\pi}} \int_{t_2}^{t_1} e^{-t^2/2} dt .$$ \hspace{1cm} (10)

The limits are found to be:

$$Z_i + \frac{1}{2} = \sigma t_2 + Z_p$$

$$t_2 = \frac{Z_i - Z_p + \frac{1}{2}}{\sigma} .$$

$$Z_i - \frac{1}{2} = \sigma t_1 + Z_p$$

$$t_1 = \frac{Z_i - Z_p - \frac{1}{2}}{\sigma} .$$

Hence, the fractional independent yields are calculable from the difference between two normal probability integrals;

$$Y_{M_p}^{I}(Z_i) = \frac{1}{2} \left[\frac{1}{\sqrt{2\pi}} \int_{-t_2}^{t_2} e^{-t^2/2} dt - \frac{1}{\sqrt{2\pi}} \int_{-t_1}^{t_1} e^{-t^2/2} dt \right] .$$ \hspace{1cm} (11)

Values of these integrals are given in Ref. 5.
III. RESULTS

The value of the standard deviation of the Gaussian charge distribution used in the calculations is \(\sigma = 0.59 \) as given by Norris and Wahl.² Most probable charge values were taken from the curve in Fig. 1 (see Table I). This curve was constructed on the basis of empirical \(Z_p \) values given by Wahl et al.¹ and \(Z_p \) values determined from X-ray measurements given by Kapoor et al.³ Fission chain yields for \(^{252}\)Cf were obtained from the radiochemical measurements of Nervik⁴ and are given in Table II.

The element yields were calculated for \(Z = 36 \) to \(Z = 62 \) and are listed in Table III and plotted in Fig. 2. Table IV lists the calculated values of the fractional independent yields and the absolute fission yields for the elements comprising each mass chain.
REFERENCES

Table I. Average Z_p values from Fig. 1.

<table>
<thead>
<tr>
<th>Mass Chain</th>
<th>Z_p</th>
<th>Mass Chain</th>
<th>Z_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>34.1</td>
<td>108</td>
<td>43.5</td>
</tr>
<tr>
<td>87</td>
<td>34.5</td>
<td>109</td>
<td>43.9</td>
</tr>
<tr>
<td>88</td>
<td>34.9</td>
<td>110</td>
<td>44.1</td>
</tr>
<tr>
<td>89</td>
<td>35.4</td>
<td>111</td>
<td>44.6</td>
</tr>
<tr>
<td>90</td>
<td>35.8</td>
<td>112</td>
<td>45.0</td>
</tr>
<tr>
<td>91</td>
<td>36.3</td>
<td>113</td>
<td>45.4</td>
</tr>
<tr>
<td>92</td>
<td>36.8</td>
<td>114</td>
<td>45.8</td>
</tr>
<tr>
<td>93</td>
<td>37.2</td>
<td>115</td>
<td>46.2</td>
</tr>
<tr>
<td>94</td>
<td>37.6</td>
<td>116</td>
<td>46.5</td>
</tr>
<tr>
<td>95</td>
<td>38.1</td>
<td>117</td>
<td>46.8</td>
</tr>
<tr>
<td>96</td>
<td>38.5</td>
<td>118</td>
<td>47.2</td>
</tr>
<tr>
<td>97</td>
<td>38.9</td>
<td>119</td>
<td>47.5</td>
</tr>
<tr>
<td>98</td>
<td>39.3</td>
<td>120</td>
<td>47.8</td>
</tr>
<tr>
<td>99</td>
<td>39.7</td>
<td>121</td>
<td>48.2</td>
</tr>
<tr>
<td>100</td>
<td>40.2</td>
<td>122</td>
<td>48.5</td>
</tr>
<tr>
<td>101</td>
<td>40.6</td>
<td>123</td>
<td>48.8</td>
</tr>
<tr>
<td>102</td>
<td>41.0</td>
<td>124</td>
<td>49.1</td>
</tr>
<tr>
<td>103</td>
<td>41.4</td>
<td>125</td>
<td>49.3</td>
</tr>
<tr>
<td>104</td>
<td>41.8</td>
<td>126</td>
<td>49.6</td>
</tr>
<tr>
<td>105</td>
<td>42.2</td>
<td>127</td>
<td>49.9</td>
</tr>
<tr>
<td>106</td>
<td>42.6</td>
<td>128</td>
<td>50.1</td>
</tr>
<tr>
<td>107</td>
<td>43.1</td>
<td>129</td>
<td>50.3</td>
</tr>
</tbody>
</table>

(Continued)
Table I (Continued)

<table>
<thead>
<tr>
<th>Mass Chain</th>
<th>Z_p</th>
<th>Mass Chain</th>
<th>Z_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>50.5</td>
<td>147</td>
<td>57.5</td>
</tr>
<tr>
<td>131</td>
<td>50.8</td>
<td>148</td>
<td>58.0</td>
</tr>
<tr>
<td>132</td>
<td>51.1</td>
<td>149</td>
<td>58.4</td>
</tr>
<tr>
<td>133</td>
<td>51.4</td>
<td>150</td>
<td>58.9</td>
</tr>
<tr>
<td>134</td>
<td>51.8</td>
<td>151</td>
<td>59.3</td>
</tr>
<tr>
<td>135</td>
<td>52.1</td>
<td>152</td>
<td>59.8</td>
</tr>
<tr>
<td>136</td>
<td>52.5</td>
<td>153</td>
<td>60.2</td>
</tr>
<tr>
<td>137</td>
<td>53.0</td>
<td>154</td>
<td>60.7</td>
</tr>
<tr>
<td>138</td>
<td>53.5</td>
<td>155</td>
<td>61.1</td>
</tr>
<tr>
<td>139</td>
<td>53.9</td>
<td>156</td>
<td>61.6</td>
</tr>
<tr>
<td>140</td>
<td>54.4</td>
<td>157</td>
<td>62.0</td>
</tr>
<tr>
<td>141</td>
<td>54.8</td>
<td>158</td>
<td>62.5</td>
</tr>
<tr>
<td>142</td>
<td>55.3</td>
<td>159</td>
<td>62.9</td>
</tr>
<tr>
<td>143</td>
<td>55.7</td>
<td>160</td>
<td>63.4</td>
</tr>
<tr>
<td>144</td>
<td>56.2</td>
<td>161</td>
<td>63.8</td>
</tr>
<tr>
<td>145</td>
<td>56.6</td>
<td>162</td>
<td>64.3</td>
</tr>
<tr>
<td>146</td>
<td>57.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table II. Fission yields for 252Cf (Nervik1).

<table>
<thead>
<tr>
<th>Mass Chain</th>
<th>Fission Yield %</th>
<th>Mass Chain</th>
<th>Fission Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>86</td>
<td>0.11</td>
<td>108</td>
<td>6.00</td>
</tr>
<tr>
<td>87</td>
<td>0.15</td>
<td>109</td>
<td>5.69</td>
</tr>
<tr>
<td>88</td>
<td>0.24</td>
<td>110</td>
<td>5.45</td>
</tr>
<tr>
<td>89</td>
<td>0.32</td>
<td>111</td>
<td>5.19</td>
</tr>
<tr>
<td>90</td>
<td>0.44</td>
<td>112</td>
<td>3.65</td>
</tr>
<tr>
<td>91</td>
<td>0.59</td>
<td>113</td>
<td>4.23</td>
</tr>
<tr>
<td>92</td>
<td>0.75</td>
<td>114</td>
<td>3.07</td>
</tr>
<tr>
<td>93</td>
<td>0.83</td>
<td>115</td>
<td>2.28</td>
</tr>
<tr>
<td>94</td>
<td>1.13</td>
<td>116</td>
<td>1.60</td>
</tr>
<tr>
<td>95</td>
<td>1.37</td>
<td>117</td>
<td>1.10</td>
</tr>
<tr>
<td>96</td>
<td>1.47</td>
<td>118</td>
<td>0.70</td>
</tr>
<tr>
<td>97</td>
<td>1.54</td>
<td>119</td>
<td>0.42</td>
</tr>
<tr>
<td>98</td>
<td>2.09</td>
<td>120</td>
<td>0.24</td>
</tr>
<tr>
<td>99</td>
<td>2.57</td>
<td>121</td>
<td>0.14</td>
</tr>
<tr>
<td>100</td>
<td>3.15</td>
<td>122</td>
<td>0.073</td>
</tr>
<tr>
<td>101</td>
<td>3.70</td>
<td>123</td>
<td>0.035</td>
</tr>
<tr>
<td>102</td>
<td>4.25</td>
<td>124</td>
<td>0.015</td>
</tr>
<tr>
<td>103</td>
<td>4.80</td>
<td>125</td>
<td>0.009</td>
</tr>
<tr>
<td>104</td>
<td>5.40</td>
<td>126</td>
<td>0.052</td>
</tr>
<tr>
<td>105</td>
<td>5.99</td>
<td>127</td>
<td>0.13</td>
</tr>
<tr>
<td>106</td>
<td>6.20</td>
<td>128</td>
<td>0.32</td>
</tr>
<tr>
<td>107</td>
<td>6.20</td>
<td>129</td>
<td>0.62</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Mass Chain</th>
<th>Fission Yield %</th>
<th>Mass Chain</th>
<th>Fission Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>0.92</td>
<td>147</td>
<td>4.69</td>
</tr>
<tr>
<td>131</td>
<td>1.27</td>
<td>148</td>
<td>3.50</td>
</tr>
<tr>
<td>132</td>
<td>1.75</td>
<td>149</td>
<td>2.65</td>
</tr>
<tr>
<td>133</td>
<td>2.77</td>
<td>150</td>
<td>2.34</td>
</tr>
<tr>
<td>134</td>
<td>3.50</td>
<td>151</td>
<td>2.18</td>
</tr>
<tr>
<td>135</td>
<td>4.33</td>
<td>152</td>
<td>1.71</td>
</tr>
<tr>
<td>136</td>
<td>4.40</td>
<td>153</td>
<td>1.41</td>
</tr>
<tr>
<td>137</td>
<td>4.40</td>
<td>154</td>
<td>1.11</td>
</tr>
<tr>
<td>138</td>
<td>4.94</td>
<td>155</td>
<td>0.86</td>
</tr>
<tr>
<td>139</td>
<td>5.73</td>
<td>156</td>
<td>0.70</td>
</tr>
<tr>
<td>140</td>
<td>6.32</td>
<td>157</td>
<td>0.52</td>
</tr>
<tr>
<td>141</td>
<td>5.90</td>
<td>158</td>
<td>0.39</td>
</tr>
<tr>
<td>142</td>
<td>6.00</td>
<td>159</td>
<td>0.29</td>
</tr>
<tr>
<td>143</td>
<td>5.94</td>
<td>160</td>
<td>0.21</td>
</tr>
<tr>
<td>144</td>
<td>5.77</td>
<td>161</td>
<td>0.15</td>
</tr>
<tr>
<td>145</td>
<td>5.50</td>
<td>162</td>
<td>0.10</td>
</tr>
<tr>
<td>146</td>
<td>5.15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table III. Element yields.

<table>
<thead>
<tr>
<th>Lt. Frag Z</th>
<th>Fission Yield (%)</th>
<th>Hy. Frag. Z</th>
<th>Fission Yield (%)</th>
<th>Average (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>1.10</td>
<td>62</td>
<td>1.25</td>
<td>1.17</td>
</tr>
<tr>
<td>37</td>
<td>1.92</td>
<td>61</td>
<td>2.18</td>
<td>2.05</td>
</tr>
<tr>
<td>38</td>
<td>3.01</td>
<td>60</td>
<td>3.55</td>
<td>3.28</td>
</tr>
<tr>
<td>39</td>
<td>4.54</td>
<td>59</td>
<td>5.28</td>
<td>4.91</td>
</tr>
<tr>
<td>40</td>
<td>6.95</td>
<td>58</td>
<td>8.02</td>
<td>7.48</td>
</tr>
<tr>
<td>41</td>
<td>10.52</td>
<td>57</td>
<td>11.18</td>
<td>10.85</td>
</tr>
<tr>
<td>42</td>
<td>13.37</td>
<td>56</td>
<td>12.76</td>
<td>13.06</td>
</tr>
<tr>
<td>43</td>
<td>14.48</td>
<td>55</td>
<td>13.24</td>
<td>13.86</td>
</tr>
<tr>
<td>44</td>
<td>14.45</td>
<td>54</td>
<td>12.32</td>
<td>13.38</td>
</tr>
<tr>
<td>45</td>
<td>10.70</td>
<td>53</td>
<td>10.32</td>
<td>10.51</td>
</tr>
<tr>
<td>46</td>
<td>7.04</td>
<td>52</td>
<td>9.47</td>
<td>8.25</td>
</tr>
<tr>
<td>47</td>
<td>3.23</td>
<td>51</td>
<td>5.81</td>
<td>4.52</td>
</tr>
<tr>
<td>48</td>
<td>0.90</td>
<td>50</td>
<td>1.94</td>
<td>1.42</td>
</tr>
<tr>
<td>49</td>
<td>0.39</td>
<td>49</td>
<td>0.39</td>
<td>0.39</td>
</tr>
</tbody>
</table>
Table IV. Calculated values of the fractional independent- and the absolute-fission yields.

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute Yield ((\times 10^2))</td>
<td>0.009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute Yield ((\times 10^2))</td>
<td>0.007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute Yield ((\times 10^2))</td>
<td>0.151</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
Table IV. (Continued)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Chain = 89</td>
<td>Mass Yield = 0.32×10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.402</td>
<td>0.031</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^{-2}$)</td>
<td>0.129</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Chain = 90</td>
<td>Mass Yield = 0.44×10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.577</td>
<td>0.116</td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^{-2}$)</td>
<td>0.254</td>
<td>0.051</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Chain = 91</td>
<td>Mass Yield = 0.59×10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.545</td>
<td>0.346</td>
<td>0.021</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^{-2}$)</td>
<td>0.322</td>
<td>0.204</td>
<td>0.012</td>
<td>$-$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table IV. (Continued)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>34</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Chain</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass Yield</td>
<td>0.75×10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.292</td>
<td>0.577</td>
<td>0.116</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>0.219</td>
<td>0.433</td>
<td>0.087</td>
<td>0.002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Chain</td>
<td>93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass Yield</td>
<td>0.83×10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.116</td>
<td>0.577</td>
<td>0.292</td>
<td>0.014</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>0.096</td>
<td>0.479</td>
<td>0.242</td>
<td>0.012</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Chain</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass Yield</td>
<td>1.13×10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.031</td>
<td>0.402</td>
<td>0.504</td>
<td>0.063</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>0.035</td>
<td>0.459</td>
<td>0.570</td>
<td>0.071</td>
<td>0.001</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
Table IV. (Continued)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>35</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.003</td>
<td>0.151</td>
<td>0.596</td>
<td>0.240</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>Absolute Yield (x 10^2)</td>
<td>0.004</td>
<td>0.207</td>
<td>0.817</td>
<td>0.329</td>
<td>0.012</td>
<td></td>
</tr>
</tbody>
</table>

MASS CHAIN = 96
MASS YIELD = 1.47 x 10^{-2}

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.045</td>
<td>0.455</td>
<td>0.455</td>
<td>0.045</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Absolute Yield (x 10^2)</td>
<td>0.066</td>
<td>0.669</td>
<td>0.669</td>
<td>0.066</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

MASS CHAIN = 97
MASS YIELD = 1.59 x 10^{-2}

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>36</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.009</td>
<td>0.240</td>
<td>0.596</td>
<td>0.151</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Absolute Yield (x 10^2)</td>
<td>0.014</td>
<td>0.370</td>
<td>0.918</td>
<td>0.233</td>
<td>0.005</td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.001</td>
<td>0.086</td>
<td>0.545</td>
<td>0.346</td>
<td>0.021</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^{-2}$)</td>
<td>0.002</td>
<td>0.180</td>
<td>1.139</td>
<td>0.723</td>
<td>0.044</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.021</td>
<td>0.346</td>
<td>0.545</td>
<td>0.086</td>
<td>0.001</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^{-2}$)</td>
<td>--</td>
<td>0.059</td>
<td>0.889</td>
<td>1.401</td>
<td>0.221</td>
<td>0.003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.002</td>
<td>0.116</td>
<td>0.577</td>
<td>0.292</td>
<td>0.014</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^{-2}$)</td>
<td>0.006</td>
<td>0.365</td>
<td>1.818</td>
<td>0.920</td>
<td>0.044</td>
<td>--</td>
</tr>
</tbody>
</table>
Table IV. (Continued)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.031</td>
<td>0.402</td>
<td>0.509</td>
<td>0.063</td>
<td>0.001</td>
</tr>
<tr>
<td>Absolute Yield (x 10²)</td>
<td>--</td>
<td>0.115</td>
<td>1.487</td>
<td>1.865</td>
<td>0.233</td>
<td>0.004</td>
</tr>
</tbody>
</table>

MASS CHAIN = 102
MASS YIELD = 4.25 x 10⁻²

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.006</td>
<td>0.193</td>
<td>0.603</td>
<td>0.193</td>
<td>0.006</td>
</tr>
<tr>
<td>Absolute Yield (x 10²)</td>
<td>0.026</td>
<td>0.820</td>
<td>2.563</td>
<td>0.820</td>
<td>0.026</td>
<td></td>
</tr>
</tbody>
</table>

MASS CHAIN = 103
MASS YIELD = 4.80 x 10⁻²

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.001</td>
<td>0.063</td>
<td>0.504</td>
<td>0.402</td>
<td>0.031</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield (x 10²)</td>
<td>0.005</td>
<td>0.302</td>
<td>2.419</td>
<td>1.930</td>
<td>0.149</td>
<td>--</td>
</tr>
</tbody>
</table>

(Continued)
Table IV. (Continued)

<table>
<thead>
<tr>
<th>Atom No.</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.014</td>
<td>0.292</td>
<td>0.577</td>
<td>0.116</td>
<td>0.002</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>--</td>
<td>0.076</td>
<td>1.577</td>
<td>3.116</td>
<td>0.626</td>
<td>0.011</td>
</tr>
</tbody>
</table>

MASS CHAIN = 105
MASS YIELD = 5.99×10^{-2}

<table>
<thead>
<tr>
<th>Atom No.</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.002</td>
<td>0.116</td>
<td>0.577</td>
<td>0.292</td>
<td>0.019</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>0.012</td>
<td>0.695</td>
<td>3.456</td>
<td>1.749</td>
<td>0.084</td>
<td>--</td>
</tr>
</tbody>
</table>

MASS CHAIN = 106
MASS YIELD = 6.20×10^{-2}

<table>
<thead>
<tr>
<th>Atom No.</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.031</td>
<td>0.402</td>
<td>0.504</td>
<td>0.063</td>
<td>0.001</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>--</td>
<td>0.192</td>
<td>2.492</td>
<td>3.125</td>
<td>0.391</td>
<td>0.006</td>
</tr>
</tbody>
</table>
Table IV. (Continued)

MASS CHAIN = 107
MASS YIELD = \(6.20 \times 10^{-2} \)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.003</td>
<td>0.151</td>
<td>0.596</td>
<td>0.240</td>
<td>0.009</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield ((x 10^2))</td>
<td>0.019</td>
<td>0.936</td>
<td>3.695</td>
<td>1.488</td>
<td>0.056</td>
<td>--</td>
</tr>
</tbody>
</table>

MASS CHAIN = 108
MASS YIELD = \(6.00 \times 10^{-2} \)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.045</td>
<td>0.455</td>
<td>0.455</td>
<td>0.045</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield ((x 10^2))</td>
<td>--</td>
<td>0.270</td>
<td>2.730</td>
<td>2.730</td>
<td>0.270</td>
<td>--</td>
</tr>
</tbody>
</table>

MASS CHAIN = 109
MASS YIELD = \(5.69 \times 10^{-2} \)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.009</td>
<td>0.240</td>
<td>0.596</td>
<td>0.151</td>
<td>0.003</td>
</tr>
<tr>
<td>Absolute Yield ((x 10^2))</td>
<td>--</td>
<td>0.051</td>
<td>1.366</td>
<td>3.391</td>
<td>0.859</td>
<td>0.017</td>
</tr>
</tbody>
</table>

(Continued)
Table IV. (Continued)

MASS CHAIN = 110

MASS YIELD = \(5.45 \times 10^{-2} \)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>(0.016)</td>
<td>(0.823)</td>
<td>(3.248)</td>
<td>(1.308)</td>
<td>(0.049)</td>
<td></td>
</tr>
</tbody>
</table>

MASS CHAIN = 111

MASS YIELD = \(5.19 \times 10^{-2} \)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
<th>47</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>(0.031)</td>
<td>(0.402)</td>
<td>(0.504)</td>
<td>(0.063)</td>
<td>(0.001)</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield (\times 10^2)</td>
<td>(0.161)</td>
<td>(2.086)</td>
<td>(2.616)</td>
<td>(0.327)</td>
<td>(0.005)</td>
<td>--</td>
</tr>
</tbody>
</table>

MASS CHAIN = 112

MASS YIELD = \(3.65 \times 10^{-2} \)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
<th>47</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>(0.006)</td>
<td>(0.193)</td>
<td>(0.603)</td>
<td>(0.193)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Absolute Yield (\times 10^2)</td>
<td>--</td>
<td>(0.022)</td>
<td>(0.704)</td>
<td>(2.201)</td>
<td>(0.709)</td>
<td>(0.022)</td>
</tr>
<tr>
<td>MASS CHAIN</td>
<td>113</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASS YIELD</td>
<td>4.23×10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atomic No.</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.001</td>
<td>0.063</td>
<td>0.504</td>
<td>0.402</td>
<td>0.031</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>0.004</td>
<td>0.266</td>
<td>2.132</td>
<td>1.700</td>
<td>0.131</td>
<td>--</td>
</tr>
</tbody>
</table>

MASS CHAIN	114				
MASS YIELD	3.07×10^{-2}				
Atomic No.	44	45	46	47	48
Frac. Ind. Chain Yield	0.014	0.292	0.577	0.116	0.002
Absolute Yield ($\times 10^2$)	0.043	0.896	1.771	0.356	0.006

MASS CHAIN	115					
MASS YIELD	2.28×10^{-2}					
Atomic No.	44	45	46	47	48	49
Frac. Ind. Chain Yield	0.002	0.116	0.577	0.292	0.014	--
Absolute Yield ($\times 10^2$)	0.005	0.264	1.316	0.666	0.032	--
Table IV. (Continued)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>44</th>
<th>45</th>
<th>46</th>
<th>47</th>
<th>48</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.045</td>
<td>0.455</td>
<td>0.455</td>
<td>0.045</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^{-2}$)</td>
<td>--</td>
<td>0.072</td>
<td>0.728</td>
<td>0.728</td>
<td>0.072</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>44</th>
<th>45</th>
<th>46</th>
<th>47</th>
<th>48</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.014</td>
<td>0.292</td>
<td>0.577</td>
<td>0.116</td>
<td>0.002</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^{-2}$)</td>
<td>--</td>
<td>0.015</td>
<td>0.321</td>
<td>0.635</td>
<td>0.128</td>
<td>0.002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>45</th>
<th>46</th>
<th>47</th>
<th>48</th>
<th>49</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.002</td>
<td>0.116</td>
<td>0.577</td>
<td>0.292</td>
<td>0.014</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^{-2}$)</td>
<td>0.001</td>
<td>0.081</td>
<td>0.404</td>
<td>0.204</td>
<td>0.010</td>
<td>--</td>
</tr>
</tbody>
</table>
Table IV. (Continued)

MASS CHAIN = 119
MASS YIELD = \(0.42 \times 10^{-2}\)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>45</th>
<th>46</th>
<th>47</th>
<th>48</th>
<th>49</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>(0.045)</td>
<td>(0.455)</td>
<td>(0.455)</td>
<td>(0.045)</td>
<td>(\text{--})</td>
<td></td>
</tr>
<tr>
<td>Absolute Yield ((x \times 10^2))</td>
<td>(0.019)</td>
<td>(0.191)</td>
<td>(0.191)</td>
<td>(0.019)</td>
<td>(\text{--})</td>
<td></td>
</tr>
</tbody>
</table>

MASS CHAIN = 120
MASS YIELD = \(0.24 \times 10^{-2}\)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>45</th>
<th>46</th>
<th>47</th>
<th>48</th>
<th>49</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>(0.014)</td>
<td>(0.292)</td>
<td>(0.577)</td>
<td>(0.116)</td>
<td>(0.002)</td>
<td></td>
</tr>
<tr>
<td>Absolute Yield ((x \times 10^2))</td>
<td>(0.003)</td>
<td>(0.070)</td>
<td>(0.138)</td>
<td>(0.028)</td>
<td>(\text{--})</td>
<td></td>
</tr>
</tbody>
</table>

MASS CHAIN = 121
MASS YIELD = \(0.14 \times 10^{-2}\)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>46</th>
<th>47</th>
<th>48</th>
<th>49</th>
<th>50</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.002</td>
<td>0.116</td>
<td>0.577</td>
<td>0.292</td>
<td>0.014</td>
<td>(\text{--})</td>
</tr>
<tr>
<td>Absolute Yield ((x \times 10^2))</td>
<td>0.016</td>
<td>0.081</td>
<td>0.041</td>
<td>0.002</td>
<td>(\text{--})</td>
<td>(\text{--})</td>
</tr>
</tbody>
</table>

(Continued)
Table IV. (Continued)

<table>
<thead>
<tr>
<th>MASS CHAIN = 122</th>
<th>MASS YIELD = 0.073×10^{-2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic No.</td>
<td>46</td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MASS CHAIN = 123</th>
<th>MASS YIELD = 0.035×10^{-2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic No.</td>
<td>46</td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MASS CHAIN = 124</th>
<th>MASS YIELD = 0.015×10^{-2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic No.</td>
<td>46</td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>--</td>
</tr>
</tbody>
</table>

(Continued)
Table IV. (Continued)

<table>
<thead>
<tr>
<th>MASS CHAIN = 125</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS YIELD = 0.009 x 10^{-2}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>47</th>
<th>48</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.001</td>
<td>0.086</td>
<td>0.545</td>
<td>0.346</td>
<td>0.021</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield (x 10^2)</td>
<td>--</td>
<td>0.001</td>
<td>0.005</td>
<td>0.003</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MASS CHAIN = 126</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS YIELD = 0.052 x 10^{-2}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>47</th>
<th>48</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.031</td>
<td>0.402</td>
<td>0.504</td>
<td>0.063</td>
<td>0.001</td>
</tr>
<tr>
<td>Absolute Yield (x 10^2)</td>
<td>--</td>
<td>0.002</td>
<td>0.021</td>
<td>0.026</td>
<td>0.003</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MASS CHAIN = 127</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS YIELD = 0.13 x 10^{-2}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>47</th>
<th>48</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.009</td>
<td>0.240</td>
<td>0.596</td>
<td>0.151</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td>Absolute Yield (x 10^2)</td>
<td>0.001</td>
<td>0.031</td>
<td>0.077</td>
<td>0.020</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
Table IV. (Continued)

| MASS CHAIN | 128 |
| MASS YIELD | 0.32×10^{-2} |

Atomic No.	47	48	49	50	51	52
Frac. Ind. Chain Yield	--	0.003	0.151	0.596	0.240	0.009
Absolute Yield ($\times 10^2$)	--	0.001	0.048	0.191	0.077	0.003

| MASS CHAIN | 129 |
| MASS YIELD | 0.62×10^{-2} |

Atomic No.	48	49	50	51	52	53
Frac. Ind. Chain Yield	0.001	0.086	0.545	0.346	0.021	--
Absolute Yield ($\times 10^2$)	0.001	0.053	0.338	0.215	0.013	--

| MASS CHAIN | 130 |
| MASS YIELD | 0.92×10^{-2} |

Atomic No.	48	49	50	51	52	53
Frac. Ind. Chain Yield	--	0.045	0.455	0.455	0.045	--
Absolute Yield ($\times 10^2$)	--	0.041	0.419	0.419	0.041	--

(Continued)
<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>48</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.014</td>
<td>0.292</td>
<td>0.577</td>
<td>0.116</td>
<td>0.002</td>
</tr>
<tr>
<td>Absolute Yield (x 10^2)</td>
<td>--</td>
<td>0.018</td>
<td>0.371</td>
<td>0.733</td>
<td>0.147</td>
<td>0.003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>48</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.003</td>
<td>0.151</td>
<td>0.596</td>
<td>0.240</td>
<td>0.009</td>
</tr>
<tr>
<td>Absolute Yield (x 10^2)</td>
<td>--</td>
<td>0.005</td>
<td>0.264</td>
<td>1.043</td>
<td>0.420</td>
<td>0.016</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.001</td>
<td>0.063</td>
<td>0.504</td>
<td>0.402</td>
<td>0.031</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield (x 10^2)</td>
<td>0.003</td>
<td>0.175</td>
<td>1.396</td>
<td>1.114</td>
<td>0.086</td>
<td>--</td>
</tr>
</tbody>
</table>
Table IV. (Continued)

MASS CHAIN = 134

MASS YIELD = \(3.50 \times 10^{-2}\)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.014</td>
<td>0.242</td>
<td>0.577</td>
<td>0.116</td>
<td>0.002</td>
</tr>
<tr>
<td>Absolute Yield (\times 10^2)</td>
<td>--</td>
<td>0.049</td>
<td>1.022</td>
<td>2.020</td>
<td>0.406</td>
<td>0.007</td>
</tr>
</tbody>
</table>

MASS CHAIN = 135

MASS YIELD = \(4.33 \times 10^{-2}\)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>49</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.003</td>
<td>0.151</td>
<td>0.596</td>
<td>0.240</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>Absolute Yield (\times 10^2)</td>
<td>--</td>
<td>0.013</td>
<td>0.654</td>
<td>2.501</td>
<td>1.039</td>
<td>0.039</td>
<td></td>
</tr>
</tbody>
</table>

MASS CHAIN = 136

MASS YIELD = \(4.40 \times 10^{-2}\)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.045</td>
<td>0.455</td>
<td>0.455</td>
<td>0.045</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield (\times 10^2)</td>
<td>--</td>
<td>0.198</td>
<td>2.002</td>
<td>2.002</td>
<td>0.198</td>
<td>--</td>
</tr>
</tbody>
</table>

(Continued)
Table IV. (Continued)

MASS CHAIN = 137
MASS YIELD = 4.40×10^{-2}

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>50</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.006</td>
<td>0.193</td>
<td>0.603</td>
<td>0.193</td>
<td>0.006</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>--</td>
<td>0.026</td>
<td>0.849</td>
<td>2.653</td>
<td>0.849</td>
<td>0.026</td>
</tr>
</tbody>
</table>

MASS CHAIN = 138
MASS YIELD = 4.94×10^{-2}

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.045</td>
<td>0.455</td>
<td>0.455</td>
<td>0.045</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>--</td>
<td>0.222</td>
<td>2.248</td>
<td>2.248</td>
<td>0.222</td>
<td>--</td>
</tr>
</tbody>
</table>

MASS CHAIN = 139
MASS YIELD = 5.73×10^{-2}

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>51</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.009</td>
<td>0.240</td>
<td>0.596</td>
<td>0.151</td>
<td>0.003</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>--</td>
<td>0.052</td>
<td>1.375</td>
<td>3.415</td>
<td>0.865</td>
<td>0.017</td>
</tr>
</tbody>
</table>

(Continued)
Table IV. (Continued)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.001</td>
<td>0.063</td>
<td>0.504</td>
<td>0.402</td>
<td>0.031</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>0.006</td>
<td>0.398</td>
<td>3.185</td>
<td>2.541</td>
<td>0.196</td>
<td>--</td>
</tr>
</tbody>
</table>

MASS CHAIN = 140
MASS YIELD = 6.32×10^{-2}

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>52</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.014</td>
<td>0.292</td>
<td>0.577</td>
<td>0.116</td>
<td>0.002</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>--</td>
<td>0.083</td>
<td>1.723</td>
<td>3.404</td>
<td>0.689</td>
<td>0.012</td>
</tr>
</tbody>
</table>

MASS CHAIN = 141
MASS YIELD = 5.90×10^{-2}

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.001</td>
<td>0.086</td>
<td>0.545</td>
<td>0.346</td>
<td>0.021</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>0.006</td>
<td>0.516</td>
<td>3.270</td>
<td>2.076</td>
<td>0.126</td>
<td>--</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>53</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Chain = 143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass Yield = 5.94 × 10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.021</td>
<td>0.346</td>
<td>0.545</td>
<td>0.086</td>
<td>0.001</td>
</tr>
<tr>
<td>Absolute Yield (× 10^2)</td>
<td>--</td>
<td>0.125</td>
<td>2.055</td>
<td>3.237</td>
<td>0.511</td>
<td>0.006</td>
</tr>
<tr>
<td>Atomic No.</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>Mass Chain = 144</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass Yield = 5.77 × 10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.002</td>
<td>0.116</td>
<td>0.577</td>
<td>0.292</td>
<td>0.014</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield (× 10^2)</td>
<td>0.012</td>
<td>0.669</td>
<td>3.329</td>
<td>1.685</td>
<td>0.081</td>
<td>--</td>
</tr>
<tr>
<td>Atomic No.</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
</tr>
<tr>
<td>Mass Chain = 145</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass Yield = 5.50 × 10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.031</td>
<td>0.402</td>
<td>0.504</td>
<td>0.063</td>
<td>0.001</td>
</tr>
<tr>
<td>Absolute Yield (× 10^2)</td>
<td>--</td>
<td>0.170</td>
<td>2.211</td>
<td>2.772</td>
<td>0.346</td>
<td>0.006</td>
</tr>
</tbody>
</table>

(Continued)
Table IV. (Continued)

MASS CHAIN = 146

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>54</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.003</td>
<td>0.151</td>
<td>0.596</td>
<td>0.240</td>
<td>0.009</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>--</td>
<td>0.015</td>
<td>0.778</td>
<td>3.069</td>
<td>1.236</td>
<td>0.046</td>
</tr>
</tbody>
</table>

MASS CHAIN = 147

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.045</td>
<td>0.455</td>
<td>0.455</td>
<td>0.045</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>--</td>
<td>0.211</td>
<td>2.134</td>
<td>2.134</td>
<td>0.211</td>
<td>--</td>
</tr>
</tbody>
</table>

MASS CHAIN = 148

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>55</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.006</td>
<td>0.193</td>
<td>0.603</td>
<td>0.193</td>
<td>0.006</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>--</td>
<td>0.021</td>
<td>0.676</td>
<td>2.110</td>
<td>0.676</td>
<td>0.021</td>
</tr>
</tbody>
</table>

(Continued)
Table IV. (Continued)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS CHAIN = 149</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASS YIELD = 2.65×10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.001</td>
<td>0.063</td>
<td>0.504</td>
<td>0.402</td>
<td>0.031</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>0.003</td>
<td>0.167</td>
<td>1.336</td>
<td>1.065</td>
<td>0.082</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>56</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
<th>61</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS CHAIN = 150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASS YIELD = 2.34×10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.009</td>
<td>0.240</td>
<td>0.596</td>
<td>0.151</td>
<td>0.003</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>--</td>
<td>0.021</td>
<td>0.562</td>
<td>1.395</td>
<td>0.353</td>
<td>0.007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
<th>61</th>
<th>62</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS CHAIN = 151</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASS YIELD = 2.18×10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.001</td>
<td>0.086</td>
<td>0.545</td>
<td>0.346</td>
<td>0.021</td>
<td>--</td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>0.002</td>
<td>0.187</td>
<td>1.188</td>
<td>0.754</td>
<td>0.046</td>
<td>--</td>
</tr>
</tbody>
</table>
Table IV. (Continued)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>57</th>
<th>58</th>
<th>59</th>
<th>60</th>
<th>61</th>
<th>62</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.014</td>
<td>0.292</td>
<td>0.577</td>
<td>0.116</td>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>Absolute Yield ((x \times 10^2))</td>
<td>0.024</td>
<td>0.499</td>
<td>0.987</td>
<td>0.198</td>
<td>0.003</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>58</th>
<th>59</th>
<th>60</th>
<th>61</th>
<th>62</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.002</td>
<td>0.116</td>
<td>0.577</td>
<td>0.292</td>
<td>0.014</td>
<td></td>
</tr>
<tr>
<td>Absolute Yield ((x \times 10^2))</td>
<td>0.003</td>
<td>0.164</td>
<td>0.814</td>
<td>0.412</td>
<td>0.020</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>58</th>
<th>59</th>
<th>60</th>
<th>61</th>
<th>62</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.021</td>
<td>0.346</td>
<td>0.545</td>
<td>0.086</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute Yield ((x \times 10^2))</td>
<td>0.023</td>
<td>0.984</td>
<td>0.605</td>
<td>0.095</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table IV. (Continued)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>59</th>
<th>60</th>
<th>61</th>
<th>62</th>
<th>63</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Chain = 155</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass Yield = 0.86×10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.003</td>
<td>0.151</td>
<td>0.596</td>
<td>0.240</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>0.003</td>
<td>0.130</td>
<td>0.513</td>
<td>0.206</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>59</th>
<th>60</th>
<th>61</th>
<th>62</th>
<th>63</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Chain = 156</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass Yield = 0.70×10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
<td>0.031</td>
<td>0.402</td>
<td>0.504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>--</td>
<td>0.022</td>
<td>0.281</td>
<td>0.353</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>59</th>
<th>60</th>
<th>61</th>
<th>62</th>
<th>63</th>
<th>64</th>
<th>65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Chain = 157</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass Yield = 0.52×10^{-2}</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frac. Ind. Chain Yield</td>
<td>0.006</td>
<td>0.193</td>
<td>0.603</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute Yield ($\times 10^2$)</td>
<td>0.003</td>
<td>0.100</td>
<td>0.314</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
Table IV. (Continued)

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>MASS CHAIN = 158</th>
<th>MASS YIELD = 0.39×10^{-2}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frac. Ind. Chain Yield</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Absolute Yield ($\times 10^2$)</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>MASS CHAIN = 159</th>
<th>MASS YIELD = 0.29×10^{-2}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frac. Ind. Chain Yield</td>
<td>0.009</td>
</tr>
<tr>
<td></td>
<td>Absolute Yield ($\times 10^2$)</td>
<td>0.003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>MASS CHAIN = 160</th>
<th>MASS YIELD = 0.21×10^{-2}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frac. Ind. Chain Yield</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Absolute Yield ($\times 10^2$)</td>
<td>--</td>
</tr>
</tbody>
</table>

(Continued)
Table IV. (Continued)

<table>
<thead>
<tr>
<th>MASS CHAIN = 161</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS YIELD = 0.15×10^{-2}</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>Frac. Ind. Chain Yield</th>
<th>Absolute Yield ($\times 10^2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>0.014</td>
<td>0.002</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MASS CHAIN = 162</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MASS YIELD = 0.10×10^{-2}</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Atomic No.</th>
<th>Frac. Ind. Chain Yield</th>
<th>Absolute Yield ($\times 10^2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>0.001</td>
<td>--</td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Fig. 1. Most probable charge curve.

Fig. 2. Calculated element yields.
Fig. 1.

- ^{235}U empirical curve - Wahl et al.
- ^{252}Cf x-ray det. - Kapoor et al.
Fig. 2.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.