Lawrence Berkeley National Laboratory

Recent Work

Title
VAPOR PRESSURES AND SATURATED-LIQUID VOLUMES FOR HEAVY FOSSIL-FUEL FRACTIONS FROM A PERTURBED-HARD-CHAIN EQUATION OF STATE

Permalink
https://escholarship.org/uc/item/6z80x3r7

Authors
Wilhelm, A.
Prausnitz, J.M.

Publication Date
1984-07-01
Materials & Molecular Research Division

Submitted to Fuel

VAPOR PRESSURES AND SATURATED-LIQUID VOLUMES FOR HEAVY FOSSIL-FUEL FRACTIONS FROM A PERTURBED-HARD-CHAIN EQUATION OF STATE

A. Wilhelm and J.M. Prausnitz

July 1984

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks.

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Vapor Pressures and Saturated-Liquid Volumes for Heavy Fossil-Fuel Fractions from a Perturbed-Hard-Chain Equation of State

Achim Wilhelm and John M. Prausnitz

Materials and Molecular Research Division
Lawrence Berkeley Laboratory
and
Chemical Engineering Department
University of California
Berkeley, California 94720

Abstract

A semi-theoretical equation of state is used to correlate residual thermodynamic properties of heavy hydrocarbons; the correlation requires three characteristic molecular parameters as obtained from liquid-density and vapor-pressure data. These parameters are presented for 61 hydrocarbons with molecular weights to 560 g/mole; they are correlated with molecular weight and structural features. The correlation is extended to narrow-boiling fractions; molecular parameters for such fractions are obtained from experimental characterization data (molecular weight, aromaticity, naphthenicity and number of methyl groups per molecule). Calculated vapor pressures and liquid densities are in reasonable agreement with new experimental results obtained from Belridge crude oil. It is likely that the correlation can be improved through better characterization data as obtained, for example, from 13C-nuclear-magnetic-resonance spectra.

present address: Lurgi Kohle- und Mineraloeltechnik GmbH, 6000 Frankfurt, West Germany
While much is known about the thermodynamic properties of pure and mixed hydrocarbons in the carbon-number range 1 to 7, such knowledge decreases rapidly as the carbon number rises. However, recent technological interest has become increasingly concerned with heavy hydrocarbons because the economic value of these substances is now much higher than it was say, 10 years ago.

This work is concerned with residual thermodynamic properties of heavy hydrocarbons and their mixtures as commonly encountered in petroleum (or heavy-fossil-fuel) fractions. Here, a residual property is defined as that extensive equilibrium property of a fluid in excess of what it would be if the fluid were an ideal gas at the temperature, density and composition of interest. Residual thermodynamic properties are those that can be calculated from an equation of state. Such properties are essential for rational design of large-scale processes for upgrading heavy-fossil-fuel fractions toward useful products.

For many years, residual thermodynamic properties of low-molecular-weight hydrocarbon mixtures have been conventionally described by well-known equations of state (e.g. Redlich-Kwong-Soave) which are variations on the original equation of van der Waals (1). Several attempts have been made to apply such equations of state to heavy hydrocarbons [see, for example Ref.(2)] but only with marginal success, first, because such equations of state are, in principle, limited to simple (sphere-like) molecules and second, because traditional experimental characterization data (needed to identify molecular size and structure) are often inadequate. Traditional characterization data for petroleum fractions (density and boiling point) provide only very
crude information concerning molecular properties.

In this work, we provide a new correlation of some thermodynamic properties of heavy hydrocarbons and their mixtures. It is based on an equation of state suitable for small or large molecules whose shape is more nearly that of a flexible chain than that of a sphere. Our correlation uses characterization data which provide quantitative measures of molecular size and structure. The correlation is first established using experimental data for many pure hydrocarbons. It is then applied to narrow-boiling petroleum fractions. Since experimental data are rare for properly characterized petroleum fractions, we can provide here only a limited comparison between calculated and measured thermodynamic properties of such fractions. While this comparison indicates the correlation to be promising, it is evident that for high accuracy, it will be necessary to utilize experimental characterization data more refined than those used here.

1. Thermodynamic framework

Vapor pressures and saturated-liquid volumes can be calculated from a suitable equation of state which is applicable to both vapor and liquid phases. Beret and Prausnitz (3) presented a semi-theoretical equation of state which holds for small and large nonpolar molecules. Based on a molecular corresponding-state principle for polymers proposed by Prigogine (4), this equation of state is derived from a partition function for flexible chains. In this perturbed-hard-chain theory (PHC),
each hard segment of the chain is charged with a square-well interaction potential. The perturbed-hard-chain equation of state meets the ideal-gas boundary condition at low densities; for small spherical molecules it reduces to the perturbed-hard-sphere theory of Alder (5). Extended to mixtures by Donohue (6), the PHC equation of state can be used to describe thermodynamic properties of simple and complex hydrocarbons and their mixtures at liquid-like and gas-like densities.

In this work, we use a somewhat simplified (truncated) form of Donohue's PHC equation of state. Details are given in the appendix. The PHC equation of state requires three fundamental molecular parameters:

\[V^* = \text{the hard-core volume of the molecule} \]
\[(V^* = r \sigma^3 / \sqrt{2} \text{ for a chain molecule consisting of } r \text{ spherical segments of hard-sphere diameter } \sigma) \]
\[\varepsilon q / k = \text{the effective potential energy parameter for the molecule} \]
\[c = \text{the flexibility of the molecule (} c = 1 \text{ for methane)} \]

The equation of state is of the form:
\[\tilde{\gamma} = \mathcal{F} \left(\tilde{T}, \tilde{\gamma}, c \right) \]
(1)

where \[\tilde{T} = T / T^* , \tilde{\gamma} = \gamma / V^* \text{ and } \tilde{P} = P / P^* \]
and function \(\mathcal{F} \) is discussed in the appendix. Here \(T^* = \varepsilon q / (ck) \) and \(P^* = R(\varepsilon q / k) / V^* \).

Characteristic temperature \(T^* \) is defined in terms of \(\varepsilon \), the
segment–segment potential energy well and q, the external surface area per molecule; k is Boltzmann's constant and 3c is the number of external degrees of freedom per molecule. For small spherical molecules, \(c=1 \), since only three translational degrees of freedom contribute to the molecule's residual thermodynamic properties. However, as molecular size and flexibility increase, external (low frequency and high-amplitude) rotational and vibrational degrees of freedom become increasingly important in the equation of state. The contributions of these external degrees of freedom to the residual properties are taken into account through parameter c which is a measure not only of the molecule's deviation from spherical shape, but also of its overall flexibility. Casting an equation of state in terms of molecular parameters rather than the customary critical parameters, proves especially useful for high-molecular weight hydrocarbons because critical parameters, used in conventional equations of state, cannot be measured for heavy hydrocarbons nor can they be estimated with sufficient accuracy.

The vapor pressure \(p^s \) can be calculated from the exact thermodynamic relation:

\[
p = \frac{A_{\text{vap}} - A_{\text{liq}}}{V_{\text{vap}} - V_{\text{liq}}} \quad (2)
\]

where \(A \) is the Helmholtz energy and where \(V \) is the molar volume; superscripts vap and liq indicate saturated vapor and saturated liquid, respectively. Helmholtz energy \(A \) is obtained from the equation of state using standard thermodynamics. To calculate vapor pressures at tem-
pressure \(T\), given molecular parameters \(V^*, T^*, c\), an iterative procedure is required, because molar volumes \(V_{\text{vap}}\) and \(V_{\text{liq}}\) must be found from the pressure-explicit equation of state (Equation (1)).

To facilitate estimates for vapor pressure and saturated-liquid volumes, calculated results obtained from Equations 1 and 2 are presented here in easy-to-use charts. Figures 1 and 2 show reduced vapor pressures and liquid volumes as a function of reduced temperature for different values of \(c\). The lowest value \((c = 1)\) represents the properties of methane, and the highest value \((c = 100)\) corresponds to a \(n\)-alkane with molecular weight of about 18,000 g/mole. The reduced vapor pressure is defined by:

\[
\tilde{P}^* = \frac{P}{P^*}.
\]

Figure 1: Reduced vapor pressure \(\tilde{P}\) as a function of reduced temperature \(\tilde{T}\)

Figure 2: Reduced saturated-liquid volume \(\tilde{V}\) as a function of reduced temperature \(\tilde{T}\)

According to the molecular corresponding-states principle, reduced properties given in Figures 1 and 2 are valid for all fluids that fall within the assumptions of the PBC theory. Figures 1 and 2 are there-
fore directly useful for estimating vapor pressures and saturated-liquid volumes (at a given temperature) for any PHC fluid, provided that the molecular reducing parameters of this fluid are known. Upon considering narrow-boiling mixtures of molecules of similar size as pseudo-pure components, the chart can also be used for estimating properties of such mixtures. To estimate vapor pressures and liquid volumes for high-boiling crude-oil fractions, the essential problem is to find the molecular parameters which represent the fraction's properties.

2. Correlation of equation-of-state parameters with molecular structure

As shown by Beret and Donohue (3,6), the PHC equation of state yields good representation of vapor pressures and volumetric properties for a variety of large hydrocarbons, especially for large n-alkanes, where experimental data are most plentiful. Therefore, the n-alkane molecule of a given molecular weight is used in the following correlations as a reference. Deviation functions are used to obtain PHC parameters for other hydrocarbon molecules; these are added to the corresponding parameter for the straight-chain (reference) molecule of the same molecular weight, as shown below.

To apply the PHC equation of state to petroleum fractions, it is necessary to account for different hydrocarbon structures present in the fraction.
Fig. 3 shows that the single segments of a long-chain hydrocarbon molecule can be rearranged into two fundamentally different structures: first, isomerization leads to branched molecules with more terminal units (CH₃), and second, ring formation gives aromatic and naphthenic compounds. These forms of molecular structure suggest that, to account for deviation from n-alkane structure, it is useful to define the following structural characterization factors: the number of methyl groups per molecule Z_{CH_3}; the fractional aromaticity FA; and the fractional naphthenic FN. As suggested in Figure 3, these structural characterization factors can be used to characterize the deviation in V^*, $\varepsilon q/k$ and c from the corresponding equation-of-state parameters for the reference molecule. Using the molecular weight as a measure of the molecule's size, we calculate the parameter X from:

$$X(MW, FA, FN, Z_{CH_3}) = X(n\text{-alkane})(MW) + \Delta X(\text{aromatic})(MW, FA)$$

$$+ \Delta X(\text{naphthene})(MW, FN) + \Delta X(CH_3)(Z_{CH_3})$$

where X stands for V^*, $\varepsilon q/k$ or c.
number of pure hydrocarbons of known structure. We obtained these parameters by simultaneously fitting the truncated version of the PBC equation of state to experimental vapor pressures and liquid densities. Table 1 gives parameters V^*, e_0/k and c for 61 hydrocarbons.
<table>
<thead>
<tr>
<th>Fluid</th>
<th>Formula</th>
<th>Molecular Weight</th>
<th>Hard-Core Volume</th>
<th>Energy Parameter</th>
<th>Flexibility Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal-alkanes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>methane</td>
<td>CH4</td>
<td>16.04</td>
<td>20.03</td>
<td>151.1</td>
<td>1.000</td>
</tr>
<tr>
<td>ethane</td>
<td>C2H6</td>
<td>30.07</td>
<td>27.98</td>
<td>282.0</td>
<td>1.253</td>
</tr>
<tr>
<td>propane</td>
<td>C3H8</td>
<td>44.09</td>
<td>37.49</td>
<td>374.2</td>
<td>1.436</td>
</tr>
<tr>
<td>butane</td>
<td>C4H10</td>
<td>58.12</td>
<td>47.06</td>
<td>464.1</td>
<td>1.606</td>
</tr>
<tr>
<td>pentane</td>
<td>C5H12</td>
<td>72.15</td>
<td>56.59</td>
<td>556.1</td>
<td>1.802</td>
</tr>
<tr>
<td>hexane</td>
<td>C6H14</td>
<td>86.17</td>
<td>65.48</td>
<td>638.7</td>
<td>1.952</td>
</tr>
<tr>
<td>heptane</td>
<td>C7H16</td>
<td>100.2</td>
<td>74.56</td>
<td>726.6</td>
<td>2.138</td>
</tr>
<tr>
<td>octane</td>
<td>C8H18</td>
<td>114.2</td>
<td>85.42</td>
<td>807.1</td>
<td>2.302</td>
</tr>
<tr>
<td>nonane</td>
<td>C9H20</td>
<td>128.2</td>
<td>94.47</td>
<td>899.8</td>
<td>2.519</td>
</tr>
<tr>
<td>decane</td>
<td>C10H22</td>
<td>142.2</td>
<td>102.3</td>
<td>985.8</td>
<td>2.697</td>
</tr>
<tr>
<td>dodecane</td>
<td>C12H24</td>
<td>170.3</td>
<td>123.7</td>
<td>1119.7</td>
<td>2.900</td>
</tr>
<tr>
<td>hexadecane</td>
<td>C16H34</td>
<td>226.4</td>
<td>164.1</td>
<td>1447.0</td>
<td>3.510</td>
</tr>
<tr>
<td>eicosane</td>
<td>C20H42</td>
<td>282.5</td>
<td>199.7</td>
<td>1749.0</td>
<td>4.194</td>
</tr>
<tr>
<td>triacontane</td>
<td>C30H62</td>
<td>422.8</td>
<td>299.9</td>
<td>2445.0</td>
<td>5.577</td>
</tr>
<tr>
<td>tetracontane</td>
<td>C40H82</td>
<td>563.0</td>
<td>396.8</td>
<td>3064.0</td>
<td>6.752</td>
</tr>
<tr>
<td>iso-alkanes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i-butane</td>
<td>C4H10</td>
<td>58.12</td>
<td>47.15</td>
<td>435.6</td>
<td>1.553</td>
</tr>
<tr>
<td>i-pentane</td>
<td>C5H12</td>
<td>72.15</td>
<td>55.97</td>
<td>521.0</td>
<td>1.683</td>
</tr>
<tr>
<td>2-methylhexane</td>
<td>C6H15</td>
<td>100.2</td>
<td>75.18</td>
<td>693.2</td>
<td>2.063</td>
</tr>
<tr>
<td>3-methylhexane</td>
<td>C7H16</td>
<td>100.2</td>
<td>74.68</td>
<td>694.0</td>
<td>2.044</td>
</tr>
<tr>
<td>2-methylheptane</td>
<td>C8H18</td>
<td>114.2</td>
<td>84.83</td>
<td>776.1</td>
<td>2.233</td>
</tr>
<tr>
<td>2,2,4-trimethylpentane</td>
<td>C8H18</td>
<td>114.2</td>
<td>85.85</td>
<td>688.9</td>
<td>1.990</td>
</tr>
<tr>
<td>2,2,5-trimethylhexane</td>
<td>C9H20</td>
<td>128.2</td>
<td>94.39</td>
<td>783.4</td>
<td>2.242</td>
</tr>
<tr>
<td>squalane</td>
<td>C30H62</td>
<td>422.8</td>
<td>299.0</td>
<td>2146.0</td>
<td>4.896</td>
</tr>
<tr>
<td>naphthenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cyclopentane</td>
<td>C5H10</td>
<td>70.13</td>
<td>48.20</td>
<td>561.8</td>
<td>1.632</td>
</tr>
<tr>
<td>cyclohexane</td>
<td>C6H12</td>
<td>84.16</td>
<td>57.52</td>
<td>620.9</td>
<td>1.680</td>
</tr>
<tr>
<td>bicyclohexyl</td>
<td>C12H20</td>
<td>166.3</td>
<td>103.3</td>
<td>1080.0</td>
<td>2.468</td>
</tr>
<tr>
<td>alkynaphthenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>methycyclohexane</td>
<td>C7H14</td>
<td>98.18</td>
<td>66.27</td>
<td>661.8</td>
<td>1.735</td>
</tr>
<tr>
<td>ethylcyclohexane</td>
<td>C8H16</td>
<td>112.2</td>
<td>76.32</td>
<td>765.2</td>
<td>1.993</td>
</tr>
<tr>
<td>n-butylcyclohexane</td>
<td>C10H20</td>
<td>140.1</td>
<td>95.67</td>
<td>921.7</td>
<td>2.308</td>
</tr>
<tr>
<td>n-hexylcyclohexane</td>
<td>C12H24</td>
<td>168.1</td>
<td>115.1</td>
<td>1072.0</td>
<td>2.593</td>
</tr>
<tr>
<td>n-decylcyclohexane</td>
<td>C16H32</td>
<td>224.2</td>
<td>154.1</td>
<td>1382.0</td>
<td>3.217</td>
</tr>
<tr>
<td>n-hexadecyl- cyclolhexane</td>
<td>C22H44</td>
<td>308.3</td>
<td>210.4</td>
<td>1857.0</td>
<td>4.230</td>
</tr>
<tr>
<td>Compound</td>
<td>Molecular Formula</td>
<td>Boiling Point</td>
<td>Melting Point</td>
<td>Density</td>
<td>Refractive Index</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Indane</td>
<td>C₉H₁₀</td>
<td>118.0</td>
<td>68.67</td>
<td>863.5</td>
<td>1.960</td>
</tr>
<tr>
<td>cis-Decalin</td>
<td>C₁₀H₁₈</td>
<td>138.2</td>
<td>84.81</td>
<td>887.7</td>
<td>1.982</td>
</tr>
<tr>
<td>trans-Decalin</td>
<td>C₁₀H₁₈</td>
<td>138.2</td>
<td>87.21</td>
<td>852.9</td>
<td>1.920</td>
</tr>
<tr>
<td>Tetralin</td>
<td>C₁₀H₁₂</td>
<td>134.2</td>
<td>74.44</td>
<td>940.0</td>
<td>2.045</td>
</tr>
<tr>
<td>Benzenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>C₆H₆</td>
<td>78.11</td>
<td>47.67</td>
<td>630.1</td>
<td>1.670</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>C₁₀H₈</td>
<td>128.1</td>
<td>71.07</td>
<td>943.0</td>
<td>1.954</td>
</tr>
<tr>
<td>Diphenyl</td>
<td>C₁₂H₁₀</td>
<td>154.0</td>
<td>85.16</td>
<td>930.9</td>
<td>2.280</td>
</tr>
<tr>
<td>Phenanthenene</td>
<td>C₁₄H₁₀</td>
<td>178.1</td>
<td>93.95</td>
<td>1207.0</td>
<td>2.065</td>
</tr>
<tr>
<td>Anthracene</td>
<td>C₁₄H₁₀</td>
<td>178.1</td>
<td>93.95</td>
<td>1206.0</td>
<td>2.050</td>
</tr>
<tr>
<td>Alkylbenzenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>C₇H₈</td>
<td>92.14</td>
<td>57.29</td>
<td>716.9</td>
<td>1.869</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>C₈H₁₀</td>
<td>106.1</td>
<td>65.75</td>
<td>781.9</td>
<td>1.972</td>
</tr>
<tr>
<td>n-Butylbenzene</td>
<td>C₁₀H₁₄</td>
<td>134.1</td>
<td>85.16</td>
<td>930.9</td>
<td>2.280</td>
</tr>
<tr>
<td>n-Hexylbenzene</td>
<td>C₁₂H₁₈</td>
<td>162.1</td>
<td>105.3</td>
<td>1080.0</td>
<td>2.580</td>
</tr>
<tr>
<td>n-Decylbenzene</td>
<td>C₁₆H₂₆</td>
<td>218.2</td>
<td>143.3</td>
<td>1390.0</td>
<td>3.214</td>
</tr>
<tr>
<td>n-Hexadecylbenzene</td>
<td>C₂₂H₃₈</td>
<td>302.3</td>
<td>198.8</td>
<td>1928.0</td>
<td>4.447</td>
</tr>
<tr>
<td>O-Xylene</td>
<td>C₈H₁₀</td>
<td>106.1</td>
<td>65.19</td>
<td>799.3</td>
<td>1.969</td>
</tr>
<tr>
<td>M-Xylene</td>
<td>C₈H₁₀</td>
<td>106.1</td>
<td>65.75</td>
<td>791.6</td>
<td>1.989</td>
</tr>
<tr>
<td>P-Xylene</td>
<td>C₈H₁₀</td>
<td>106.1</td>
<td>66.35</td>
<td>784.4</td>
<td>1.965</td>
</tr>
<tr>
<td>T-Butylbenzene</td>
<td>C₁₀H₁₄</td>
<td>134.2</td>
<td>84.89</td>
<td>879.6</td>
<td>2.192</td>
</tr>
<tr>
<td>Alkynaphthalenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-Methylnaphthalene</td>
<td>C₁₁H₁₀</td>
<td>142.2</td>
<td>80.28</td>
<td>1031.0</td>
<td>2.115</td>
</tr>
<tr>
<td>1-Ethynaphthalene</td>
<td>C₁₂H₁₂</td>
<td>156.1</td>
<td>89.00</td>
<td>1108.0</td>
<td>2.329</td>
</tr>
<tr>
<td>1,2-Dimethyl-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naphthalene</td>
<td>C₁₂H₁₂</td>
<td>156.1</td>
<td>86.75</td>
<td>1199.0</td>
<td>2.588</td>
</tr>
<tr>
<td>1-N-Propynaphthalene</td>
<td>C₁₃H₁₄</td>
<td>170.1</td>
<td>98.35</td>
<td>1150.0</td>
<td>2.404</td>
</tr>
<tr>
<td>1-N-Butynaphthalene</td>
<td>C₁₄H₁₆</td>
<td>184.1</td>
<td>108.7</td>
<td>1182.0</td>
<td>2.464</td>
</tr>
<tr>
<td>Phenylmethanes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diphenylmethane</td>
<td>C₁₃H₁₂</td>
<td>168.2</td>
<td>95.77</td>
<td>1183.0</td>
<td>2.584</td>
</tr>
<tr>
<td>Isopropyl-diphenyl</td>
<td>C₁₅H₁₆</td>
<td>196.3</td>
<td>107.3</td>
<td>1232.0</td>
<td>2.623</td>
</tr>
<tr>
<td>Ditoluene methane</td>
<td>C₁₅H₁₆</td>
<td>196.3</td>
<td>114.9</td>
<td>1236.0</td>
<td>2.593</td>
</tr>
<tr>
<td>Dicumene methane</td>
<td>C₁₉H₂₄</td>
<td>252.0</td>
<td>150.9</td>
<td>1489.0</td>
<td>3.219</td>
</tr>
<tr>
<td>Tetraisopropyl-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenylmethane</td>
<td>C₂₅H₃₆</td>
<td>336.0</td>
<td>204.5</td>
<td>1624.0</td>
<td>3.753</td>
</tr>
</tbody>
</table>
The following equations correlate the equation-of-state parameters with molecular structure:

\[V \text{ (cm/mole)} = V + \Delta V + \Delta V \]

\[V \text{ (n-alkane)} = 6.209 + 0.692 \text{ MW} \]

\[\Delta V \text{ (aromatic)} = (4.961 - 0.2256 \text{ MW}) \text{ FA} \]

\[\Delta V \text{ (naphthene)} = (-2.97 - 0.0770 \text{ MW}) \text{ FN} \]

\[\frac{\varepsilon}{k} \text{ (K)} = \frac{\varepsilon}{k} + \Delta \frac{\varepsilon}{k} + \Delta \frac{\varepsilon}{k} \]

\[\frac{\varepsilon}{k} \text{ (n-alkane)} = 0.8290 \]

\[\frac{\varepsilon}{k} \text{ (aromatic)} = -5.01 + 16.17 \text{ MW} \]

\[\Delta \frac{\varepsilon}{k} \text{ (aromatic)} = (51.89 - 0.1427 \text{ MW}) \text{ FA} \]

\[\Delta \frac{\varepsilon}{k} \text{(CH}_3) = 45.65 \left(2 \left(1 - \text{FA} - \text{FN}\right) - Z_{\text{CH}_3}\right) \]

\[c = c + \Delta c + \Delta c \]

\[c \text{ (n-alkane)} = 0.8138 \]

\[c \text{ (n-alkane)} = 0.6520 + 0.0355 \text{ MW} \]

\[\Delta c \text{ (ring)} = (0.5169 - 0.00847 \text{ MW}) \text{ (FA + FN)} \]

\[\Delta c \text{ (CH}_3) = 0.108 \left(2 \left(1 - \text{FA} - \text{FN}\right) - Z_{\text{CH}_3}\right) \]
The volume correlation reproduces the experimental V^* values with an accuracy usually better than 1%. For eq/k and c the errors are slightly higher.

Figure 4: Close-packed volume V^*, energy eq/k and flexibility parameter c per molecule for pure hydrocarbons

(■ n-alkanes, ○ aromatics, ▲ naphthenes, ○ alkylaromatics,
△ alkynaphthenes)

Figure 4 shows the "experimental" values of V^*, eq/k and c and the correlation functions for pure n-alkanes, pure aromatics ($FA=1$), and pure naphthenes ($FN=1$) as a function of molecular weight. The close-packed volume V^* is a linear function of the molecular weight for alkanes, aromatics, and naphthenes. No significant difference in V^* is found between normal and iso-alkanes. The effective potential energy parameter eq/k is essentially the same for n-alkanes and naphthenes, and is therefore represented using the same correlating equation. The effect of ring formation on flexibility parameter c is similar for aromatics and naphthenes. Because of the large differences between parameter c for the reference n-alkanes and those for ring compounds, it is difficult to extrapolate c values for ring compounds to higher molecular weight with high accuracy. To extrapolate with confidence, we require experimental data for pure ring hydrocarbons with carbon numbers above 20. Figure 5 shows that for alkanes, progressive methyl substitution causes a decrease in c and eq/k proportional to the number of
methyl groups per molecule.

Figure 5: Progressive methyl substitution in alkanes; Effect on energy sq/k and on flexibility parameter c per molecule.

3. Calculation of V^*, sq/k, c for petroleum fractions

The correlations presented here are based on experimental data for a wide range of pure hydrocarbons. Our purpose is to use the correlations to estimate PHC parameters for ill-defined mixtures with many components, such as narrow-boiling petroleum fractions. These fractions are considered to be pseudo components; their properties are calculated using average values for V^*, sq/k and c. These average parameters are obtained from the pure-hydrocarbon correlations and from measured average characterization data that reflect molecular size and structure. We use these characterization data to obtain V^* and sq/k for the fraction. However, since an accurate extrapolation of the flexibility parameter c to higher molecular weights is difficult, we suggest that c be obtained from Figure 6 using one measured vapor pressure P^0 of the fraction at a temperature T^0. One measured vapor pressure is usually available from the fractionation procedure (e.g. mid-boiling point of the fraction). Using the correlated values of V^* and sq/k, c is found from Figure 6 at the reduced values $\tilde{P}^0 = P^0V^*/(R(\text{sq/k}))$ and $\text{sq}/(kT^0)$. Since vapor pressures of extremely heavy fractions are essentially zero, Figure 6 ex-
tends only over the range 1 < c < 20.

Figure 6: Reduced vapor pressure chart to estimate c

4. Experimental

To test the correlation, vapor pressures and saturated-liquid volumes were measured for five characterized petroleum fractions. Crude oil (from Belridge, California) was fractionated in an annular-still, spinning-band column into narrow-boiling fractions, or cuts. Each cut was then characterized by the following average properties:
- Number-average molecular weight, from freezing-point depression measurements (solvent: nitrobenzene)

- Fractional aromaticity, from standard proton NMR and elemental analysis (solvent: deuterated pyridine, internal standard: hexamethyldisiloxane)

- Fractional naphthenicity, from standard PNA analysis

- Number of methyl groups per molecule, from IR-spectroscopy
 (the absorption is measured at 1380 wavenumbers using dichloromethane as solvent)

In addition to these characterization parameters, we also obtain one vapor-pressure datum from the fractionation procedure (mid-boiling point). Details of the fractionation and characterization procedure are given elsewhere (7).

Table 2 shows fractionation and characterization data for five Belridge fractions. These data are used to estimate equation-of-state parameters as required for our correlation.
Table 2: Fractionation and characterization data for Belridge crude-oil fractions

<table>
<thead>
<tr>
<th>FRACTION No.</th>
<th>API-GRAVITY (°API)</th>
<th>BOILING RANGE (K)</th>
<th>MW (g/mole)</th>
<th>FA</th>
<th>FN</th>
<th>Z_{CH_3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44.6</td>
<td>422 - 478</td>
<td>148</td>
<td>0.230</td>
<td>0.53</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>35.2</td>
<td>478 - 535</td>
<td>189</td>
<td>0.283</td>
<td>0.56</td>
<td>3.2</td>
</tr>
<tr>
<td>3</td>
<td>26.9</td>
<td>533 - 617</td>
<td>245</td>
<td>0.298</td>
<td>0.51</td>
<td>4.2</td>
</tr>
<tr>
<td>4</td>
<td>17.5</td>
<td>617 - 705</td>
<td>340</td>
<td>0.312</td>
<td>0.49</td>
<td>5.9</td>
</tr>
<tr>
<td>5</td>
<td>16.3</td>
<td>705 - 811</td>
<td>464</td>
<td>0.302</td>
<td>0.52</td>
<td>8.2</td>
</tr>
</tbody>
</table>

at P = 0.1013 MPa

Vapor pressures are measured in a static equilibrium apparatus (sample volume 5 cm³) in the subatmospheric pressure range to 300 °C. Saturated-liquid volumes were determined in calibrated fused-glass cells (sample volume 1.5 cm³). Figure 7 compares experimental vapor pressures and saturated-liquid volumes with results calculated from our correlation and from the characterization data in Table 2.

Figure 7: Calculated and observed vapor pressures and saturated-liquid volumes for Belridge crude-oil fractions.
A comparison of experimental and calculated results shows that the correlation gives reasonable estimates for the vapor pressures and saturated-liquid volumes of the five crude-oil fractions. However, the results are not of very high accuracy. The accuracy of the presented method can be improved in many ways; the most important is to improve characterization of the fuel fractions. The largest uncertainty results from naphthenicity, determined from PNA analysis. For fractions of higher molecular weight, PNA analysis provides poor estimates of molecular structure. Further, the correlation can be improved by introducing more characterization variables, e.g., number of aromatic and naphthenic rings per molecule, degree of methyl substitution of rings, degree of condensed aromatic rings, etc. These variables, determined from fraction-average measurable properties, could account in a more sophisticated way for the different hydrocarbon structures in complex molecules of high molecular weight. Thus it should be possible to calculate the flexibility parameter c without using a vapor-pressure datum. This may be particularly useful for very heavy hydrocarbon residues since their vapor pressures are not easily measured.

A suitable analytical method to obtain the desired structural information is provided by 13C-NMR spectroscopy. A new 13C-NMR technique, recently proposed by Snape (8), also determines the number of CH$_3$-groups per molecule more accurately than does IR spectroscopy. A further improvement of accuracy can be obtained by expanding the database of pure components. For improved parameter correlation, the data
base should include experimental results for hydrocarbons with heteroatoms S, N, O, present in all fossil fuels, as well as results for polymers. However, even at this present state of development, the correlation presented here may be useful for estimating thermodynamic properties of heavy fossil-fuel fractions as required in engineering calculations.

Acknowledgment

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the US Department of Energy under contract DE-AC03-76SF00098. For additional support, the authors are grateful to the American Petroleum Institute, the National Science Foundation and the Deutsche Forschungsgemeinschaft.
Appendix

Details concerning the equation of state

The equation of state used in this paper is a truncated version of Donohue's equation. The molar Helmholtz energy is given by the perturbation expansion:

\[A(T,V) - A(0) = A + \frac{A}{T} + \frac{A}{2T} \]

(A-1)

where \(A(T,V) \) is the Helmholtz energy of the ideal gas at given \(T \) and \(V \):

\[A(T,V) = -RT \ln\left(\frac{V}{\nu}\right) + \text{a function of } T \text{ only.} \]

(A-2)

where \(\nu^\dagger \) is an arbitrarily chosen reference volume.

\(A(0) \) accounts for the repulsive forces; it is based on the expression of Carnahan and Starling (9), here applied to hard-sphere segments in a chain with 3c external degrees of freedom:

\[A(0) = RTc \left[\frac{4}{V} - \frac{3}{\nu} - \frac{2}{\nu^2} \right] \]

(A-3)

\[(1 - \frac{\nu}{V})^{-2} \]

(with \(\nu = \pi \sqrt{2/6} = 0.7405 \))
The remaining terms $A^{(n)}$ correct for molecular attractions arising from the square well potential:

$$
A^{(n)} = R T c \sum_{m=1}^{5} \frac{A_{nm} T^n}{V^m}, \quad (n = 1, 2)
$$

Constants A_{nm} in the attraction term are universal constants based on molecular-dynamic studies of Alder. These constants have been refitted to the truncated PHC equation of state by Gmehling (10). Values of A_{nm} are given in Table 3.

Using the fundamental relation:

$$
P = - \left(\frac{\partial A}{\partial V} \right)_T
$$

we obtain the PHC equation of state in a form similar to that of Equation (A-1):

$$
P - P_{IG} = P^{(0)} + \frac{P}{T} + \frac{P}{2 T} \quad (A-6)
$$

where p_{IG} is the ideal-gas reference pressure at given T and V

$\left(p_{IG} = R T / V \right)$.
Consistent with Equations (A-3) and (A-4), we obtain $P(0)$ and $P(n)$:

$$
P(0) = c \left[\frac{4 \left(\frac{\tau}{V} \right) - 2 \left(\frac{\tau}{V} \right)^2}{\left(1 - \frac{\tau}{V} \right)^3} \right]
\quad \text{(A-7)}
$$

$$
P(n) = c \sum_{m=1}^{5} \frac{m A_{nm} T_n^m}{V}
\quad \text{(A-8, with } n = 1, 2 \text{)}
$$

Table 3: Universal Constants A_{nm}

<table>
<thead>
<tr>
<th>$n = 1$</th>
<th>$n = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m = 1$</td>
<td>-7.04677</td>
</tr>
<tr>
<td>$m = 2$</td>
<td>-7.22626</td>
</tr>
<tr>
<td>$m = 3$</td>
<td>-3.16539</td>
</tr>
<tr>
<td>$m = 4$</td>
<td>14.34352</td>
</tr>
<tr>
<td>$m = 5$</td>
<td>-1.26227</td>
</tr>
</tbody>
</table>
Nomenclature

A = molar Helmholtz energy
A_{nm} = Alder's universal constants (modified by Gmehling)
c = one third of the number of external degrees of freedom
k = Boltzmann's constant
m,n = index of Alder's constants
P = pressure
q = external surface area per molecule
R = gas constant
T = absolute temperature
V = molar volume

Greek letters

\varepsilon = segment-segment potential energy
\sigma = hard-core diameter
\tau = a constant equal to 0.7405

Superscripts

liq = liquid phase
vap = vapor phase
s = saturated
IG = ideal gas
• = molecular reducing parameter
- = reduced property

Literature cited

(7) Alexander, G.L., PhD Dissertation, University of California, Berkeley, 1984
List of captions to figures:

Figure 1: Reduced vapor pressure \(\tilde{P} \) as a function of reduced temperature \(\tilde{T} \)

Figure 2: Reduced saturated-liquid volume \(\tilde{V} \) as a function of reduced temperature \(\tilde{T} \)

Figure 3: Basic structures in hydrocarbon molecules

Figure 4: Close-packed volume \(V^* \), energy \(\text{aq}/k \) and flexibility parameter \(c \) per molecule for pure hydrocarbons
(■ n-alkanes, ● aromatics, △ naphthenes, ○ alkylaromatics,
△ alkynaphthenes)

Figure 5: Progressive methyl substitution in alkanes; Effect on energy \(\text{aq}/k \) and on flexibility parameter \(c \) per molecule.

Figure 6: Reduced vapor pressure chart to estimate \(c \)

Figure 7: Calculated and observed vapor pressures and saturated-liquid volumes for Belridge crude-oil fractions
\[\hat{p}_s = \frac{p_s}{p^*} \]

\[T/T^* \]

\[c = \{1, 1.5, 2, 3, 5, 10, 30, 100\} \]

Fig. 1
\[\hat{V} = \frac{V}{V^*} \]

\[\tilde{T} = \frac{T}{T^*} \]

Fig. 2
Reference molecule

Long chain \(n \)-alkane

Isomerisation

Characterization parameter:
Number of methyl groups \(Z_{\text{CH}_3} \)

Ring formation

Characterization parameters:

Fractional aromaticity \(FA = \frac{n_{\text{aromatic}}}{n_{\text{total}}} \)

Fractional naphthenicity \(FN = \frac{n_{\text{naphthenic}}}{n_{\text{total}}} \)

\((n_c = \text{number of carbon atoms}) \)
Fig. 4
Methyl groups per molecule

\[\frac{\epsilon_Q(n-alkane)}{k} \]

\[c(n-alkane) \]

\[c'(j-alkane) \]

Methyl groups per molecule

Fig. 5
Fig. 6
Fig. 7
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.