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Assessing the Role of Mini-Applications in Predicting Key Performance
Characteristics of Scientific and Engineering Applications

R.F. Barrett, P.S. Crozier, D.W. Doerfler, M.A. Heroux, P.T. Lin, H.K. Thornquist, T.G. Trucano and C.T.
Vaughan

Center for Computing Research
Sandia National Laboratories

Albuquerque, NM, USA

Abstract

Computational science and engineering application programs are typically large, complex, and dynamic, and are
often constrained by distribution limitations. As a means of making tractable rapid explorations of scientific and
engineering application programs in the context of new, emerging, and future computing architectures, a suite of
“miniapps” has been created to serve as proxies for full scale applications. Each miniapp is designed to represent a key
performance characteristic that does or is expected to significantly impact the runtime performance of an application
program. In this paper we introduce a methodology for assessing the ability of these miniapps to effectively represent
these performance issues. We applied this methodology to four miniapps, examining the linkage between them and
an application they are intended to represent. Herein we evaluate the fidelity of that linkage. This work represents
the initial steps required to begin to answer the question, “Under what conditions does a miniapp represent a key
performance characteristic in a full app?”

1. Introduction

Over the past several years computer architectures commonly employed by the computational science and engi-
neering communities have remained relatively stable, with subsequent generations characterized by faster processors,
memories, and interconnects. These changes have typically resulted in predictably faster runtimes for application
programs. Emerging and expected future architectures, however, are presenting special challenges and opportunities
that, if not effectively exploited, could result in slower runtimes. Driven by stagnant clock speeds, memory con-
straints, and power consumption restrictions [2, 9], architects are exploring the capabilities and usefulness of things
such as wider vector units, significantly more but less powerful processor cores, increased threading, more complex
memory hierarchies, and differently balanced node interconnects.

The means for exploiting these capabilities must be investigated within the relevant context of their use. How-
ever, application programs targeting these machines are typically large, complex, dynamic, and often constrained
by distribution limitations, and typically out live the computing environments they originally targeted. They may
be constructed using hundreds of thousands to millions of source lines of code, written in multiple programming
languages and linking in several third-party libraries, developed over decades by multiple generations of computa-
tional scientists. Thus examining and addressing the issues that will enable effective execution on these machines is
prohibitive.

As a means of making tractable rapid explorations of scientific and engineering application programs in this
context, a suite of “mini-apps” has been created to serve as proxies for full scale applications. Each miniapp is
designed to represent a key performance characteristic that does, or is expected to significantly, impact the runtime
performance of a scientific or engineering application program.

These miniapps enable rapid exploration of key performance issues that impact a broad set of scientific application
programs. Within the Department of Energy (DOE) they are being used to explore the above issues by a broad set
of participants, including staff at DOE laboratories, universities, and vendors. Yet how can we be sure that these
proxies adequately represent that which they are intended?
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Trucano and C.T. Vaughan)

Preprint submitted to Elsevier December 5, 2013



The key contribution of the work described herein is a methodology, rooted in formal verification and validation
(V&V) efforts that have been developed for experimental science, for determining the quality of the miniapp as it
pertains to a large, complex application code. We applied this methodology to four miniapps, examining the linkage
between them and an application they are intended to represent. Herein we evaluate the fidelity of that linkage. This
work represents the initial steps required to begin to answer the question, “Under what conditions does a miniapp
represent a key performance characteristic in a full app?”

1.1. Related work

Application proxies have been part of the code developers’ tool kit for many years. The LINPACK benchmark
came into existence [13] as what we are now calling a miniapp. Sweep3d [22], sPPM [3], and the NAS benchmarks [4]
in some sense may also be viewed in these terms. Large scale proxies, such as LULESH [23], are serving related
purposes. The three DOE Office of Advanced Scientific Computing Research (ASCR) Co-Design Centers 1 (Ex-
MatEx, CESAR, and ExaCT) have identified the development of proxy applications as a key component of their
efforts. Miniapps, and other kinds of application proxies, are being used as part of machine procurements 2. The
Mantevo project [19] solidifies the application proxy idea, bringing a community-based focused effort to bear on the
wide variety of explorations that application proxies can enable.

The validation methodology presented herein is the first formal means, that we are aware of, for understanding
if, and how, an application proxy may be used to represent the behavior of a full application program. This work is
strongly informed by techniques developed for experimental validation, as will be discussed in the following sections.

2. Overview of the Mantevo Project

The Mantevo project [19] was motivated by questions arising from the Trilinos project [18]. These questions
concerned the direction of some coding implementations targeting emerging and expected future architectures,
including multi-core, many-core, and GPU-accelerated high performance computers. The goal was to create a suite
of tools that placed important algorithms into an application-relevant context, enabling rapid exploration of issues
and options and their mapping to computing platforms.

Mantevo miniapps are designed and developed to be a tool, useful throughout the co-design space [16], enabling
agile exploration of a variety of issues that impact performance. Unlike a compact application, which is designed
to capture some sort of physics behavior, miniapps are designed to capture some key performance issue in the
full application. Unlike a skeleton application, which is designed for only focusing on inter-process communication
perhaps involving a “fake” computation, miniapps create a meaningful context in which to explore key performance
issues. Miniapps are developed and owned by application code teams. Miniapps are intended to be modified, and
thus are generally limited to a few thousand source lines of code (SLOC), allowing for unconstrained modification.
Once no longer useful for these purposes, a miniapp will be discarded. Mantevo miniapps are freely available as
open source software under an LGPL license.

The current set of miniapps in the Mantevo project are listed in Table 1. The first miniapp was HPCCG, which
formed and solved a sparse linear system of equations. Although it provides an important capability, it was soon
realized that in order to provide a stronger tie to applications of interest, the context in which the linear system is
formed needed strengthening. The result was miniFE, putting the linear system into the context of an implicit finite
element solver. Thus although HPCCG continues to serve an important role, miniFE will be examined in detail
for purposes herein. We anticipate that this sort of situation will continue to occur as these miniapps are used in
different situations.

1http://science.energy.gov/ascr/research/scidac/co-design/
2http://www.nersc.gov/systems/trinity-nersc-8-rfp/draft-nersc-8-trinity-benchmarks/
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Miniapp Description

CloverLeaf
Solves the compressible Euler equations on a Cartesian grid, using an explicit,
second-order accurate method.

CoMD
A simple proxy for the computations in a typical molecular dynamics applica-
tion. The reference implementation mimics that of SPaSM.

HPCCG
Intended to be the best approximation to an unstructured implicit finite ele-
ment or finite volume application in 800 lines or fewer.

miniFE
A proxy for unstructured implicit finite element codes. It is similar to HPCCG
and pHPCCG but provides a much more complete vertical covering of the steps
in this class of applications.

miniGhost
A difference stencil across a homogenous three dimensional domain, targeting
the inter-process communication halo exchange operation.

miniMD
The force computations in a typical molecular dynamics applications. The
algorithms and implementation used closely mimics these same operations as
performed in LAMMPS.

miniXyce SPICE-style circuit simulator [31].

Table 1: List of Mantevo miniapps, release 1.0

3. Methodology

Miniapps are designed to provide a predictive capability for some key performance issue in a full application.
Ensuring that a miniapp completely fulfills its intent is a difficult and probably ongoing task. Further, the run-
time behavior of a complex scientific application is typically problem dependent, and therefore it is important to
understand the different ways that a code can be used and have a means for configuring the miniapp to mimic
the important features under consideration. Thus our approach is to build up a “body of evidence” in support of
the goals of a miniapp, combining formal verification and validation (V&V) techniques with our knowledge and
experience bases.

Verification is the process of determining that a model implementation accurately represents the developers
conceptual description of the model and the solution to the model. Validation is the process of determining the
degree to which a model is an accurate representation of the “real world” (in this case the performance characteristics
of the “real” application) from the perspective of the intended uses of the model. These terms are as defined
by the American Society of Mechanical Engineers (ASME, 2006) and the American Institute of Aeronautics and
Astronautics (AIAA, 1998), and this usage has basically been adopted by the United States DOE and Department
of Defense (DoD). That is, within the context of the intent of the comparisons of a model with the “real world,”
we must verify that the applications (“real world”) and miniapps (“model”) compare well in the performance
dimensions of interest. This is our defined means of assessing that the miniapps are accomplishing what they are
designed and required to do (or not). All of the work (and possibly art) in this methodology will be in defining a
set of comparisons that allow us to draw conclusions of this kind about the miniapps. We must also understand
how close these comparisons should be for us to be able to conclude that the miniapps are suitably accurate models
of real code performance, or that they aren’t. There will clearly be significant components of judgment embedded
in this methodology given the difficult nature of this problem, but the goal is to achieve some minimal level (at
least) of objective evidence that informs us constructively about the fidelity of the miniapps. This approach requires
extensive knowledge of, and experience developing, executing, profiling, maintaining, and extending multi-scale,
multi-physics scientific and engineering application software, targeting highest performance computing platforms. It
also requires a strong understanding of the miniapps and their intended use: what they are intended to represent
and what they are not intended to represent. We combine this knowledge into a formal verification and validation
(V&V) methodology that lets us examine experimental and predicted data.

This methodology adheres to the spirit of experimental validation as described in [32, 33, 34, 41] because validation
referents are intended to be representative of the empirical (that is, “real”) performance of the full applications.
However, its important to note that this V&V process is executed within the goals of miniapps, and thus we are not
concerned with ensuring any sort of V&V in regard to the application goals such as correctness of the algorithms and
output. In other words, in considering the performance fidelity of miniapps, we are not addressing questions about
the verification and validation of the full application; we are assuming that this has been done or, if not, that this
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is an issue that is not relevant to the immediate goals of developing miniapps. The status of this assumption is in
fact of interest, but beyond our immediate scope. Our focus is strictly on the computational runtime characteristics.
Beyond this issue we also stress that miniapps are not intended to reproduce specific physics and mathematics
represented by the full application. To some degree, we therefore have an operating assumption that a valid miniapp
can approximate the runtime performance characteristics of a full application to a useful degree without reproducing
the mathematics and physics of the full application to a useful degree. This may be an assumption that is worthy
of fuller consideration also, but once again it is beyond the scope of our near term priorities.

3.1. Verification

Mantevo miniapps have been configured so that they produce some outcome that is measurable with some level
of confidence of correctness. For example, miniFE solves a partial differential equation (PDE) such that the residual
norm of the linear system solution is within an acceptable tolerance.

With regard to the application, we necessarily begin with the assumption it meets it V&V requirements. That
said, our methodology still includes a strong element of software verification. In particular, because our validation
approach is designed to expose differences in the runtime characteristics between the miniapp and application, the
differences seen can point to areas where both the miniapp and application should be examined. In some sense,
then, this is a code-to-code V&V exercise, whereby lack of agreement between the two can strengthen the (always
ongoing) V&V efforts of each. This of course is not a definitive result, since both codes may be similarly incorrect,
and therefore somewhat controversial. However, given the assumptions stated above, this sort of information can
still provide a useful service if properly understood.

3.2. Validation

For a set of diagnostic runtime performance characteristics or elements, which we loosely refer to as the perfor-
mance domain,

{D} = D1, D2, . . . , Dn, (1)

let

{B} = B1, B2, . . . , Bn, (2)

be a corresponding set of baseline full application observational referents, (the “validation data”) and let

{A} = A1, A2, . . . , An, (3)

be a set of corresponding miniapp measurements.
We then consider the difference between the application referents and the miniapp measurements in the perfor-

mance domain defined by (1) as some kind of mathematical norm, which we will also call a validation metric:

Xi = ‖Bi −Ai‖i,∀i. (4)

Here, we have suggested that the difference measurement – the norm – might vary for each component of the
performance domain. Clearly, this can become extremely complex and examples presented below will help clarify
this. A very simple example could be a situation in which a positive number specifies every component of performance
domain. In such a case, we then could simply have:

Xi = ‖Bi −Ai‖i = |Bi −Ai|,∀i. (5)

But one component of the performance domain might be specified this way, while another component might be
as general as a functional or a time series, in which case the norm is far more complex than simply measuring the
absolute value of the difference between two numbers. There is also the possibility that stochastic characteristics
must be attached to one or more of the performance dimensions, which further complicates the mathematics that
might underlie the validation metric. We do assume that all the components of the performance domain can have a
norm distance definition attached to them. In something as extremely complicated as overall runtime performance
behavior, even this assumption might fail if we had to deal with qualitative factors in performance. We do not see
the need for this level of generality for this discussion.

The point of introducing a validation metric that measures the difference between miniapp performance and the
application referent is to draw some conclusion about how well the miniapp is reproducing the performance behavior
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of the full application. A simple illustration of this logic is as follows. Suppose that the validity of the miniapp was
determined by how accurately it reproduces the performance of the full application in the performance domain. Then
the differences in Equation (4) provide the means for assessing validity. Thus, given the measured set of values Xi,
for i = 1, . . . , n, suppose “valid” accuracy can be assessed using a set of threshold accuracies T 1

i , T
2
i , fori = 1, . . . , n.

Then assessment of the validation metric information might then be posed as:

Vi =


predictive, for T 1

i ≤ Xi ≤ T 2
i

caution, for T 2
i ≤ Xi ≤ T 3

i

not predictive, for Xi ≥ T 3
i

(6)

where Vi is a validity statement attached to performance domain dimension i for some thresholds T j
i , for j =

1, . . . , 3.
While Equation (6) looks like a generally useful algorithm for assessment, we caution there is a great deal of

overloading inherent in this simple expression. For example, the choice of thresholds could clearly be extremely
difficult. The willingness to even evaluate validity based on a relatively direct threshold assessment is open to
debate. And, developing the set Vi, i = 1, . . . , n leaves open the issue of how all of this information is combined into
a single appraisal of the validity of the miniapp. Nonetheless, this logic is a clear illustration of the kind of ideal
thinking that should underlie the validation assessment of miniapps.

Choice of diagnostics defining the performance domain is clearly a challenge. Example diagnostics for the set D
include inter-process communication, which can then be further categorized, such as the number and distribution of
partners, and the size and frequency of message traffic. Example observational referents B for the full application
may be empirically measured, which we denote as BM . Or the referents may need to be forecast or estimated using
expert judgment, perhaps aided by a tool such as SST [38], denoted Bp. Using referents that are not empirically
measured for validation is sometimes called face validation. While accepted by several communities, including DoD,
clearly face validation has weaker validation inference associated with it than the use directly observed empirical
referents. We expect that we might have to use a mixture of both in the validation methodology for miniapps. In
general, we emphasize that measurements involving miniapps A must be carefully designed and captured. We also
emphasize that having confidence in A and B requires having accumulated meaningful verification evidence.

This framework provides direct advantages. First, the input information D,B, and A and are open to challenge
and refinement, are mutable and extensible, and thus the role interpretive judgment in the final results of validity
assessment is transparent within the context of use. For example, new diagnostics, new or corrected baseline
observations, and new or corrected measurements could be added to the model in the service of better assessment.
Second, the way the results are computed is can be easily subjected to peer-review scrutiny.

The choice of validation metric can significantly influence differences (the validation metric ‖ · ‖i) between
validation data Bi and miniapp measurements Ai. For our validation work, we choose metrics based on their ability
to emphasize or highlight differences between the application characteristic under consideration and the miniapp
measurements.

For the diagnostics used in this study, the metric was usually configured as a relative comparison between the
miniapp and the application. However, when available, the comparison is with some absolute comparison.

4. Making the link to full applications

We applied our methodology to four miniapps, examining the linkage between them and an application they are
intended to represent. Herein we evaluate the fidelity of that linkage. This represents the initial step required to
begin to answer the question, “Under what conditions does a miniapp represent a key performance characteristic in
a full app?” Runtime profiling information is presented in support of well-specified key performance issues for each
code, providing some acceptable level of confidence that the miniapp is representative of their relevant computations,
in a manner that will enable exploration and experimentation using the miniapp.

MiniFE was developed to examine Krylov-based linear equations solution methods applied within the context
of a Krylov solver in an implicit finite element method application on unstructured meshes, such as that used in
Charon, a semiconductor device simulator. MiniGhost was designed to provide a means for exploring alternatives
to the Bulk-Synchronous Parallel programming model with data aggregation inter-process communication strategy,
such as that found in CTH, a shock physics code. MiniMD was developed to model the molecular dynamics Lennard-
Jones potential, such as that found in LAMMPS. MiniXyce, currently under development, is intended to represent
Xyce, a circuit simulation code.
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4.1. Experimental Platforms

We have developed and applied our methodology in a broad set of computing environments. Herein we focus
on two large scale computers, Cielo and Chama, supplementing the explorations with additional computers where
needed to focus on some particular issues. These machines are representative of the ways in which applications take
advantage of current capabilities, but also provide hints regarding expected future capabilities.

Cielo, an instantiation of a Cray XE6, is composed of AMD Opteron Magny-Cours oct-core processors, connected
using a Cray custom interconnect named Gemini, and a light-weight kernel operating system called Compute Node
Linux (CNL). The system consists of 8,944 dual socket compute nodes, for a total of 143,104 cores. Each compute
node is divided into two four processor core memory regions, called NUMA nodes (illustrated in Figure 1(a)),
connected using HyperTransport version 3.

Gemini
ASIC

AMD
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8-core

AMD
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R
AM

D
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AM

AMD
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C
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(b) Chama

Figure 1: Node Architectures

Nodes are connected using Cray’s Gemini 3-D torus interconnect. A Gemini ASIC supports two compute nodes.
The X and Z dimensions use twice as many links as the Y dimension (24 bits and 12 bits respectively) and therefore
introduce an asymmetry to the nodes in terms of bandwidth in the torus. This needs to be taken into account
when configuring a system in order to balance the bisection bandwidth of each dimensional slice in the torus. Cielo
is configured as a 16 × 12 × 24 3-D torus. Injection bandwidth is limited by the speed of the Opteron to Gemini
HyperTransport link, which runs at 4.4 GT/s. Links in the X and Z dimensions have a peak bi-directional bandwidth
of 18.75 GB/s, and the Y dimension peaks at 9.375 GB/s.

Chama, constructed by Appro, Inc. (acquired by Cray in 2012), is designed for production capacity computing
by the National Nuclear Security Administration (NNSA) Advanced Simulation and Computing (ASC) Trilabs,
i.e. Sandia National Laboratories (SNL), Los Alamos National Laboratory, and Lawrence Livermore National
Laboratory. The system consists of 1,232 compute nodes, connected by a QLogic InfiniBand fat tree, using 12000
series switches and 7300 series adapters. Each node is composed of two oct-core Intel Xeon E5-2670 Sandy Bridge
processors, illustrated in Figure 1(b), for a total of 19,712 cores, running a RHEL operating system.

4.2. A Molecular Dynamics code

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) is primarily a classical molecular dynam-
ics (MD) code and can be run in serial or parallel using a spatial-decomposition of the simulation domain [35, 36].
LAMMPS allows simulation of soft materials, solid-state materials, and coarse-grained or mesoscopic systems. In
general, it is a parallel particle simulator at the atomic, meso, or continuum scale.

The spatial-decomposition method that LAMMPS uses divides the physical domain into three dimensional sub-
boxes, one per parallel process. Each process computes forces on atoms in its box using information from nearby
processes (illustrated in Figure 2). As they migrate among processes, the atoms carry along their molecular topology.
Communication is via a nearest-neighbor six-way stencil. Parallel scaling would be N/P if load is perfectly balanced.
Computation scales as N/P , communication scales as (N/P )2/3 (for large problems), and memory scales as N/P .

MiniMD is designed to model the force computations in typical molecular dynamics applications. The algorithms
and implementation used closely mimic these same operations as performed in LAMMPS, with both using the
Lennard-Jones potential in our tests.

The work involved in the parallel processing implementation of this model can be categorized as:

1. Collect off-process ghost atom data (“comm”): Point-to-point inter-process communication collects off-process
ghost atom data onto the owning parallel process.
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Figure 2: Molecular dynamics computation. Grid represents spatial-decomposition of the physical domain into subdomains for each
parallel process. A single process owns the atoms in the central subdomain that shaded dark gray. Data from the atoms in the light
gray ghost region are periodically communicated to that process in order to complete the interatomic force calculations.

2. Construct neighbors list (“neigh”): Each atom is assigned to a cell in a three-dimensional bin. Then using an
inter-atomic cutoff distance, a neighbor list (array neigh) is constructed for each parallel process.

3. Compute forces (“forces”): Calculate the forces acting upon each atom by the other atoms.

4.2.1. Model Abstractions

As stated throughout this paper, miniapps are not intended to capture all aspects of a particular application.
Instead, they are designed to represent issues that critically impact the runtime characteristics of large scale ap-
plication programs. In addition to enabling a stronger focus on a limited set of important issues in a particular
application, this approach allows a miniapp to be representative of more than one application, and in some cases,
represent a class of applications and algorithms.

In this case, miniMD does not include the complex logic present in the LAMMPS implementation, resulting in
shorter runtimes. Lennard-Jones is one particular type of atomic interaction model that can be used in molecular
dynamics. In the future, miniMD may be expanded to include more complex atomic interaction models in order to
perform an expanded set of comparisons with LAMMPS. But for now, miniMD cannot explore the broad problem
space that is available to LAMMPS, which includes a wide array of complex interatomic interaction potentials and a
very long list of auxiliary capabilities (see http://lammps.sandia.gov for more details about LAMMPS’s capabilities).

That said, LAMMPS(LJ) and miniMD are quite similar, providing a strong candidate for testing our methodol-
ogy. This is because the LJ problem and miniMD that we’ve chosen to simulate are quite representative of a typical
MD simulation that an MD practitioner would run, particularly in terms of the computational load and commu-
nication patterns. The spatial decomposition, neighborhood list builds, force calculations, radial cutoff, and the
time integration simulation of a condensed matter fluid are all common themes that are found in most parallel MD
calculations. Further, the computations and data access patterns of the force calculations stress the computational
capabilities and memory systems in ways that are important to computations found in many other science domain
areas.

We have chosen to study scaling in a strong sense, where the number of atoms is held constant with increasing
core count, instead of weak scaling, where the number of atoms simulated would be proportional to the number of
cores used. This choice is intentional and seems more representative of what a typical MD practitioner would want:
run a relatively small ensemble of atoms out to as-long-as-possible timescales, rather than simulate a relatively large
problem for a short time. Strong scaling is more difficult from a computer science perspective, but more desirable
from an MD practitioner’s perspective. We note, however, that both LAMMPS and miniMD can be used to study
strong or weak scaling, and that the conclusions we draw from this strong scaling app-to-miniapp comparison would
likely hold for a weak scaling comparison as well.
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Figure 3: LAMMPS and miniMD Strong Scaling on Muzia: Time (left column) and Validation Metric (right column).
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Figure 4: LAMMPS and miniMD Strong Scaling on Chama: Time (left column) and Validation Metric (right column).
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Processor Cores L(32k) MD(32k) L(16k) MD(16k) L(8k) MD(8k) L(4k) MD(4k)
32k Atoms 16k Atoms 8k Atoms 4k Atoms

Nehalem Workstation
1 0.4 0.3 0.3 0.00 0.5 0.1 0.2 0.5
2 0.5 0.6 1.1 0.00 1.2 0.8 0.4 0.9
4 1.0 2.9 0.6 0.01 1.7 0.8 0.7 1.0
8 4.3 1.0 1.0 0.11 7.1 10.2 4.8 0.0

Muzia
1 0.84 0.14 0.83 0.06 0.03 0.01 0.01 0.03
2 0.67 0.13 0.03 0.05 0.07 0.09 4.28 0.05
4 0.05 0.13 0.03 0.14 5.26 0.06 5.92 0.03
8 0.05 0.18 0.11 0.17 1.80 0.09 2.72 0.06
16 0.07 0.04 1.72 0.02 6.54 0.03 0.18 0.04
32 0.42 0.98 1.45 0.18 0.38 0.15 0.67 0.11
64 4.02 1.69 1.97 1.51 0.21 1.58 0.31 0.12
128 0.98 0.90 1.73 0.53 0.04 0.62 1.70 0.27
256 0.97 0.21 0.84 0.65 0.83 0.25 0.03 0.12

Table 2: Standard deviations, as a percentage of the time, for LAMMPS and miniMD experiments (denoted by “L” and “MD”, resp.).

4.2.2. Performance Domain

The strong connection of miniMD to LAMMPS(LJ) provides a straightforward means of applying our method-
ology. The diagnostics are defined as the time to solution for each computational phase:

D1 : Total time

D2 : Force calculation time

D3 : Time for construction of neighbor list

D4 : Time for inter-process communication

Four different problem sets were defined by varying the number of atoms in the simulation (4000, 8000, 16000,
and 32000), each using LJ density ρ∗ = 0.8442, and LJ temperature T ∗ = 1.444, iterated for 1000 time steps, with
an LJ time step size of 0.00462.

The performance for this experiment on Muzia (a surrogate for Cielo) and Chama are illustrated in Figures 3
and 4, respectively. These are the minimum times of three trials for each phase. The graphs on the left are direct
comparisons, in terms of time. The graphs on the right show the results of our validation methodology. Here we use
the normalized form

Xi = (Bi −Ai)/Bi, (7)

converted to a percentage.

4.2.3. Discussion

Above we’ve shown the minimum times of three trials for each phase. The average standard deviations are shown
in Table 2. Results of similar experiments executed on an Intel Nehalem processor are shown in [6].

Figures 3 and 4 show that miniMD closely mimics LAMMPS performance and scaling characteristics in all
cases tested. In nearly every case, miniMD total time is slightly less than LAMMPS total time, with miniMD
faster by up to almost 25% and LAMMPS faster in a few cases by a few percent. Examination of each code’s
respective force calculation inner loops illustrates why miniMD is typically faster: its inner loop logic is simpler.
Although miniMD closely mimics the Lennard-Jones algorithm in LAMMPS, it does so within the context of a
single, focused goal. MiniMD allows simulation of only a single LJ component with fixed LJ parameters, whereas
LAMMPS allows simulation of multi-component LJ materials with user-prescribed LJ parameters. In LAMMPS the
algorithm is contained within the goals of a much larger scope, requiring additional complexity so that code may be
shared across algorithms, etc. Consequently, LAMMPS’s additional flexibility takes a small toll in terms of overall
performance. This effect becomes less pronounced at larger core counts due to its falling cost relative to other parts
of the calculation.
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For both LAMMPS and miniMD, the neighbor list construction times are consistently about 12% of the cost of
the force calculations. Since both of these costs are computation dominated and similar in nature, this ratio remains
fairly constant versus core count, code, and platform. Both codes have been tuned to use pair distance cutoffs that
necessitate neighbor list updates at about 20 timestep intervals, near the minimum total computational cost. Cal-
culation costs other than those for neighbor list construction, force calculations, and inter-processor communication
were typically less than 3% of the total and never more than 8% in all of the cases examined.

In these strong scaling tests, we see that computation cost dominates at low core count and communication cost
dominates at high core count, as expected. This is because the force and neighbor list construction times exhibit
near perfect scaling in these tests whereas the inter-process communication times remain essentially constant with
core count. If these tests were extended to even higher core counts, parallel scalability would continue to deteriorate,
yielding no advantage to using more cores.

LAMMPS typically outperforms miniMD in terms of inter-process communication time, presumably due to
LAMMPS’s more sophisticated and highly optimized communication code. Interestingly, at higher core counts, the
relative performance in this regard tightens, demonstrating remarkable similarity in scalability between the two codes
on both platforms. Since communication costs dominate at higher core counts, and since LAMMPS and miniMD
use very similar communication patterns, we expect good agreement between the codes in overall timings near the
scaling limit. Indeed we do see remarkably similar performance between the codes at the highest core counts, with
the maximum difference in total performance less than 11%.

MiniMD computes the forces acting upon each atom, and therefore the actions of each atom (potentially) on the
others. This coupling of actions is reflected in a coupling of the computation, which has implications with regard
to the computational capabilities of current processors. Vectorization mechanisms, such as the Streaming SIMD
Extensions (SSE) and the Advanced Vector Extensions (AVX) instruction sets can effectively manage these sorts of
interactions, but threading approaches, such as pthreads [10] and OpenMP [11], are problematic. MiniMD is serving
as a valuable tool for exploring these issues as they pertain to LAMMPS methods.

4.3. A Semiconductor Device Simulation code

Charon is a semiconductor device simulation computer program [17, 29] developed at SNL. It is a transport
reaction code used to simulate the performance of semiconductor devices under irradiation. Charon employs the
drift-diffusion model, which is a coupled system of nonlinear partial differential equations (PDEs). Finite element
discretization (stabilized Galerkin formulation) of these equations in space on an unstructured mesh produces a
sparse, strongly coupled nonlinear system. These equations are solved using a Newton-Krylov approach, resulting
in a large sparse linear systems of the form

AM−1(Mx) = b, (8)

for A ∈ CN×N , x and b ∈ CN , and some preconditioner M .
Using functionality from Trilinos [18], the linear systems are solved either using BiCGStab [43] or GMRes [39]

Krylov solver. An algebraic multigrid preconditioner [15], with local incomplete factorization as smoothers signifi-
cantly improves scaling and performance [26].

An example 2D steady-state drift-diffusion solution is illustrated in Figure 5 for a bipolar junction transistor
(BJT).

MiniFE is intended to mimic the finite element assembly (FEA) and linear solver computations for a problem on
unstructured meshes. MiniFE solves the steady-state scalar conduction equation as presented in [37]. It assembles
finite element matrices into a global matrix and vector, then solves the linear system using the Conjugate Gradient
method [21]. Each finite element is a hexahedron with 8 vertex-nodes. These equations are solved on a three-
dimensional box of hexahedra.The domain dimensions are in terms of elements, so for example, a 2 × 2 × 2 box
describes eight elements each of which has eight nodes, so it is a 3× 3× 3 node domain (27 nodes). The coordinate
origin is at the corner of the global box where x = 0, y = 0, z = 0. The box extends along the positive x-axis, positive
y-axis, and the negative z-axis. Each node corresponds to a row in the matrix. A global identifier, assigned using
coordinates and global box dimensions, adds coding convenience to some aspects of matrix-structure generation and
finite-element assembly.

The domain is partitioned using the Recursive Coordinate Bisection method [8], and thus some processors own
non-contiguous blocks of global node identifiers. Since it is convenient for matrices and vectors to store contiguously-
numbered blocks of rows, global node identifiers are mapped to a separate space of row numbers such that each
processor’s nodes correspond to a contiguous block of row numbers.
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base emitter 

collector 

Figure 5: Charon steady-state drift-diffusion solution for BJT with voltage bias. The base, emitter and collector are located in the upper
left corner, upper right corner and bottom edge respectively. The shades of gray represent the electric potential, which highest voltage
along the bottom and lowest in the upper left portion of domain.

4.3.1. Model abstractions

Charon steady-state drift-diffusion problems (examined herein) have three degrees of freedom (DOF) per mesh
node. MiniFE solves a linear scalar equation (one degree of freedom per mesh node). Here MiniFE was configured
such that the structure of the linear systems mimic those of Charon. It is to be determined if miniFE can be
configured to represent this level of complexity.

Runtime for typical Charon problems is focused in the Newton-Krylov solver. The conjugate gradient solver in
miniFE is intended to be sufficiently realistic to be representative of the performance characteristics of the Krylov
solver portion in an application code, e.g. to be representative of the scaling of a single Krylov iteration. As miniFE
solves a different set of physics, it is not intended to predict the either the number of Krylov iterations required or
the number of Newton steps required. For our studies, the number of Krylov iterations for miniFE and a Newton
step of Charon will be the same.

4.3.2. Performance Domain

The runtime performance of Charon is dominated by the Newton-Krylov solver, which is itself dominated by the
Krylov solver. These computations are characterized by irregular memory accesses, including across nodes, which
informs the choice of diagnostics:

D1 : Cache hit-to-miss ratio

D2 : Node memory bandwidth

D3 : Weak scaling

In addition to the two main target architectures in this study (Cielo and Chama), we include Red Sky and two
workstation nodes. Red Sky is similar to Chama in that it is composed of Intel Xeon processors, though the older
generation Nehalems, and its InfiniBand interconnect is configured as a three dimensional torus (like Cielo) produced
by Mellanox. The individual nodes, described below, enable configuration of different memory speeds.

4.3.3. Diagnostic: Cache performance

Caches provide the first defense against on-node memory access constraints, so the impact of cache design is of
significant interest. This diagnostic considers cache behavior, again with the separation of between the FEA and
solver phases, and again using the Nehalem and Magny-Cours nodes, each with three levels of cache (L3 is shared
across cores in a die; one die per socket for Nehalem and two dies per socket for Magny-Cours). The hit rate, defined
as the proportion of the number of times the processor finds needed data in a cache with the total number of times
it looks for data in that cache, plays a significant role in processor performance. This provides us with an absolute
performance, so our validation metric is

Happ −Hminiapp

100
, (9)
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Figure 6: Cache behavior of the FEA and solver phases of Charon and miniFE. Hit rates are shown in left column and the validation
metrics in the right column.

where H is the measured cache hit rate.
Results are shown in Figure 6. For the FEA phase, Charon and miniFE show strong use of level 1 cache, with a

proportional difference of no more than 3%. However, level 2 and 3 hit rates are significantly different, with miniFE
being a factor of 3 and 6 times different, respectively, from Charon, leading us to claim that the cache performance
of FEA in miniFE is not predictive of that for Charon. For the solver phase, we believe that cache performance is
predictive. Although the thresholds for acceptance for level 2 and 3 are arguably high ( 20%) the trends are clear.

Most interesting is that the Charon/Aztec solver’s surprisingly low level 2 hit rate seen on the Nehalem is also
seen with miniFE. Given that this is unexpected given Magny-Cours and other past observations, care must be
taken with regard to attribution, but given our experience on a variety of processors, this issue is likely due to a
hardware configuration issue. Additional experiments are required to make strong causal claims, since it is possible
that measurement intrusion is to blame, or perhaps a hardware configuration issue.

4.3.4. Diagnostic: Node memory bandwidth

Memory bandwidth within a multicore processor based node is seen as having a significant impact on the per-
formance of many applications [1, 14], including Charon [28]. A typical means for exploring this issue is to vary the
number of processor cores employed on the node and comparing the resulting performance efficiency. Although this
does vary the amount of memory bandwidth available to a core, it also varies other resources, such as the amount
of shared cache. An effective validation study requires stronger evidence to make this claim. However, the fact that
the application and miniapp both encountered this issue strengthens the claim that miniFE is representative of the
impact of memory speeds on Charon.

Using a dual-socket quadcore Intel Nehalem 5560 clocked at 2.8 GHz processors and a dual-socket 8-core AMD
Magny-Cours 6136 clocked at 2.4 GHz, experiments were configured to better focus on memory bandwidth. The
machines were configured to provide memory speeds of 800 MHz, 1066 MHz, and 1333 MHz.

The validation metric is defined as follows: we began by normalizing the performance of the FEA and solver
performance (in terms of time), with the performance of the fastest memory setting, and then compared those results
between Charon and miniFE, shown in Equation 10.
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Figure 7: Effects of memory speeds on the FEA and solver phases of Charon and miniFE. Times, relative to 1333 MHz are shown in the
left column and the validation metrics are in the right column.

tcharon(mmax)− tcharon(mi)

tcharon(mmax)
− tminife(mmax)− tminife(mi)

tminife(mmax)
, for i = 800, 1066, 1330MHz, (10)

where t(mmax) is the time spent in the computation at the highest memory speed (1330 MHz). That is, we
made a relative comparison between the app and miniapp of the normalized absolute comparison within the app or
miniapp.

Figure 7 shows the normalized absolute comparison within the app or miniapp. In line with our assumptions
regarding the impact of memory speed on these computations, the FEA phases for Charon and miniFE are not
impacted by the change in bandwidth, while their solvers are. For the latter, a 66% increase in memory speed
resulted in a 19% increase in solver performance on the Magny-Cours processor for both Charon and miniFE, and
on the Nehalem, a 23% and 28% increase for Charon and miniFE, respectively.

The validation metrics, also illustrated in Figure 7, shows that miniFE is within 4% of all measures of Charon,
leading us to claim that, with regard to on-node memory bandwidth, miniFE is predictive of Charon for these two
key performance critical computational phases.

4.3.5. Diagnostic: Weak scaling

Target simulations involving Charon require execution on very large parallel processing architectures. Effective
runtime performance in these environments requires managing the inter-node sharing of data. Effective algorith-
mic behavior requires managing the convergence characteristics of the linear systems through proper choice and
application of preconditioning techniques.

Here we examine weak scaling characteristics of Charon and miniFE up to 16k core counts. Diagnostics include
the Charon/Aztec BiCGStab solver with two preconditioning strategies, an incomplete factorization algorithm with
no fill (ILU(0)) and a multilevel/multigrid (ML) algorithm. Results for each are analyzed in comparison to miniFE,
which does not employ a preconditioner. The idea is that Krylov solvers perform common computations (e.g.
addition and scaling of vectors, inner products, and sparse matrix-vector products. Further, applications typically
use a breadth of preconditioners, so our goal is to understand where specificity is required and where it is not
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Figure 8: Charon and miniFE weak scaling for time per Krylov iteration, on Chama and Cielo. Times, relative to 32 processors are
shown in the left column and the validation metrics are shown in the right column.

necessary.
Performance is illustrated in Figure 8. We have not yet determined an effective means for analytically comparing

scaling behavior. Instead we can reason about the curves by first noting that performance is different on different
architectures, which we speculate is a function of the difference preconditioning strategies. Although the difference
between Charon and miniFE with multigrid preconditioning is large, this is not reason enough to reject the relation-
ship. Instead, we claim that miniFE is not predictive of Charon with multigrid because miniFE does not include
the sorts of computations found in multigrid. Further, an analysis of the interprocess message passing requirements
shows that multigrid sends over 40% more message per core than do the other configurations.

The difference between Charon with ILU(0) preconditioning and miniFE is less clear, with reasoning driven
from the position in the codesign space. For example, from the perspective of some hardware architects, these two
approaches are not predictive. However, from the perspective of an algorithm developer perhaps investigating new
programming models, miniFE performance could be reasonably predictive. Even with the Charon/Aztec BiCGStab
solver being similar to CG in miniFE, there still are substantial differences between the two cases, such as the
significant difference in how the domain decomposition is performed. Clearly further investigation into this issue is
needed. Therefore we assign this diagnostic a caution assessment.

4.3.6. Discussion

The evidence shows that miniFE is representative of the cache and memory bandwidth performance of Charon.
Both of these conclusions are aligned with an understanding of the algorithmic implementations of the FEA and
Krylov solvers. However, the scaling studies for large numbers of compute nodes shows meaningful differences
between Charon and miniFE. In particular, not surprisingly, the behavior of the multigrid preconditioned Charon is
not captured by the unpreconditioned miniFE. This is an important consideration for future large-scale simulations
which are expected to require such sophisticated preconditioning in order to achieve acceptable convergence.

This work illustrates the importance of the comparison metric. Whereas the time-based diagnostics for LAMMPS
and miniMD compelled relative comparisons, the availability of an absolute value for cache performance (100%)
elucidated the shared behavior between the miniapp and app, especially important for the L2 cache issue on the Red
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Figure 9: CTH and miniGhost computation and communication interaction

Figure 10: CTH shaped charge simulation. Time progresses left to right.

Sky Nehalem processor. Normalizing the comparison to the fastest memory speed clearly showed the relationship of
algorithm to this important architectural capability. The lack of a meaningful metric for the scaling behavior, while
a weakness, in this case was overcome by a firm understanding of the algorithmic characteristics, and provided the
basis for important discussions by the application team. We intend to work toward a meaningful metric in this case,
possibly informed by the work below.

4.4. A Shock Physics code

CTH is a multi-material, large deformation, strong shock wave, solid mechanics code developed at Sandia National
Laboratories [20]. CTH has models for multi-phase, elastic viscoplastic, porous and explosive materials, using second-
order accurate numerical methods to reduce dispersion and dissipation and produce accurate, efficient results.

Several times within a time step boundary information is aggregated and exchanged with up to six neighbors
in the grid of processors. In the BSP/message aggregation (BSPMA) model, data from multiple (logical) memory
locations are combined into a user-managed array with other data, then subsequently transmitted to the target
process. Illustrated in Figure 9 this work incurs three costs: memory utilization (the message buffers), on-node
bandwidth (copies into the buffer), and synchronization (leading up to and including the data transfer).

MiniGhost is designed as a proxy for the boundary exchange functionality (likewise also called ghost- or halo-
exchange), embedded into the context of difference stencils. This notion of mapping a continuous problem to discrete
space and the inter-process communication requirement induced by spacially decomposing the grid across parallel
processes adheres to the bulk-synchronous parallel programming model (BSP [42]), arguably the dominant model
for implementing high performance portable parallel processing scientific applications [5].

Two distinct problems are commonly modeled by CTH. The meso-scale impact in a confined space problem
is computationally well-balanced across the parallel processes. This problem involves 11 materials, inducing the
boundary exchange of 75 variables. The shaped charge problem, illustrated in Figure 4.4, involves four materials,
inducing the boundary exchange of 40 variables. (This problem was used in the acceptance testing for the NNSA
ASC campaign’s capability computer, Cielo [12].) For the shaped-charge problem these messages average 4.1 MB
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and for the meso-scale problem these messages average 10.4 MB. Process 0 and a couple of other processors near it
for the shaped charge problem have more work since they are the genesis of the explosion and thus have additional
work relative to the other processes. The runtime trace shows significantly less waiting time than the other cores.

4.4.1. Model abstractions

CTH is a finite volume code, and thus it has values that are based at cells and at the nodes. Its computations
are complex, whereas miniGhost computation is rather simple. Prior to sending a message containing boundary
data to a neighbor, a CTH MPI process waits for a message from the target processes, which alerts the sending
process that the matching receive is posted. The intent is to avoid unexpected messages, potentially a serious issue
given the typically large amount of data transmitted. This is a meaningful approach on some architectures, such as
Red Storm [40], but is of no help on most, which include a built-in acknowledgement handshake prior to sending
messages. Further, the MPI specification provides functionality managing this. Regardless, our intent is to test
the capabilities of the MPI implementation on the target architecture external of some means for adapting to the
specific capabilities of a particular implementation. That said, one use of a miniapp is to provide a lower impact
means for testing other approaches and ideas.

CTH manages data as sets of two dimensional slices, contained in a single pool of allocated memory. This memory
management scheme is a relic of past language constraints. MiniGhost allocates distinct three dimensional arrays,
each representing a material.

MiniGhost is intended to capture the behavior of the halo exchange typically employed in finite difference and
volume codes. Its ability to do so has beem demonstrated, and has contributed to performance improvements for
CTH [7].

4.4.2. Performance Domain

MiniGhost is designed to capture the inter-process communication requirements of CTH. The diagnostics are
defined to measure the message passing characteristics of these requirements:

D1 : Number of communication partners (neighbors)

D2 : Number of messages per boundary exchange.

D3 : Message volume (bytes per neighbor)

D4 : Weak scaling

Two problem sets described above (shaped charge and meso-scale) provide the drivers for these measurements.
In order to ensure that miniGhost accurately reflects the inter-process communication behavior, it is important
to understand the inter-process communication infrastructure, including physical interconnect, logical to physical
process maps, system software, and ultimately to how the application manages its communication requirements.

For example, when MPI communication is initiated, buffers are configured for managing message queues, unex-
pected messages, etc. In the distinct communication and computation phases of the full application, the compute
stage touches enough data to ensure that all communication data structures have been flushed from the processor
cache hierarchy and must be refetched from main memory upon the initiation of the communication phase. The
work in miniGhost must be enough in order for this to occur. Thus for example, a single variable weak scaling
problem of dimension 100× 100× 100 in 8-byte precision means that an eight MByte variable is operated on, stored
into another eight MByte variable. Thus 16 MBytes of memory has been traversed by the processor, effectively
flushing a cache of that size.

Alternative methods for moving the data are being explored using miniGhost, and therefore the experimenter
must take this into consideration.

4.4.3. Diagnostics: Boundary exchange characteristics

MiniGhost was configured to match the number and relative position of communication partners, the number of
variables, and the dimensions of those variables such that the size of the messages involved in the boundary exchange
are the same as with CTH. Figure 11(a) illustrates the communication pattern of CTH problems, replicated by
miniGhost. Diagnostics D1, D2, and D3 were configured and verified to be equivalent between miniGhost and the
CTH problem sets under consideration, thus by any rational metric, the difference would be zero. This lays the
foundation for a more meaningful exploration of communication characteristics, described below.
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(a) Original mapping (b) Re-ordered mapping

Figure 11: CTH and miniGhost logical processor mapping

Number of Original Order Re-ordered
MPI ranks X Y Z X Y Z

16 0.0 0.0 0.0 0.0 0.0 0.0
32 0.0 0.0 0.0 0.0 0.0 0.0
64 0.0 0.0 0.3 0.0 0.3 0.0
128 0.0 0.0 1.0 0.0 0.5 0.0
256 0.0 0.0 1.0 0.0 0.5 0.3
512 0.0 0.1 2.0 0.0 0.6 0.4
1024 0.0 0.3 2.1 0.2 1.0 0.7
2048 0.0 0.3 2.7 0.3 1.2 1.2
4096 0.0 0.3 3.7 0.3 1.2 1.2
8192 0.0 0.5 5.1 0.2 1.1 2.0
16384 0.0 0.5 4.9 0.2 1.1 2.2
32768 0.0 0.5 5.6 0.2 1.1 2.5
65536 0.0 1.1 10.2 0.2 1.6 2.8
131072 0.0 1.1 10.1 0.2 1.6 3.1

Table 3: CTH and miniGhost average hop counts on Cielo

4.4.4. Diagnostic: Weak Scaling

CTH provides a typical example of a code team adapting to computing architectures: in order to avoid message
latencies and exploit global bandwidth, computation is performed across as many variables as possible before a
boundary exchange involving those variables can be consolidated into a single message per neighbor. But in a
recently completed broad-based study of Cielo capabilities [25], and reproduced on Chama, the nearest neighbor
boundary exchange encountered significant scaling degradation beyond 8,000 processor cores. This issue is predicted
by miniGhost, illustrated in Figure 12(a). Scaling performance is shown relative to that of one node, i.e. 16 processor
cores.

The problem was traced to the mapping of the parallel processes to the three dimensional torus topology.
Neighbors in the x direction required a maximum of one hop and in the y direction a maximum of two hops. But
the number of hops across the network (referred to as the Manhattan distance) was shown to increase significantly in
the z direction, as shown in Table 3. This combined with the very large messages of a typical CTH problem set (e.g.
for the “shaped charge” problem, 40 three dimensional state variable arrays generated message lengths of almost 5
MBytes) resulted in poor scaling beginning at 8k processes, a trend that accelerated after 16k processes.

In response, we implemented a means by which the parallel processes could be logically re-ordered to take
advantage of the physical locality induced by the communication requirements. In the normal mode, CTH (and
miniGhost) assigns blocks of the mesh to cores in a manner which ignores the connectivity of the cores in a node. On
Cielo, as with other Cray X-series architectures, cores are numbered consecutively on a node, and this numbering
continues on the next node. This process re-ordering strategy, illustrated in Figure 11(b), explored using miniGhost
and incorporated into CTH, resulted in a significant improvement in scaling performance. As seen in Figure 12(b),
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Figure 12: Performance of CTH and miniGhost. The graphs on the left are from Cielo, the graphs on the right are from Chama.
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this improvement is attributable to a significant improvement in communication time in the z direction. The
remaining scaling issue has been traced to synchronization requirements of the boundary exchange, an issue requiring
further study.

The validation metrics for Cielo and Chama are defined as the difference between the scaling normalized to 16
cores, as follows:

tcthi

tcth16

− tminighost
i

tminighost
16

, for time t; i = 1, . . . ,numpes. (11)

The comparison is shown in Figure 12(c). Two things are interesting to note. First, the process re-ordered
versions have stronger agreement. Second, at least for Cielo where higher process scales were possible, that agreement
remained longer as processor counts increased. This is not surprising since the the increasing Manhattan distance
is expected to more strongly impact a more complex code. However, because of the observations of the Manhattan
distances, before and after re-ordering, combined with the impact on the communication times, as well as additional
runtime profiling that showed the computation time remained constant and the node interconnect stalls decreased [7],
we are confident that miniGhost is predictive of the weak scaling behavior of CTH.

4.4.5. Discussion

Three diagnostics, D1, D2, and D3, were defined in order to configure miniGhost to capture the general CTH
inter-process communication requirements. This created an application relevant context for exploring CTH’s com-
munication behavior.

An issue with scaling performance, tracked to the way in which processes were physically mapped onto a computer,
was identified and effectively addressed. We intend to explore the ability of miniGhost to represent the inter-process
communication behavior of similar applications that employ dynamic meshes, i.e. adaptive mesh refinement (AMR).
This will provide challenges for these diagnostics, but they may inform a process reordering strategy that would
improve the application’s scaling behavior. If this is not the case, AMR may need to be added to miniGhost. Either
way, this will compel the definition of an additional diagnostic involving the Manhattan distance.

4.5. A Circuit Simulation code

Xyce is a circuit modeling tool [24] developed at Sandia National Laboratories. It is designed to perform
transistor-level simulations for extremely large circuits on large-scale parallel computing platforms of up to thousands
of processors. Xyce is a traditional analog-style circuit simulation tool, similar to the Berkeley SPICE program[30].

Circuit simulation adheres to a general flow, as shown in Fig. 13. The circuit, described in a netlist file, is

Netlist 
File

Nonlinear DAE
Solver F(x,x') = 0

Nonlinear 
Solver F(x) = 0

Linear 
Solver Ax = b

Converged ? Sim
Complete ?

End Sim

Parse

No

YesDiscretize Linearize

Yes

No

Figure 13: General Circuit Simulation Flow in Xyce

transformed via modified nodal analysis (MNA) into a set of nonlinear differential algebraic equations (DAEs)

dq(x(t))

dt
+ f(x(t)) = b(t), (12)

where x(t) ∈ RN is the vector of circuit unknowns, q and f are functions representing the dynamic and static circuit
elements (respectively), and b(t) ∈ RM is the input vector. For any analysis type, the initial starting point is this
set of DAEs. The numerical approach employed to compute solutions to Equation (12) is predicated by the analysis
type.

Circuit simulation can be coarsely divided into three phases that play a distinct role in the overall performance of
a simulation. The first two phases result naturally from the evaluation and the solution of the circuit Equation (12)

20



and are called the “Device Evaluation” and “Linear Solve” phases. In general, load balancing each of these two
phases has competing objectives, indicated by Fig. 14, which requires a rebalancing of the problem between those
phases.

Figure 14: Different Load Balance/Partitioning for Device Evaluation and Linear Solve

The relative amount of time spent in each of those two phases is problem-dependent. For smaller problems, the
device evaluation phase should dominate the runtime, especially when the circuit includes modern transistors. As
the problem size increases, the linear solve phase will dominate, as it should scale super-linearly, while the device
evaluations should scale linearly. This is because linear solution methods (whether they be direct or iterative)
are generally communication intensive, while the communication volume required during the device evaluations is
relatively small.

As a result, the device evaluation phase has historically been naively balanced by taking into account only the
computational work required, while the matrix partitioning has been designed to minimize communication volume.
How this communication volume is measured and how it is optimized is an active area of research for many types
of numerical simulation problems. Since the device evaluation and linear solve phases have different load balance
requirements, Xyce has been designed to have completely different parallel partitioning for each. A simplified
representation of this is shown in Fig. 14.

The third phase is “Parsing”, where the hierarchical netlist file, describing the network elements and connectivity,
is read in and the set of DAEs is constructed and partitioned across processors. In the total runtime of a simulation
the netlist parsing doesn’t take a large percentage, but the decisions made about partitioning devices over processors
in this phase can possibly have a significant effect for emerging architectures, making it a phase worth studying.

Given the hierarchical structure possible in the netlist file, parsing is a largely serial process, where devices are
naively partitioned according to a “first-come-first-served” basis. This process is not guided by circuit topology or
computational cost of the individual device evaluations, which can vary widely. This design has not been troublesome
on the distributed-memory machines that Xyce was designed for. However, future architectures may prove this
approach is too simplistic.

4.5.1. Model Abstractions

At this time, miniXyce is a simple linear circuit simulator with a basic parser that performs transient analysis on
any circuit with resistors (R), inductors (L), capacitors (C), and voltage/current sources. The parser incorporated
into this version of miniXyce is a single pass parser, where the netlist is expected to be flat (i.e. no hierarchy via
subcircuits is enabled). Simulating the system of DAEs generates a nonsymmetric linear problem, which is solved
using GMRes [39], without preconditioning. The time integration method used in miniXyce is backward Euler with
a constant time-step.

The development of the first version of miniXyce resulted in something closer to a compact application than
a miniapp since more focus was put on the simulator returning the correct answer, than modeling performance
characteristics of interest. Further analysis of Xyce has called out particular performance issues in the three phases
discussed in Section 4.5. These issues will inspire enhancements to, and a second version of, miniXyce. For complex
simulation codes, developing a representative miniapp will likely require an iterative process, where performance
issues are investigated in order of an application-based priority.
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4.5.2. Model Enhancements

Enhancements to the first version of miniXyce will focus on two of the three phases discussed in Section 4.5:
“Parsing” and “Device Evaluation”. The third phase, the “Linear Solve”, shares performance characteristics and
issues with other implicit application codes, like Charon. While this phase dominates the runtime for large-scale
circuits, it is uncertain if focusing on that aspect of miniXyce will be a duplication of effort with miniFE. However,
the “Parsing” and “Device Evaluation” phase are unique to circuit simulation. By focusing on these two phases,
it is anticipated that miniXyce will provide a different performance characterization than any other miniapp. Al-
ternatively, it will give Xyce a unique opportunity to explore the impact of naively partitioning the network and
devices.

5. Summary and future work

Miniapps have been shown to provide a tractable means for rapid exploration of a broad set of issues associ-
ated with effectively executing large scale scientific and engineering applications on current, emerging, and future
architectures. As such, it is crucial to have data-driven evidence of what the miniapp is able to represent, and just
as important, a firm understanding of what the miniapp is not able to represent. We presented a methodology for
understanding the relationships between an application and the application proxy (the miniapp) in the manner in
which it is intended to represent.

All validation work must be driven by usage requirements, which requires a strong understanding of the system
under study. Here, runtime profiling points us to the important performance portions of an application, informing
a choice of diagnostics. Configuring the appropriate validation metric is critical to elucidating the differences in
between the application and the miniapp. We used a variety of formulas for this purpose, in some cases driven by
incorrectly chosen metric, in order to clarify differences. The thresholds for acceptance are the most nebulous part
of this process. Unlike experimental validation, where a threshold is specified, the threshold in our methodology
is viewed more as a guideline than a hard number. Given this, the methodology, in a real sense, provides a
formal framework for discussion, interpretation, and challenge. Therefore the process for accessing the miniapp to
application connection must be open, iterative, and refined.

The goal of miniapps is to provide actionable information to the application developer. Four distinct applications
provided the means for demonstrating this link. MiniMD, closely aligned with the application (LAMMPS) it is
intended to represent, enabled calibration of our approach. MiniGhost provides a means for focusing on the inter-
process communication requirements of a finite difference or finite volume based application (here CTH), with the
computation serving to create a relevant separation between the transmission of data between the parallel processes.
Within certain limits, miniFE provides a means to investigate linear solver performance for an implicit finite element
method on an unstructured mesh application code (e.g. Charon; for a more detailed study see [27]). Through this
work it was determined that miniXyce requires additional analysis, design, and implementation in order for it to
serve the performance goals of the Xyce team.

Several issues for each application were found that will require further study. For example, the behavior of the
multigrid preconditioner in Charon must be added to miniFE. Our work with molecular dynamics illustrates the
need for algorithms in addition to Lennard-Jones. MiniGhost, executed at very large scale, pointed to an issue that
will need to considered as anticipated improvements to interconnect technologies are realized.

Development of additional miniapps in Mantevo is progressing in several areas: a solid mechanics contact algo-
rithm, adaptive refinement of an Eulerian mesh (AMR), some graph-based applications, a new miniapp for Xyce, and
others. This work is being meaningfully driven by our validation methodology, guiding implementation strategies
and configurations, and enabling an integrated code development model that provides a shorter feedback loop.

Finally, its important to note that just as the methodology provides a means for building up a body of evidence
for a miniapp’s predictive capabilities, we anticipate refining the methodology as it is exercised in an increasingly
broader context. In particular, the choice of metric can significantly alter the apparent outcome. In this work we
have purposely used somewhat simplistic measures. However, future work will examine the use of more sophisticated
metrics. Validation is a never-ending process of discovery.
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