Title
CYTOCHROME-P-450 FROM BOVINE ADRENOCORTICAL MITOCHONDRIA - IMMUNOCHEMICAL PROPERTIES AND PURITY

Permalink
https://escholarship.org/uc/item/6x897375

Journal
JOURNAL OF BIOLOGICAL CHEMISTRY, 253(9)

ISSN
0021-9258

Authors
WATANUKI, M
GRANGER, GA
HALL, PF

Publication Date
1978

License
CC BY 4.0

Peer reviewed
Cytochrome P-450 from Bovine Adrenocortical Mitochondria

IMMUNOCHEMICAL PROPERTIES AND PURITY*

(Received for publication, April 8, 1977, and in revised form, August 7, 1977)

MASAAKI WATANUKI,† GALE A. GRANGER,§ and PETER F. HALL†

From the †Department of Physiology and the §Department of Molecular Biology and Biochemistry, the University of California at Irvine, Irvine, California 92717

Antibodies were induced against side chain cleavage P-450 from bovine adrenocortical mitochondria by injecting the enzyme into rabbits. Double diffusion in agarose gels revealed single bands between rabbit anti-P-450 antiserum and adrenal cytochrome P-450 side chain cleavage prepared by two different methods and also with P-450 of different molecular weights called protein 4, protein 8, and large P-450. In addition, the same anti-serum showed a line of identity with an ammonium sulfate fraction which is an impure precursor of pure cytochrome P-450 side chain cleavage in two methods used for its preparation. The IgG fraction from antiserum to P-450 gives a single band with bovine adrenal P-450 side chain cleavage in immunoelectrophoresis. Antiserum to P-450 side chain cleavage inhibits side chain cleavage enzyme activity but not 11β- or 18-hydroxylase and native P-450 competes with 125I-labeled P-450 (side chain cleavage) in combining with anti-P-450 antibodies so that a radioimmunoassay for side chain cleavage P-450 has been developed. Extremely small and possibly nonspecific competition for the anti-P-450 is seen between 125I-labeled P-450 side chain cleavage and 11β-hydroxylase P-450 prepared from the same source. This demonstration of the immunochemical homogeneity of these preparations of P-450 side chain cleavage eliminates one proposed cause for disparity between heme content of the enzyme by CO-difference spectroscopy (1). In order to clarify this point, to determine the immunochemical relationships between different forms of cytochrome P-450 in adrenal mitochondria and as a preliminary step in developing a radioimmunoassay for the side chain cleavage P-450, we have prepared antibodies to this protein. The reactions of various forms of the enzyme with the antibodies constitute the basis of this communication.

EXPERIMENTAL PROCEDURES

Preparation of Cytochrome P-450

Side Chain Cleavage Enzyme—The enzyme used in these studies was prepared by affinity chromatography using pregnenolone-Sepharose as described previously (1). Other preparations used include 1

* This work was supported by Grants CA14638-04 and AM15621-03 from the National Institutes of Health (to P. F. H.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1794 solely to indicate this fact.

† The abbreviations used are: SDS, sodium dodecyl sulfate; pregnenolone, pregn-4-en-3β-ol-20-one; sc, side chain cleavage.

2927
large P-450 which is also produced by the same affinity column; this enzyme gives a single band on SDS gels but is heterogeneous in molecular weight (5). In addition, side chain cleavage P-450 was prepared by chromatography on DEAE-cellulose in three forms, protein 16, protein 8, and protein 4, named according to the number of protein subunits present in these forms (1, 8).

Enzyme Assay

Side chain cleavage (1), 11β-hydroxylase, and 18-hydroxylase activities (10) were measured as described elsewhere under conditions in which activity was linear with time and proportional to the amount of P-450 present. For studies of enzyme activity in the presence of antiserum or IgG, enzyme and antibodies were incubated for 3 h at 4°C before the assay was performed.

Preparation of Antibody

Female New Zealand White rabbits were immunized subcutaneously in the nuchal region with 100 μg of cytochrome P-450 prepared by affinity chromatography or on DEAE-cellulose (protein 16). The protein was emulsified with an equal volume of Freund's complete adjuvant (11). The animals were immunized every 3 weeks on opposite sides of the neck with 100 μg of the same protein emulsified in Freund's complete adjuvant for a total of six injections. Serum was collected before immunization and once a week after the 6th week. Animals were bled from the central artery of the ear and sera were stored in aliquots of 2 ml each at −20°C. In some cases, P-450 was boiled for 5 min in SDS at a final concentration of 0.5% (w/v) to prepare protein subunits which were injected into rabbits (after anti-rabbit IgG has been described previously (11).

Second antibody (sheep anti-rabbit serum) (150 μl; 1:10 dilution) was then added. After standing at 4°C for 8 h, the tubes were centrifuged left overnight at 4°C and the supernatant was removed and the pellet was examined for determination of 125I in a Nuclear Chicago γ scintillation counter (model 1185).

Enzyme Assay

Side chain cleavage (1), 11β-hydroxylase, and 18-hydroxylase activities (10) were measured as described elsewhere under conditions in which activity was linear with time and proportional to the amount of P-450 present. For studies of enzyme activity in the presence of antiserum or IgG, enzyme and antibodies were incubated for 3 h at 4°C before the assay was performed.

Preparation of Antibody

Female New Zealand White rabbits were immunized subcutaneously in the nuchal region with 100 μg of cytochrome P-450 prepared by affinity chromatography or on DEAE-cellulose (protein 16). The protein was emulsified with an equal volume of Freund's complete adjuvant (11). The animals were immunized every 3 weeks on opposite sides of the neck with 100 μg of the same protein emulsified in Freund's complete adjuvant for a total of six injections. Serum was collected before immunization and once a week after the 6th week. Animals were bled from the central artery of the ear and sera were stored in aliquots of 2 ml each at −20°C. In some cases, P-450 was boiled for 5 min in SDS at a final concentration of 0.5% (w/v) to prepare protein subunits which were injected into rabbits (after anti-rabbit IgG has been described previously (11).

Second antibody (sheep anti-rabbit serum) (150 μl; 1:10 dilution) was then added. After standing at 4°C for 8 h, the tubes were centrifuged left overnight at 4°C and the supernatant was removed and the pellet was examined for determination of 125I in a Nuclear Chicago γ scintillation counter (model 1185).

Results

Purification of Anti-P-450 Antiserum

When anti-P-450 scc antiserum was purified by chromatography on DEAE-cellulose, antibody activity toward P-450 scc was observed only in the IgG fraction. In addition, the purified antibody cross-reacted with goat anti-rabbit IgG on double diffusion but not against other species of antibody and migrated like other rabbit IgG fractions on immunoelectrophoresis (data not shown). The following studies used both the crude antiserum and the IgG fraction prepared in this way.

Studies of P-450/Anti-P-450 Reaction by Double Diffusion

Effect of Antigen Concentration — When a certain volume of antiserum to P-450 scc was placed in the center well of an agarose slide and increasing concentrations of P-450 were placed in the peripheral wells, a single band was seen in the gels (Fig. 1). As the concentration of P-450 was increased, the single narrow band became broader as expected, since at higher concentrations side chain cleavage P-450 becomes heterogeneous with respect to molecular weight in buffered solutions or during various purification procedures (1, 5, 8). However, no additional bands were seen at higher concentrations.

Specificity of Anti-P-450 scc Antiserum — Fig. 2 shows that antiserum to P-450 scc reacts with side chain cleavage P-450 producing a single band, but not with highly purified 11β-hydroxylase P-450 (10). Moreover, demonstrable antibodies do not appear within 1 week (Fig. 2, right gel, Well B) and the antibodies to P-450 scc do not cross-react with antiserum prepared by injecting into another rabbit preparations of subunits of P-450 scc prepared in SDS (Fig. 2, right gel, Well A). Normal rabbit serum and bovine serum albumin do not cross-react with anti-P-450 (data not shown).

Interaction of Antisera Prepared against Protein 16 with Various Forms of P-450 — Rabbit antiserum to protein 16 prepared by pregnenolone-Sepharose affinity chromatography (5) reacts with P-450 from DEAE-cellulose (1), with P-450 scc prepared as a by-product during preparation of 11β-hydroxylase (10), with large P-450 from affinity chromatography and with proteins 4, 8, and 16 from DEAE-cellulose (1, 8) (Fig. 3). It is important to notice the halo effect around wells containing large amounts of P-450. This effect is due to aggregation of P-450 in the gel and is not seen at low concentrations of this protein but is seen when P-450 is studied at similar concentrations without antiserum in the center well.

Reaction of Anti-P-450 Serum with Purified and Crude Preparations of P-450 — The crude ammonium sulfate fraction (30 to 60% saturation) prepared from adrenal mitochondria contains many impurities (5); at least 15 bands are seen on SDS gels (data not shown). This fraction serves as a precursor of P-450 scc prepared by various methods (1, 5, 10). As can be seen in Fig. 4, a single line of precipitation is observed with both the ammonium sulfate fraction and with highly purified P-450. Moreover, the junction of these two lines shows a classical line of identity, indicating that only a single species of antigen can be detected by this method.

**Antiserum to P-450 Prepared on DEAE-cellulose — Antibod-
Immunoechemistry of Cytochrome P-450

FIG. 1 (top). Double diffusion in agarose gel of anti-P-450 antibodies and various concentrations of side chain cleavage P-450. The center well contained anti-P-450 antiserum (20 μl) and the surrounding wells in the left gel contained the following amounts of P-450: A, 8 μg; B, 16 μg; C, 26 μg; D, 34 μg; surrounding wells in the right gel contained: A, 26 μg; B, 34 μg; C, 50 μg; D, 100 μg.

FIG. 2 (middle). Double diffusion in agarose gel of various cytochromes P-450 and anti-P-450 serum antiserum. In the left gel, the center well contained antiserum to P-450 XC (15 μl) and the surrounding wells contained: A, lip-hydroxylase P-450 (25 μg); B, P-450 see protein 16 (20 μg); C, lip-hydroxylase P-450 (50 μg); D, P-450 see protein 16 (40 μg). In the right gel, the center well contained P-450 see protein 16 (40 μg) and the surrounding wells contained: A, anti-P-450 subunit antiserum (15 μl); B, anti-P-450 sec 1 week after the first injection of antigen (15 μl); C, the same after 12 weeks (15 μl).

FIG. 3 (bottom). Double diffusion in agarose gel of anti-P-450 (side chain cleavage) antibodies and various forms of P-450 side chain cleavage. The center well contained anti-P-450 (side chain cleavage) (15 μl) in both slides. The surrounding wells in the left gel contained the following: A, P-450 protein 16 prepared as described in Ref. 1 (100 μg); B, P-450 prepared during preparation of 11β-hydroxylase (50 μg); C, large P-450 (50 μg); D, protein 16 prepared by affinity chromatography (60 μg). Surrounding wells in the right gel contained: A, P-450 sec protein 16 (40 μg); B, P-450 sec protein 4 (120 μg); C, large P-450 sec (120 μg); D, P-450 sec protein 8 (120 μg).

Immunoelectrophoresis of Cytochrome P-450

When anti-P-450 IgG was subjected to immunoelectrophoresis with P-450 sec, a single band of precipitation was observed (Fig. 5).

Inhibition of Side Chain Cleavage Enzyme Activity by Anti-P-450 Serum and by Anti-P-450 IgG

Side chain cleavage of cholesterol is inhibited by antiserum to P-450 sec (Fig. 6). Inhibition shows a curvilinear relationship to amount of added antiserum whether the side chain cleavage is measured by radioimmunoassay of pregnenolone (14) or by conversion of [1α-3H]cholesterol to [3H]pregnenolone (1). Normal rabbit serum (preimmunization) (Fig. 6A) and bovine serum albumin (Fig. 6B) stimulated the side chain cleavage reaction. This effect of albumin has been noticed previously (7), although the mechanism concerned is uncertain. Presumably normal rabbit serum acts to increase enzyme activity as the result of a similar effect by rabbit serum protein. When the serum used was taken from rabbits after the second injection of P-450, inhibition was less pronounced (Fig. 6A), in keeping with the fact that this serum produced...
no visible bands with P-450 in double diffusion (data not shown); clearly the inhibition of enzyme activity is a much more sensitive indication of antigen-antibody reaction than double diffusion under the conditions used. Antiserum to P-450 sc was without obvious effect on 11β- or 18-hydroxylase enzyme activities (data not shown).

When purified IgG prepared from antiserum to P-450 sc was incubated with the enzyme, inhibition of the enzyme reaction was observed as expected (Fig. 6C). In this case, inhibition by IgG occurs without the complicating effect of those serum proteins which stimulate the enzyme activity (Fig. 6, A and B). It can also be seen that IgG from normal rabbit serum (no immunization) was without effect on the enzyme activity (Fig. 6C).

Reaction of 125I-labeled P-450 with Anti-P-450

Fig. 7 shows the result of studies in which iodinated P-450 was added to antiserum and unlabeled P-450. It can be seen that P-450 competes with 125I-labeled P-450 in combining with anti-P-450 antibodies in a concentration-dependent manner. The assay procedure is capable of detecting 0.01 μg of cytochrome P-450 sc (p < 0.1) and binding is linear in the range of 0.025 to 0.25 μg using a log scale for amount of P-450 added. Addition of 11β-hydroxylase P-450 causes some decrease in bound 125I, but within the limits tested, evidence of specific binding was not observed since a parallel displaced curve was not seen. The 11β-hydroxylase contains bound Tween 20 and, although this substance does not affect the binding of P-450 with antibody when added without 11β-hydroxylase in amounts equivalent to those accompanying the enzyme additions shown in Fig. 7, higher concentrations of Tween do modify the combination of P-450 with antibody. For these reasons, addition of very large amounts of the enzyme cannot be made without nonspecific effects.

DISCUSSION

The present studies lend strong support to the conclusion that the side chain cleavage P-450 prepared by chromatography on DEAE-cellulose (1) and that prepared by affinity chromatography on pregnenolone-Sepharose (4) are highly

Fig. 6. The effect of anti-P-450 antiserum and IgG on side chain cleavage of cholesterol by P-450 from bovine adrenal cortex. In A and C, side chain cleavage was measured by radioimmunoassay using cholesterol (50 nmol/flask) as substrate (14). In B the substrate was [7α-3H]cholesterol (106 cpm; 50 nmol/flask); following incubation [3H]pregnenolone was isolated and measured as described previously (1). In both cases, each flask contained 6 pmol of P-450, 0.2 nmol of adrenodoxin, 1.0 units of adrenodoxin reductase (1), and 20 nmol of TPNH with potassium phosphate buffer (50 mM, pH 7.0) to a volume of 2 ml. Incubation was continued for 15 min at 37° after the remaining additions were made and the reaction was stopped by boiling. In A, , preimmunization serum; , antiserum collected 1 week after immunization; , antiserum collected 12 weeks after immunization. In B, , bovine serum albumin 1% (w/v); , antiserum collected 12 weeks after immunization. In C, , anti P-450 sc IgG; , normal rabbit IgG.

Fig. 7. Radioimmunoassay of cytochrome P-450 (Cyt-P450). The ordinate shows radioactivity precipitated (i.e., 125I-labeled P-450 sc) by first (anti-P-450 antiserum) and second (sheep antirabbit antiserum) antibodies. The abscissa (log scale) shows amount of unlabeled (competing) P-450 added; either P-450 sc or P-450 11β-, 18-hydroxylase (10 according to the symbols below. The assay procedure is a modification of that described by Lewis et al. (15) (see "Experimental Procedures"). , P-450 sc; , P-450 11β-, 18-hydroxylase.
purified. Each of these preparations at various concentrations shows a single band with rabbit anti-P-450 antiserum in double diffusion. Moreover, only a single band of precipitate (line of identity) was seen in double diffusion with anti P-450 serum and a crude ammonium sulfate precipitate, which represents a precipitant of pure P-450 in both methods of purification. The enzyme mixed with purified antibody (IgG fraction) also gives a single band on immunoelectrophoresis. Purification of anti-P-450 antiserum reveals the presence of antibody activity only in the IgG fraction.

Evidently, the physicochemical evidence (SDS gels, analytical ultracentrifugation of the enzyme as subunit or as native enzyme, various forms of chromatography, and isoelectric focusing) (1, 8) are accurate indications of homogeneity of this cytochrome P-450 and the possibility (4) of significant contamination by other heme proteins can be excluded. Moreover, the various forms of side chain cleavage enzyme P-450, which show the same physicochemical properties except for molecular weight, are apparently immunochemically indistinguishable and represent various states of aggregation of the pure protein. Evidently, the cause of difficulty encountered in determining the heme content of the enzyme does not result from the presence of impurities containing heme and must be sought elsewhere.

Although the anti-P-450 sc c reacts with all these various forms of the side chain cleavage enzyme, it does not react with 11β-, 18-hydroxylase P-450 in double diffusion; this enzyme is prepared from the same mitochondria. Again, the anti-P-450 scc inhibits side chain cleavage enzyme activity but not 11β- and 18-hydroxylase activities. The 11β-, 18-hydroxylase shows limited competition with 125I-labeled P-450 scc for the anti-P-450 antiserum, but the possibility that this competition is nonspecific cannot be eliminated at this time (Fig. 7). Evidently, the antigenic determinants of native P-450 are not revealed by the subunits of the enzyme, since the serum of animals treated with the subunits does not cross-react with P-450 sc in double diffusion (Fig. 2).

Finally, the cytochrome P-450 has been successfully iodinated and unlabeled P-450 competes with the iodinated enzyme for binding to the antibody. This reaction has provided the basis for a sensitive radiolmmunoassay for P-450 sc which can detect 0.01 μg of the enzyme. It is proposed to increase the sensitivity of the assay by suitable modification of the iodination procedure.

REFERENCES