Title
J/ψ Elliptic Flow in Pb-Pb Collisions at sNN =5.02 TeV

Permalink
https://escholarship.org/uc/item/6z30j71x

Journal
Physical Review Letters, 119(24)

ISSN
0031-9007

Authors
Acharya, S
Adamová, D
Adolfsson, J
et al.

Publication Date
2017-12-15

DOI
10.1103/PhysRevLett.119.242301

Peer reviewed
$J/\psi$ Elliptic Flow in Pb-Pb Collisions at $\sqrt{s_{NN}} = 5.02$ TeV

S. Acharya et al.

(ALICE Collaboration)

(Received 27 September 2017; revised manuscript received 7 November 2017; published 15 December 2017)

We report a precise measurement of the $J/\psi$ elliptic flow in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the ALICE detector at the LHC. The $J/\psi$ mesons are reconstructed at midrapidity ($|y| < 0.9$) in the dielectron decay channel and at forward rapidity ($2.5 < y < 4.0$) in the dimuon channel, both down to zero transverse momentum. At forward rapidity, the elliptic flow $v_2$ of the $J/\psi$ is studied as a function of the transverse momentum and centrality. A positive $v_2$ is observed in the transverse momentum range $2 < p_T < 8$ GeV/$c$ in the three centrality classes studied and confirms with higher statistics our earlier results at $\sqrt{s_{NN}} = 2.76$ TeV in semicentral collisions. At midrapidity, the $J/\psi$ $v_2$ is investigated as a function of the transverse momentum in semicentral collisions and found to be in agreement with the measurements at forward rapidity. These results are compared to transport model calculations. The comparison supports the idea that at low $p_T$ the elliptic flow of the $J/\psi$ originates from the thermalization of charm quarks in the deconfined medium but suggests that additional mechanisms might be missing in the models.

DOI: 10.1103/PhysRevLett.119.242301

Extreme conditions of temperature and pressure created in ultrarelativistic heavy-ion collisions enable the exploration of the phase diagram region where quantum chromodynamics (QCD) predicts the existence of a deconfined state, the quark-gluon plasma (QGP) [1,2]. Heavy quarks are produced through hard-scattering processes prior to the formation of the QGP and experience the evolution through interactions in the medium. Therefore, the measurement of bound states of heavy quarks, such as the $J/\psi$, is expected to provide sensitive probes of the strongly interacting medium [3]. Theoretical calculations based on lattice QCD predict a $J/\psi$ suppression to be induced by the screening of the color force in a deconfined medium which becomes stronger as the temperature increases [4,5]. A complementary way to this static approach, $J/\psi$ suppression can be also interpreted as the result of dynamical interactions with the surrounding partons [6–8]. Within these scenarios, the $J/\psi$ suppression, experimentally quantified via the nuclear modification factor $R_{AA}$ (the ratio between the yields in Pb-Pb to pp collisions normalized by the number of nucleon-nucleon collisions), is expected to become stronger (smaller $R_{AA}$) with higher initial temperatures of the QGP and, hence, with higher collision energies. However, the $R_{AA}$ of inclusive $J/\psi$ with transverse momentum $2 < p_T < 8$ GeV/$c$ observed by the ALICE Collaboration in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV [9] and $\sqrt{s_{NN}} = 5.02$ TeV [10] is larger than what has been measured at lower energies at the Relativistic Heavy Ion Collider (RHIC) [11–14] and exhibits almost no centrality dependence. Inclusive $J/\psi$ include prompt $J/\psi$ (direct and decays from higher mass charmonium states) and nonprompt $J/\psi$ (feed down from $b$-hadron decays). In this Letter, all $J/\psi$ measurements refer to inclusive $J/\psi$ production unless otherwise stated.] Furthermore, in central collisions the measured $R_{AA}$ values decrease from low to high $p_T$ [15,16]. The $J/\psi R_{AA}$ enhancement from RHIC to LHC energies can be explained by theoretical models [6–8,17–19] which include a dominant contribution from $J/\psi$ (re)generation through the (re)combination of thermalized charm quarks in the medium, during or at the phase boundary of the deconfined phase. The terms (re)generation and (re)combination denote the two possible mechanisms of $J/\psi$ generation by the combination of charm quarks at the QGP phase boundary and the continuous dissociation and recombination of charm quarks during the QGP evolution.

Additional observables are required to better constrain theoretical models and study the interplay between suppression and regeneration mechanisms [20]. The azimuthal anisotropy of the final-state particle momentum distribution is sensitive to the geometry and the dynamics of the early stages of the collisions. The spatial anisotropy in the initial matter distribution due to the nuclear overlap region in noncentral collisions is transferred to the final momentum distribution via multiple collisions in a strongly coupled system [21]. The beam axis and the impact parameter vector of the colliding nuclei define the reaction plane. The second coefficient ($v_2$) of the Fourier expansion of the final-state particle azimuthal distribution with respect to the reaction plane is called elliptic flow.
Within the transport model scenario [7,19], (re)generated $J/\psi$ inherit the flow of the (re)combined charm quarks. If charm quarks do thermalize in the QGP, then (re)generated $J/\psi$ can exhibit a large elliptic flow. In contrast, only a small azimuthal anisotropy, due to the shorter in-plane versus out-of-plane path length, is predicted for the surviving primordial $J/\psi$. The ALICE and CMS Collaborations have measured a positive elliptic flow of $D$ mesons in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV [22,23]. The comparison of $J/\psi$ and $D$ meson $v_2$ could help to constrain the dynamics of charm quarks in the medium and the theoretical model calculations [24–26].

At RHIC, the STAR Collaboration measured, in Au-Au collisions at $\sqrt{s_{NN}} = 200$ GeV, a $J/\psi$ $v_2$ consistent with zero, albeit with large uncertainties [27]. At the LHC, a first indication of positive $J/\psi$ $v_2$ was observed by the ALICE Collaboration in semicentral Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with a $2.7\sigma$ significance for inclusive $J/\psi$ with $2 < p_T < 6$ GeV/$c$ at forward rapidity [28]. The CMS Collaboration also reported a positive $v_2$ for prompt $J/\psi$ at high $p_T$ and midrapidity [29]. A precision measurement of the $J/\psi$ $v_2$ in Pb-Pb collisions at the highest LHC energy will provide valuable insights on the $J/\psi$ production mechanisms and on the thermalization of charm quarks. Indeed, the higher energy density of the medium should favor charm quark thermalization and, thus, increase its flow. In addition, the larger number of produced $c\bar{c}$ pairs should increase the fraction of $J/\psi$ formed by regeneration mechanisms, both leading to an increase of the observed $J/\psi$ $v_2$.

In this Letter, we report ALICE results on inclusive $J/\psi$ elliptic flow in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV for two rapidity ranges. At forward rapidity ($2.5 < y < 4.0$) the $J/\psi$ are measured via the $\mu^+\mu^-$ decay channel and at midrapidity ($|y| < 0.9$) via the $e^+e^-$ decay channel. The results are presented as a function of $p_T$ in the range $0 < p_T < 12$ GeV/$c$. For the dimuon channel, different collision centralities are also investigated. The ALICE detector is described in Ref. [30]. At forward rapidity, the production of quarkonia is measured with the muon spectrometer consisting of a front absorber stopping the hadrons followed by five tracking stations comprising two planes of cathode pad chambers each, with the third station inside a dipole magnet. (In the ALICE reference frame, the muon spectrometer covers a negative $y$ range and consequently a negative $y$ range. We have chosen to present our results with a positive $y$ notation, due to the symmetry of the collision system.) The tracking apparatus is completed by a triggering system made of four planes of resistive plate chambers downstream of an iron wall. At midrapidity, quarkonium production is measured with the central barrel detectors [31]. Tracking within $|y| < 0.9$ is performed by the inner tracking system (ITS) [32] and the time projection chamber (TPC) [33]. The specific ionization energy loss ($dE/dx$) in the gas of the TPC is used for particle identification (PID). In addition, the silicon pixel detector (SPD) is used to locate the interaction point. The SPD corresponds to the two innermost layers of the ITS covering, respectively, $|y| < 2.0$ and $|y| < 1.4$. The V0 counters [34], consisting of two arrays of 32 scintillator sectors each covering $2.8 \leq \eta \leq 5.1$ (V0-A) and $-3.7 \leq \eta \leq -1.7$ (V0-C), are used as trigger and centrality detectors [35,36]. As described later, the SPD, TPC, V0-A, and V0-C are also used as event plane detectors. All of these detectors have full azimuthal coverage.

The data were collected in 2015. The analysis at midrapidity uses minimum bias (MB) Pb-Pb collisions. The MB trigger requires a signal in both V0-A and V0-C and is fully efficient for the centrality range 0–90%. At forward rapidity, the analysis uses opposite-sign dimuon (MU) triggered Pb-Pb collisions. The MU trigger requires a MB trigger and at least a pair of opposite-sign track segments in the muon trigger system, each with a $p_T$ above the threshold of the on-line trigger algorithm, set to provide 50% efficiency for muon tracks with $p_T = 1$ GeV/$c$. The beam-induced background was further reduced offline using the V0 and the zero degree calorimeter (ZDC) timing information. The contribution from electromagnetic processes was removed by requiring a minimum energy deposited in the neutron ZDCs [37]. The resulting data samples correspond to integrated luminosities of about 13 and 225 $\mu$b$^{-1}$ at mid- and forward rapidity, respectively.

$J/\psi$ candidates are formed by combining pairs of opposite-sign tracks reconstructed in the geometrical acceptance of the muon spectrometer or central barrel. The reconstructed tracks in the muon tracker are required to match a track segment in the muon trigger system above the aforementioned $p_T$ threshold. At midrapidity, the tracks must pass a $p_T$ cut of 1 GeV/$c$ and an electron selection criterion based on the expected $dE/dx$ [33].

The dimuon $v_2$ is calculated using event plane (EP) based methods. The angle of the reaction plane of the collision is estimated, event by event, by the second-harmonic EP angle $\Psi$ [38], which is obtained from the azimuthal distribution of reconstructed tracks in the TPC or track segments in the SPD for the mid- and forward rapidity analyses, respectively. Effects of nonuniform acceptance in the EP determination are corrected using the methods described in Ref. [39]. At midrapidity, the EP was calculated for each electron pair subtracting the contribution of the pair tracks to remove autocorrelations.

The $J/\psi$ $p_T$ results were obtained, as proposed in Ref. [40], by fitting the distribution of $v_2 = \langle \cos 2(\varphi - \Psi) \rangle$ versus the invariant mass ($m_{c\bar{c}}$) of the dilepton pair, with $\varphi$ being its azimuthal angle. The total flow $v_2(m_{c\bar{c}}) = dN/dy$ is the combination of the signal and the background flow and can be expressed as

$$v_2(m_{c\bar{c}}) = v_2^{\text{sig}}(m_{c\bar{c}}) + v_2^{\text{bg}}(m_{c\bar{c}})[1 - a(m_{c\bar{c}})],$$

(1)
where $v_2^{\text{sig}}$ and $v_2^{\text{bkg}}$ are the elliptic flow of the $J/\psi$ signal ($S$) and of the background ($B$), respectively (see the bottom panels in Fig. 1). The signal fraction $\alpha(m_{\ell\ell}) = S(m_{\ell\ell})/[S(m_{\ell\ell}) + B(m_{\ell\ell})]$ was extracted from fits to the invariant mass distribution (see the top panels in Fig. 1) in each $p_T$ and centrality class.

At forward rapidity, the $J/\psi$ peak [$S$ term of $\alpha(m_{\ell\ell})$] is fit with an extended Crystal Ball function or a pseudo-Gaussian, both composed of a Gaussian core with non-Gaussian tails [41]. The underlying continuum [$B$ term of $\alpha(m_{\ell\ell})$] is described with the ratio of second- to third-order polynomials, a pseudo-Gaussian with a width quadratically varying with the mass, or Chebyshev polynomials of the order of six. The background flow $v_2^{\text{bkg}}$ was parametrized using a second-order polynomial, a Chebyshev polynomial of the order of four, or the product of a first-order polynomial and an exponential function. At midrapidity, the underlying continuum was estimated combining opposite-sign electrons from different events (using an event-mixing technique) or combining same-sign electrons from the same event. After removing the underlying continuum, the $J/\psi$ signal was obtained by counting the number of dielectrons or from a fit with a Monte Carlo generated shape. The background flow was parametrized using a second-, third-, or fifth-order polynomial depending on the $p_T$ class. Additionally, the PID and track-quality selection criteria were varied as part of the systematic uncertainty evaluation.

The $J/\psi$ $v_2$ and its statistical uncertainty in each $p_T$ and centrality class were determined as the average of the $v_2^{\text{sig}}$ obtained by fitting $v_2(m_{\ell\ell})$ using Eq. (1) with the various $\alpha(m_{\ell\ell})$ and $v_2^{\text{bkg}}(m_{\ell\ell})$ parametrizations in several invariant mass ranges, while the corresponding systematic uncertainties were defined as the rms of these results. A similar method was used to extract the uncorrected (for detector acceptance and efficiency) average transverse momentum of the reconstructed $J/\psi$ in each centrality and $p_T$ class, which is used to locate the data points when plotted as a function of $p_T$. Consistent $v_2$ values were obtained using an alternative method [38], in which the $J/\psi$ raw yield is extracted, as described before, in bins of $(\Phi - \Psi)$ and $p_T$ is evaluated by fitting the data with the function $[dN/d(\Phi - \Psi)] = A[1 + 2v_2 \cos 2(\Phi - \Psi)]$, where $A$ is a normalization constant.

Nonflow effects ($J/\psi$-EP correlations not related to the initial geometry symmetry plane, such as higher-mass particle decays or jets) were estimated to be small with respect to the other uncertainties by repeating the analysis at forward rapidity using the EP determined in either the V0-A ($\Delta \eta = 5.3$) or the V0-C (no $\eta$ gap) detector.

The finite resolution in the EP determination smears out the azimuthal distributions and lowers the value of the measured anisotropy [38]. The SPD- and TPC-based EP resolutions were determined by applying the three-subevent method [38]. For the SPD (TPC), the three subevents were obtained using V0-A, V0-C, and SPD, with $\Delta \eta_{\text{V0A-SPD}} = 1.4$ ($\Delta \eta_{\text{V0A-TPC}} = 1.9$), $\Delta \eta_{\text{V0A-VOC}} = 4.5$, and $\Delta \eta_{\text{SPD-VOC}} = 0.3$ ($\Delta \eta_{\text{TPC-VOC}} = 0.8$) pseudorapidity gaps. A systematic uncertainty of 1% on the EP determination was estimated exploiting the availability of different subevents, built from the multiplicity measurement in the
V0-A or V0-C, track segments in the SPD, and tracks in the TPC. The EP resolution for each wide centrality class was calculated as the average of the values obtained in finer classes weighted by the number of reconstructed $J/\psi$. Table I shows the corresponding resolution for each centrality class, applied to the forward rapidity results. For the midrapidity result, the TPC EP resolution is $0.880 \pm 0.009$ (syst) in the centrality class 20\%–40\%.

At forward rapidity, the $J/\psi$ reconstruction efficiency depends on the detector occupancy, which could bias the $v_2$ measurement. This effect was estimated by embedding azimuthally isotropic simulated decays into real events. The resulting $v_2$ does not deviate from zero by more than 0.006 in the centrality and $p_T$ classes considered. This value is used as a conservative systematic uncertainty on all measured $v_2$ values.

Figure 2 shows $J/\psi$ $v_2(p_T)$ at forward and midrapidity in semicentral (20\%–40\%) Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. The $p_T$ ranges are 0–2, 2–4, 4–6, 6–8, and 8–12 GeV/$c$ and 0–2, 2–6, and 4–12 GeV/$c$ at forward and midrapidity, respectively. The vertical bars indicate the statistical uncertainties, while the boxes indicate the uncorrelated systematic uncertainties. The global relative systematic uncertainty on the EP resolution is 1.0\% and is correlated with $p_T$. At forward rapidity, a positive $v_2$ is observed for semicentral collisions (20\%–40\%). Including statistical and systematic uncertainties, the significance of a nonzero $v_2$ is as large as 6.6σ in the $p_T$ class 4–6 GeV/$c$. The $J/\psi$ $v_2$ increases with $p_T$ up to $v_2 = 0.113 \pm 0.015$ (stat) $\pm 0.008$ (syst) at $4 < p_T < 6$ GeV/$c$. The $J/\psi$ $v_2(p_T)$ at midrapidity is similar to that at forward rapidity, albeit with large uncertainties. At midrapidity, the $J/\psi$ $v_2$ in the range $2 < p_T < 6$ GeV/$c$ is $v_2 = 0.129 \pm 0.080$ (stat) $\pm 0.040$ (syst).

Transport model calculations including a large $J/\psi$ (re) generation component (about 50\% for semicentral collisions) from deconfined charm quarks in the medium [8,25,42] are also shown in Fig. 2. In the model by Du and Rapp [25] (TM1), the $v_2$ of inclusive $J/\psi$ (hashed and double-hashed bands at forward and midrapidity, respectively) has three origins. First, thermalized charm quarks in the medium transfer a significant elliptic flow to (re) generated $J/\psi$. Second, primordial $J/\psi$ traverse a longer path through the medium when emitted out of plane than in plane, resulting in a small apparent $v_2$ (pair dissociation by interactions with the surrounding color charges). Third, when the $b$ quarks thermalize, their flow will be transferred to $b$ hadrons at hadronization and to nonprompt $J/\psi$ from the $b$-hadron decay. The second component (survival probability of primordial $J/\psi$) is represented as a short-dashed line to highlight the small $J/\psi$ $v_2$ in the absence of heavy-quark collective flow. The model by Zhou et al. [8] (TM2) includes an additional noncollective $J/\psi$ $v_2$ component, which arises from the modification of the quarkonium production in the presence of a strong magnetic field in the early stage of the heavy-ion collision [43]. The calculations of TM2 are shown at forward rapidity with (shaded band) and without (long-dashed line) the noncollective $J/\psi$ $v_2$ component. As for TM1, the $v_2$ resulting from the different in-plane than out-of-plane survival probability of primordial $J/\psi$ is shown as a dash-dotted line.

TM1 [25] is able to describe qualitatively the $J/\psi$ $R_{AA}$ measurements by ALICE reported in Ref. [10]. The model also agrees with ALICE $J/\psi$ $v_2$ measurements at forward rapidity at $\sqrt{s_{NN}} = 2.76$ TeV [28] and at midrapidity at $\sqrt{s_{NN}} = 5.02$ TeV. However, at high $p_T$ ($p_T > 4$ GeV/$c$), clear discrepancies are observed between the model and the $J/\psi$ $v_2$ at forward rapidity and $\sqrt{s_{NN}} = 5.02$ TeV. Some tension is also seen between the calculations of this model and the $R_{AA}$ measurement by ALICE in this higher $p_T$ range in Ref. [10]. At lower $p_T$, the model reproduces the magnitude of the measurement by a dominant contribution of $J/\psi$ elliptic flow inherited from thermalized charm quarks. However, the overall shape of the $v_2(p_T)$ is missed, and the $v_2$ at high $p_T$ is underestimated. This disagreement suggests a missing mechanism in the model. Similar conclusions can be derived from the comparison to TM2 [8]. The addition of the $v_2$ arising from a possible strong magnetic field in the early stage of heavy-ion collisions...
In summary, we report the ALICE measurements of inclusive $J/\psi$ elliptic flow at forward and midrapidity in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV. At forward rapidity, the $p_T$ dependence of the $J/\psi$ $v_2$ was measured in the 5%–20%, 20%–40%, and 40%–60% centrality classes for $p_T < 12$ GeV/$c$. For all the reported centrality classes, a significant $J/\psi$ $v_2$ signal is observed in the intermediate region $2 < p_T < 8$ GeV/$c$. The results unambiguously establish for the first time that $J/\psi$ mesons exhibit collective flow. At midrapidity, the $p_T$ dependence of the $J/\psi$ $v_2$ was measured in semicentral 20%–40% collisions and is found to be similar to the measurement at forward rapidity, albeit with larger uncertainties. At high $p_T$, transport models underestimate the measured $J/\psi$ $v_2$. The origin of such a discrepancy is currently not understood and suggests a missing mechanism in the models. At low $p_T$, the magnitude of the observed $v_2$ is achieved within transport models implementing a strong $J/\psi$ (re)generation component from the (re)combination of thermalized charm quarks in the QGP. Thus, the measurement of the $J/\psi$ elliptic flow combined with the $R_{AA}$ provides substantial evidence for thermalized charm quarks and (re)generation of $J/\psi$.

The ALICE Collaboration thanks all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul (UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science and Technology of China (MSTC), National Natural Science Foundation of China (NSFC), and Ministry of Education of China (MOEC), China; Ministry of Science, Education and Sport and Croatian Science Foundation, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research–Natural Sciences, The Carlsberg Foundation, and Danish National Research Foundation (DNSF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut
National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Centro Fermi–Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan; for the Promotion of Science (JSPS) KAKENHI, and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics, and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADECN), Cubaenergía, Cuba, Ministerio de Ciencia e Innovacion and Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Spain; Swedish Research Council (VR) and Knut and Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT), and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

[16] B. B. Abelev et al. (ALICE Collaboration), Centrality, rapidity and transverse momentum dependence of J/ψ


[23] A. M. Sirunyan et al. (CMS Collaboration), Measurement of prompt $D^{0}$ meson azimuthal anisotropy in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, arXiv:1708.03497.


[34] E. Abbas et al. (ALICE Collaboration), Performance of the ALICE VZERO system, J. Instrum. 8, P10016 (2013).


Deceased.
† Also at Dipartimento DET del Politecnico di Torino, Turin, Italy.
‡ Also at M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear Physics, Moscow, Russia.
§ Also at Department of Applied Physics, Aligarh Muslim University, Aligarh, India.
∥ Also at Institute of Theoretical Physics, University of Wroclaw, Poland.