Title
New Measurements of Magnetic Field Decay in 1 Meter SSC-Type Dipoles

Permalink
https://escholarship.org/uc/item/6wq5z002

Author
Gilber, W.S.

Publication Date
2011-04-13
New Measurements of Magnetic Field Decay in 1 Meter SSC-Type Dipoles

W.S. Gilbert, R.F. Althaus, P.J. Barale, R.W. Benjegerdes, M.A. Green, M.I. Green, and R.M. Scanlan

September 1990
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California and shall not be used for advertising or product endorsement purposes.

Lawrence Berkeley Laboratory is an equal opportunity employer.
NEW MEASUREMENTS OF MAGNETIC FIELD DECAY IN 1 METER SSC-TYPE Dipoles*

W. S. Gilbert, R. F. Althaus, P. J. Barale, R. W. Benjegerdes, M. A. Green, M. I. Green, and R. M. Scanlan
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

September, 1990

*This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, High Energy Physics Division, U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
NEW MEASUREMENTS OF MAGNETIC FIELD DECAY IN 1 METER SSC-TYPE DIPOLES

W. S. Gilbert, R.F. Althaus, P.J. Barale, R.W. Benjegerdes, M.A. Green, M.I. Green, and R.M. Scanlan
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

Introduction

Previous studies of magnetic field decay1,2 in model SSC dipoles due to changes in magnetization currents caused by flux creep have used the assumed SSC injection energy of 11eV, or 0.33 tesla central dipole field, and an excitation to the storage field of 6.6 tesla. More recently, it has been decided to inject at 2 TeV, or 0.66 tesla and so more recent tests have been carried out at the new injection field, or at both the new and old fields. Additionally, the effect of temperature changes and excitation cycles on the field decay have been studied.

Temperature Effect

A sextupole decay curve, at an injection field of 0.33 tesla, for dipole magnet D-15C-3 is shown in Fig. 1. The curve is roughly log linear with a slope of 0.6 unit/decade. The temperature is estimated to be 4.3K within ± 0.05K.

One suggestion to prevent or reduce the field decay is to reduce the temperature after the excitation cycle has set up the magnetization sextupole field3. After setting up the injection field at 0.33 tesla 4.3K and allowing a half hour decay at 4.3K, we then cooled the magnet at the rate of 0.4K/hr, for the next four and a half hours. This is shown in Fig. 2. Fig. 3 is the bath temperature record. Not only did the decay stop, but the sextupole increased due to the increase in the critical current density at the lower temperature. We did not have the cryogenic control needed to quickly reduce the bath temperature a small amount and hold it constant at that lower temperature.

Figure 1. Sextupole Decay of Dipole D-15C-3 at 4.3K

Figure 2. Sextupole Decay of Dipole D-15C-3 with Decreasing Temperature

Figure 3. Temperature Record of Dipole D-15C-3

There are arguments4, based on tests of wire samples, that the flux creep is activated by temperature fluctuations. The experiment cited used a temperature rise of 0.5K after the magnetization currents have been set up and the authors observed a decay increase of a factor of three. Our temperature monitors in the helium bath and in the magnet body only indicate a temperature variation of ±0.05K over a one hour period. Therefore, we doubt that this is a principal cause of the observed field decay in the dipole magnets. Fig. 4 shows the temperature variation of one of the carbon glass sensors in the helium bath. The excursions between 25 and 35 minutes are due to the initiation of the IHe cooling cycle.

![Figure 4. Initial Temperature Record of D-15C-3](image)

We also have decay data on a SSC-model quadrupole. Fig. 5 shows the 12 pole decay with time. The decay is similar, though smaller in magnitude, to that seen in the dipoles. In this case, we have temperature data taken during the decay, both inside the magnet and in the helium bath. Both sensors are carbon glass. The helium bath is coupled to a helium refrigerator and fluctuations in the compressor return pressure result in changes in the bath temperature. This bath temperature record is shown as Fig. 6. The temperature sensor inside the magnet seems to lag the bath temperature by several minutes, and is shown as Fig. 7. Short term fluctuations are in the few millikelvin range, and over the longer time the maximum temperature change was less than 50 millikelvin. Fig. 8 shows the temperature inside the magnet for a portion of the set up cycles, to 6.6 tesla, for the first 35 minutes; and for the decay between 35 and 60 minutes.

![Figure 6. Decay Bath Temperature QSC-402](image)

![Figure 7. Magnet Temperature Sensor QSC-402](image)

![Figure 8. Magnet Temperature Sensor QSC-402](image)
Effect of Maximum Magnet Field

It was observed, at DESY5,6, that the observed field decay was influenced by the maximum field the magnet was cycled to before the injection field was measured for field decay. In our dipole D-15B-2, we cycled at 4.3K to different peak fields before measuring the decays at 0.33 tesla. The setup cycles are listed on Fig. 9. The maximum currents for the various cycles were 750, 1500, 3000, & 6000 amperes (6 tesla). The decay curves are shown as Fig. 9. The curves are not very good log linear, but if we assume straight line fits, we arrive at the decay rates of Table I.

![Graph](image)

Figure 9. Sextupole Decay of D-15B-2 at 320A

<table>
<thead>
<tr>
<th>Max I</th>
<th>Decay rate units/decade</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>0.25</td>
</tr>
<tr>
<td>1500</td>
<td>0.30</td>
</tr>
<tr>
<td>3000</td>
<td>0.90</td>
</tr>
<tr>
<td>6000</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Table I

<table>
<thead>
<tr>
<th>Max I</th>
<th>Decay rate units/decade</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>0.25</td>
</tr>
<tr>
<td>1500</td>
<td>0.30</td>
</tr>
<tr>
<td>3000</td>
<td>0.90</td>
</tr>
<tr>
<td>6000</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Max I</th>
<th>Decay rate units/decade</th>
</tr>
</thead>
<tbody>
<tr>
<td>750</td>
<td>0.07</td>
</tr>
<tr>
<td>1500</td>
<td>0.10</td>
</tr>
<tr>
<td>3000</td>
<td>0.18</td>
</tr>
<tr>
<td>6000</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Fig. 10 shows the same type behavior for the 2 TeV injection energy, or 0.66 tesla. The decay rates are shown in Table II.

Clearly, we see that the decay rate is larger when the peak current, or peak field is higher. Also the decay rate, and magnetization, are less when the higher injection field is used.

Fig. 11 shows the sextupole field decay for a larger 5cm aperture dipole, D-16B-1 with peak current values of 3000 and 6000 amperes and an injection current of 640 amperes. In this particular magnet, a passive superconducting corrector was installed in the bore tube so a large portion of the magnetization sextupole and decay were corrected out. Even so, we see that the decay for the 6000A setup cycle was almost double that of the 3000A sextupole, 0.27 unit/decade vs. 0.14 unit/decade.
Summary

The roughly log linear decay of magnetization current multipole fields has been demonstrated in several new dipoles. A suggested mechanism of thermally induced activation in the additional 0.5 Kelvin range has been effectively countered by temperature measurements that show temperature fluctuation ten to thirty times lower over a ninety minute time period. Decay of dipole fields still do not appear to quantitatively agree with magnetization decay in wire samples.

It was found that multipole field decay in dipole magnets depended on the maximum field reached on magnet excitation, with the decay faster for the greater field reached.

References

3. Ray Stiennen, SSCL, private communication.

5. P. Schnuser of DESY, private communication from slides of his presentation "Persistent Current Effects in the HERA Magnets", at a Topical Workshop on Magnetic Fields of Persistent Currents in Superconductors, Fermilab, March 5, 1990.