Title
Risk and Return in Fixed Income Arbitrage: Nickels in Front of a Steamroller?

Permalink
https://escholarship.org/uc/item/6zx6m7fp

Authors
Duarte, Jefferson
Longstaff, Francis A.
Yu, Fan

Publication Date
2005-06-03
RISK AND RETURN IN FIXED INCOME ARBITRAGE:
NICKELS IN FRONT OF A STEAMROLLER?

Jefferson Duarte*
Francis A. Longstaff**
Fan Yu***

Current version: May 2005.

*Jefferson Duarte is with the University of Washington. **Francis Longstaff is with the UCLA Anderson School and the NBER. ***Fan Yu is with UC Irvine. Corresponding author: Francis Longstaff. We are grateful for valuable comments and assistance from Vineer Bhansali, Darrell Duffie, Robert Jarrow, Philippe Jorion, Katie Kong, Haitao Li, Ravit Mandell, Bruno Miranda, Yoshihiro Mikami, Soetojo Tanudjaja, Abraham Thomas, Stuart Turnbull, Rossen Valkanov, Ryoichi Yamabe, Toshi Yotsuzuka, Eric Zivot, Gary Zhu, and seminar participants at the Chicago Quantitative Alliance, Nomura Securities, Simplex Asset Management, and PIMCO. We are particularly grateful for the comments and suggestions of Jun Liu, the Editor Yacine Aït-Sahalia, and of an anonymous referee. All errors are our responsibility.
We conduct an analysis of the risk and return characteristics of a number of widely-used fixed income arbitrage strategies. We find that the strategies requiring more “intellectual capital” to implement tend to produce significant alphas after controlling for bond and equity market risk factors. We show that the risk-adjusted excess returns from these strategies are related to capital flows into fixed income arbitrage hedge funds. In contrast with other hedge fund strategies, we find that many of the fixed income arbitrage strategies produce positively skewed returns. These results suggest that there may be more economic substance to fixed income arbitrage than simply “picking up nickels in front of a steamroller.”
1. INTRODUCTION

During the hedge fund crisis of 1998, market participants were given a revealing glimpse into the proprietary trading strategies used by a number of large hedge funds such as Long Term Capital Management (LTCM). Among these strategies, few were as widely used—or as painful—as fixed income arbitrage. Virtually every major investment banking firm on Wall Street reported losses directly related to their positions in fixed income arbitrage during the crisis. Despite these losses, however, fixed income arbitrage has since become one of the most-popular and rapidly-growing sectors within the hedge fund industry. For example, the Tremont/TASS (2004) Asset Flows Report indicates that $9.0 billion was invested in fixed income arbitrage hedge funds during 2004 and that the total amount of hedge fund capital devoted to fixed income arbitrage is now nearly $47.6 billion.¹

This mixed history raises a number of important issues about the fundamental nature of fixed income arbitrage. Is fixed income arbitrage truly arbitrage? Or is it merely a strategy that earns small positive returns most of the time, but occasionally experiences dramatic losses (a strategy often described as “picking up nickels in front of a steamroller”)? Were the large fixed income arbitrage losses during the hedge fund crisis simply due to excessive leverage, or were there deeper reasons arising from the inherent nature of these strategies? To address these issues, this paper conducts an extensive analysis of the risk and return characteristics of fixed income arbitrage.

Fixed income arbitrage is actually a broad set of market-neutral investment strategies intended to exploit valuation differences between various fixed income securities or contracts. In this analysis, we focus on five of the most widely-used fixed income arbitrage strategies in the market:

- Swap spread arbitrage.
- Yield curve arbitrage.
- Mortgage arbitrage.
- Volatility arbitrage.
- Capital structure arbitrage.

As in Mitchell and Pulvino (2001), our approach consists of following specific trading

¹The total amount of capital devoted to fixed income arbitrage is likely much larger since the Tremont/TASS (2004) report covers less than 50 percent of the total estimated amount of capital managed by hedge funds. Also, many Wall Street firms directly engage in proprietary fixed income arbitrage trading.
strategies through time and studying the properties of return indexes generated by these strategies. There are several important advantages to this approach. First, it allows us to incorporate transaction costs and hold fixed the effects of leverage in the analysis. Second, it allows us to study returns over a much longer horizon than would be possible using the limited amount of hedge fund return data available. Finally, this approach allows us to avoid potentially serious backfill and survivorship biases in reported hedge fund return indexes.

With these return indexes, we can directly explore the risk and return characteristics of the individual fixed income arbitrage strategies. To hold fixed the effects of leverage on the analysis, we adjust the amount of initial capital so that the annualized volatility of each strategy’s returns is ten percent. We find that all five of the strategies generate positive excess returns on average. Sharpe ratios for these strategies range from about 0.30 to 0.90. This compares well with the ratio of 0.72 reported by Tremont/TASS (2004) for a broad set of fixed income arbitrage hedge funds. Surprisingly, most of the arbitrage strategies result in excess returns that are positively skewed. Thus, even though these strategies produce large negative returns from time to time, the strategies tend to generate even larger offsetting positive returns.

We study the extent to which these positive excess returns represent compensation for bearing market risk. After risk adjusting for both equity and bond market factors, we find that the swap spread and volatility arbitrage strategies produce insignificant alphas. In contrast, the yield curve, mortgage, and capital structure arbitrage strategies generally result in significant positive alphas. Interestingly, the latter strategies are the ones that require the most “intellectual capital” to implement. Specifically, the strategies that result in significant alphas are those that require relatively complex models to identify arbitrage opportunities and/or hedge out systematic market risks. We find that several of these “market-neutral” arbitrage strategies actually expose the investor to substantial levels of market risk. We repeat the analysis using actual fixed income arbitrage hedge fund index return data from industry sources and find similar results.

We also explore the relation between excess returns and the aggregate amount of capital devoted to fixed income arbitrage strategies in the market. Consistent with traditional theory, we find that the risk-adjusted excess returns for many of the strategies decline significantly as more capital is directed towards fixed income arbitrage. Surprisingly, however, the opposite is true for some of the other strategies. This is consistent with the view of a number of fixed income arbitrage hedge funds that increased capital can bring positive externalities in the form of greater liquidity and increased speed of convergence for some strategies. Our results indicate that the role of hedge fund capital on arbitrage may be more complex than previously believed.

Where does this leave us? Is the business of fixed income arbitrage simply a strategy of “picking up nickels in front of a steamroller,” equivalent to writing deep out-
of-the-money puts? We find little evidence of this. In contrast, we find that most of the strategies we consider result in excess returns that are positively skewed, even though large negative returns can and do occur. After controlling for leverage, these strategies generate positive excess returns on average. Furthermore, after controlling for both equity and bond market risk factors, the fixed income arbitrage strategies that require the highest level of “intellectual capital” to implement appear to generate significant positive alphas. The fact that a number of these factors share sensitivity to financial market “event risk” argues that these positive alphas are not merely compensation for bearing the risk of an as-yet-unrealized “peso” event. Thus, the risk and return characteristics of fixed income arbitrage appear different from those of other strategies such as merger arbitrage (see Mitchell and Pulvino (2001)).

This paper contributes to the rapidly-growing literature on returns to “arbitrage” strategies. Closest to our paper are the important recent studies of equity arbitrage strategies by Mitchell and Pulvino (2001) and Mitchell, Pulvino, and Stafford (2002). Our paper, however, focuses exclusively on fixed income arbitrage. Less related to our work are a number of important recent papers focusing on the actual returns reported by hedge funds. These papers include Fung and Hsieh (1997, 2001, 2002), Ackermann, McEnally, and Ravenscraft (1999), Brown, Goetzmann, and Ibbotson (1999), Brown, Goetzmann, and Park (2000), Dor and Jagannathan (2002), Brown and Goetzmann (2003), Getmansky, Lo, and Makarov (2004), Agarwal and Naik (2004), Malkiel and Saha (2004), and Chan, Getmansky, Haas, and Lo (2005). Our paper differs from these in that the returns we study are attributable to specific strategies with controlled leverage, whereas reported hedge fund returns are generally composites of multiple (and offsetting) strategies with varying degrees of leverage.

The remainder of this paper is organized as follows. Sections 2 through 6 describe the respective fixed income arbitrage strategies and explain how the return indexes are constructed. Section 7 conducts an analysis of the risk and return characteristics of the return indexes along with those for historical fixed income arbitrage hedge fund returns. Section 8 summarizes the results and makes concluding remarks.

2. SWAP SPREAD ARBITRAGE

Swap spread arbitrage has traditionally been one of the most-popular types of fixed income arbitrage strategies. The importance of this strategy is evidenced by the fact that swap spread positions represented the single-largest source of losses for LTCM.\(^2\) Furthermore, the hedge fund crisis of 1998 revealed that many other major investors had similar exposure to swap spreads—Salomon Smith Barney, Goldman Sachs, Mor-

\(^2\)Lowenstein (2000) reports that LTCM lost $1.6 billion in its swap spread positions before its collapse. Also see Perold (1999).
gan Stanley, BankAmerica, Barclays, and D.E. Shaw all experienced major losses in swap spread strategies.\(^3\)

The swap spread arbitrage strategy has two legs. First, an arbitrageur enters into a par swap and receives a fixed coupon rate \(CMS\) and pays the floating Libor rate \(L_t\). Second, the arbitrageur shorts a par Treasury bond with the same maturity as the swap and invests the proceeds in a margin account earning the repo rate. The cash flows from the second leg consist of paying the fixed coupon rate of the Treasury bond \(CMT\) and receiving the repo rate from the margin account \(r_t\).\(^4\) Combining the cash flows from the two legs shows that the arbitrageur receives a fixed annuity of \(SS = CMS - CMT\) and pays the floating spread \(S_t = L_t - r_t\). The cash flows from the reverse strategy are just the opposite of these cash flows. There are no initial or terminal principal cash flows in this strategy.

Swap spread arbitrage is thus a simple bet on whether the fixed annuity of \(SS\) received will be larger than the floating spread \(S_t\) paid. If the swap spread \(SS\) is larger than the average value of \(S_t\) during the life of the strategy, the strategy is profitable (at least in an accounting sense). What makes the strategy attractive to hedge funds is that the floating spread \(S_t\) has historically been very stable over time, averaging 26.8 basis points with a standard deviation of only 13.3 basis points during the past 16 years. Thus, the expected average value of the floating spread over, say, a five-year horizon may have a standard deviation of only a few basis points (and, in fact, is often viewed as essentially constant by market participants).

Swap spread arbitrage, of course, is not actually an arbitrage in the textbook sense since the arbitrageur is exposed to indirect default risk. This is because if the viability of a number of major banks were to become uncertain, market Libor rates would likely increase significantly. For example, the spread between bank CD rates and Treasury bill yields spiked to nearly 500 basis points around the time of the Oil Embargo during 1974. In this situation, a swap spread arbitrageur paying Libor on a swap would suffer large negative cash flows from the strategy as the Libor rate responded to increased default risk in the financial sector. Note that there is no direct default risk from banks entering into financial distress since the cash flows on a swap are not direct obligations of the banks quoting Libor rates. Thus, even if these banks default on their debt, the counterparties to a swap continue to exchange fixed for floating cash flows.\(^5\)

\(^4\)The terms \(CMS\) and \(CMT\) are widely-used industry abbreviations for constant maturity swap rate and constant maturity Treasury rate.

\(^5\)In theory, there is the risk of a default by a counterparty. In practice, however, this risk is negligible since swaps are usually fully collateralized under master swap
In studying the returns from fixed income arbitrage, we use an extensive data set from the swap and Treasury markets covering the period from November 1988 to December 2004. The swap data consist of month-end observations of the three-month Libor rate and midmarket swap rates for two-, three-, five-, seven-, and ten-year maturity swaps. The Treasury data consist of month-end observations of the constant maturity Treasury rates published by the Federal Reserve in the H-15 release for maturities of two, three, five, seven, and ten years. Finally, we collect data on three-month general collateral repo rates. The data are described in the Appendix.

To construct a return index, we first determine each month whether the current swap spread differs from the expected average value of the short term spread over the life of the strategy (two, three, five, or ten years). Figure 1 graphs the time series of swap spreads against the expected average value of the short term spread over these horizons. If the difference exceeds a trigger value of 10 or 20 basis points, we implement the trade for a $100 notional position (receive fixed on a $100 notional swap, short a $100 notional Treasury bond, or vice versa if the difference is less than $10 or $20 basis points). We keep the trade on until it converges (swap spread converges to expected average short term spread) or until the maturity of the swap and bond. It is useful to think of this trade as a fictional hedge fund that has only a single trade. After the first month of the sample period, there could be one such hedge fund. After two months, there could be two hedge funds (if neither converges), etc. Each month, we calculate the return for each of these funds and then take the equally-weighted average across funds as the index return for that month. In initiating and terminating positions, realistic transaction costs are applied (described in the Appendix). As with all strategies considered in this paper, the initial amount of capital invested in the strategy is adjusted to fix the annualized volatility of the return index at ten percent. Finally, observe that this swap spread arbitrage strategy requires little in the way of complex modeling to implement.

Table 1 provides summary statistics for the excess returns from the swap spread strategies. As shown, the mean monthly excess returns range from about 0.3 to 0.6 percent. Almost all of these means are significant at the ten-percent level, and many are significant at the five-percent level. The Sharpe ratios for the strategies range from 0.36 to 0.72. Skewness coefficients for the returns are about equally divided between positive and negative values. Furthermore, the mean excess returns are all significantly higher than the median excess returns. The returns for the strategies tend to have more kurtosis than would be the case for a normal distribution. Finally, agreements between major institutional investors. Furthermore, the actual default exposure in a swap is far less than for a corporate bond since notional amounts are not exchanged. Following Duffie and Huang (1996), Duffie and Singleton (1997), Minton (1997), He (2000), Grinblatt (2001), Liu, Longstaff, and Mandell (2004), and many others, we abstract from the issue of counterparty credit risk in this analysis.
note that the amount of capital per $100 notional amount of the strategy required to fix the annualized volatility at ten percent varies directly with the horizon of the strategy. This reflects the fact that the price sensitivity of the swap and Treasury bond increases directly with the horizon or duration of the swap and Treasury bond.

3. YIELD CURVE ARBITRAGE

Another major type of fixed income arbitrage involves taking long and short positions at different points along the yield curve. These yield curve arbitrage strategies often take the form of a “butterfly” trade, where, for example, an investor may go long five-year bonds, and short two- and ten-year bonds in a way that zeros out the exposure to the level and slope of the term structure in the portfolio. Perold (1999) reports that LTCM frequently executed these types of yield curve arbitrage trades.

While there are many different flavors of yield curve arbitrage in the market, most share a few common elements. First, some type of analysis is applied to identify points along the yield curve that are either “rich” or “cheap.” Second, the investor enters into a portfolio that exploits these perceived misvaluations by going long and short bonds in a way that minimizes the risk of the portfolio. Finally, the portfolio is held until the trade converges and the relative values of the bonds come back into line.

Our approach in implementing this strategy is very similar to that followed by a number of large fixed income arbitrage hedge funds. Specifically, we assume that the term structure is determined by a two-factor affine model. Using the same monthly swap market data as in the previous section, we fit the model to match exactly the one-year and ten-year points along the swap curve each month. Once fitted to these points, we then identify how far off the fitted curve the other swap rates are. Figure 2 graphs the time series of deviations between market and model for the two-year, three-year, five-year, and seven-year swap rates. For example, imagine that for a particular month, the market two-year swap rate is more than five or ten basis points above the fitted two-year swap rate. We would enter into a trade by going long (receiving fixed) $100 notional of a two-year swap and going short a portfolio of one-year and ten-year swaps with the same sensitivity to the two affine factors as the two-year swap. Thus, the resulting portfolio’s sensitivity to each of the two factors would be zero. Once this butterfly trade was put on, it would be held for 12 months, or until the market two-year swap rate converged to the model value. The same process continues for each month, with either a trade similar to the above, the reverse trade of the above, or no trade at all being implemented, and similarly for the other swap maturities. Unlike the swap spread strategy of the previous section, this strategy involves a high degree of “intellectual capital” to implement since both the process of identifying arbitrage opportunities and the associated hedging strategies require the application of a multi-factor term structure model.
As before, we can think of a butterfly trade put on in a specific month as a fictional hedge fund with only one trade. Similarly, we can compute the return on this hedge fund until the trade converges. For a given month, there may be a number of these hedge funds, each representing a trade that was put on previously but has not yet converged. The return index for the strategy for a given month is the equally-weighted average of the returns for all of the individual hedge funds active during that month. As in the previous section, we include realistic transaction costs in computing returns and adjust the capital to give an annualized volatility of ten percent for the index returns. The details of the strategy are described in the Appendix.

Table 2 reports summary statistics for the excess returns from the yield curve strategies. We use trigger values of five and ten basis points in determining whether to implement a trade. Also we implement the strategy separately for two-year, three-year, five-year, and seven-year swaps. As shown, the average monthly excess returns from the eight strategies are all statistically significant, and range from about 0.4 to 0.6 percent. Sharpe ratios for the strategies range from 0.52 to 0.76. Table 2 also shows that the excess returns are highly positively skewed; the mean excess returns are significantly higher than the corresponding median values and the skewness coefficients are all positive. Note that all of the median values for the excess returns are zero. The reason for this is that the pricing deviation is often less than the trading trigger. Furthermore, once the trade is implemented, it tends to converge rapidly. Thus, there are many months in which there are no active trades. In this situation, the capital is assumed to be invested in the riskless asset, resulting in an excess return of zero for that month. The positive skewness of the returns argues against the view that this strategy is one in which an arbitrageur earns small profits most of the time, but occasionally suffers a huge loss. As before, the excess returns display more kurtosis than would be the case for a normal distribution. Finally, observe that the amount of capital required to attain a ten-percent level of volatility is typically much less than in the swap spread strategies. This reflects the fact that the yield curve trade tends to be better hedged since all of the positions are along the same curve, and the factor risk is neutralized in the portfolio.

4. MORTGAGE ARBITRAGE

The mortgage-backed security (MBS) strategy consists of buying MBS passthroughs and hedging their interest rate exposure with swaps. A passthrough is a MBS that passes all of the interest and principal cash flows of a pool of mortgages (after servicing and guarantee fees) to the passthrough investors. MBS passthroughs are the most common type of mortgage-related product and this strategy is commonly implemented by hedge funds. The Bond Market Association indicates that MBS now forms the largest fixed income sector in the U.S.
The main risk of a MBS passthrough is prepayment risk. That is, the timing of the cash flows of a passthrough is uncertain because homeowners have the option to prepay their mortgages. The prepayment option embedded in MBS passthroughs generates the so-called negative convexity of these securities. For instance, the top panel of Figure 3 plots the nonparametric estimate of the price of a generic GNMA passthrough with a seven-percent coupon rate as a function of the five-year swap rate (see the Appendix for details on the estimation procedure, data, and strategy implementation). It is clear that the price of this passthrough is a concave function of the interest rate. This negative convexity arises because homeowners refinance their mortgages as interest rates drop, and the price of a passthrough consequently converges to some level close to its principal amount.

A MBS portfolio duration-hedged with swaps inherits the negative convexity of the passthroughs. For example, the bottom panel of Figure 3 plots the value of a portfolio composed of a $100 notional long position in a generic seven-percent GNMA passthrough, duration-hedged with the appropriate amount of a five-year swap. This figure reveals that abrupt changes in interest rates will cause losses in this portfolio. To compensate for these possible losses, investors require higher yields to hold these securities. Indeed, Bloomberg’s option-adjusted spread (OAS) for a generic seven-percent GNMA passthrough during the period from November 1996 to February 2005 was between 48 and 194 basis points with a mean value of 112 basis points.

Long positions in passthroughs are usually financed with a form of repurchase agreement called a dollar roll. Dollar rolls are analogous to standard repurchase agreements in the sense that a hedge fund entering into a dollar roll sells a passthrough to a MBS dealer and agrees to buy back a similar security in the future at a predetermined price. The main difference between a standard repurchase agreement and a dollar roll is that with the roll, the dealer does not have to deliver a passthrough backed by exactly the same pool of mortgages. Unlike traditional repurchase agreements, a dollar roll does not require any haircut or over-collateralization (see Biby, Modukuri and Hargrave, 2001). Dealers extend favorable financing terms because dollar rolls give them the flexibility to manage their MBS portfolios. Assume, for instance, that

7 Option-adjusted spreads are commonly used as a way of analyzing the relative valuations of different mortgage-backed securities. As opposed to static spreads, the OAS incorporates the information about the timing of the cash flows of a passthrough with the use of a prepayment model and a term structure model in its calculation. The OAS therefore adjusts for the optionality of a passthrough. For a discussion of the role of OAS in the MBS market, see Gabaix, Krishnamurthy, and Vigneron (2004).
a MBS dealer wishes to cover an existing short position in the MBS market. In order to do so, the dealer can buy a passthrough from a hedge fund with the dollar roll. At the end of the roll term, the dealer does not need to return a passthrough backed by exactly the same pool of mortgages. As a result, dollar rolls can be used as a mechanism to cover short positions in the passthrough market.

The overall logic of the strategy of buying MBS passthroughs, financing them with dollar rolls, and hedging their duration with swaps is therefore two-fold: First, investors require larger yields to carry the negative convexity of MBS passthroughs. Second, the delivery option of the dollar rolls makes them a cheap source of MBS financing. To execute the strategy, it is necessary to specify which agency passthroughs are used (GNMA, FNMA, or FHLMC), the MBS coupons (trading at discount or at premium), the swap maturities used in the hedge, the model used to calculate the hedge ratios, the frequency of hedge rebalancing (daily, weekly or monthly), and the OAS level above which a long position in the passthrough is taken (the OAS trade trigger).

We use GNMA passthroughs because they are fully guaranteed by the U.S. Government and are consequently free of default risk. The passthroughs we study are those with coupons closest to the current coupon since they are the most liquid. The passthroughs are hedged with five-year swaps. There is a large diversity of models that can be used to calculate hedge ratios. Indeed, every major MBS dealer has a proprietary prepayment model. Typically, these proprietary models require a high level of “intellectual capital” to develop, maintain, and use. We expect that some of these models deliver better hedge ratios than others. However, we do not want to base our results on a specific parametric model. Rather, we wish to have hedge ratios that work well on average. To this end, we adopt a nonparametric approach to estimate the hedge ratios. Specifically, we use the method developed by Aït-Sahalia and Duarte (2003) to estimate the first derivative of the passthrough price with respect to the five-year swap rate, with the constraint that passthrough prices are a nonincreasing function of the five-year swap rate. The hedging rebalancing frequency is monthly. We expect that most hedge funds following this strategy estimate the duration of their portfolios at least daily and rebalance when the duration deviates substantially from zero. For reasons of simplicity, we assume that all the trading in this strategy is done on the last trading day of the month. Trade triggers based on OAS may be used to improve the returns of mortgage strategies (see for instance Hayre (1990)). We, however, take a long position on MBS passthroughs independently of their OAS since we want to avoid any dependence of our results on a specific prepayment model.

The strategy is implemented between December 1996 and December 2004 with a total of 97 monthly observations. The results of this strategy are displayed in

8 All the mortgage loans securitized by GNMA are Federally insured. Among the guarantors are the FHA and VA.
Table 3. The first row of Table 3 displays the results of the strategy implemented with passthroughs trading at a discount. The second row displays the results of holding the passthrough with coupon closest to the current coupon, which can be trading at either a premium or a discount. The results using the premium passthroughs with coupons closest to the current coupons are in the third row. The excess returns of the MBS strategies can be either positively skewed (discount strategy) or negatively skewed (the premium strategy). The excess returns of the strategies are not significantly autocorrelated. The mean excess returns of the discount and par strategies are 0.691 and 0.466 percent and their Sharpe ratios are 0.830 and 0.560. The mean returns of the discount and par strategies are statistically significant at roughly the ten-percent level. The performance of the premium passthrough strategy is considerably worse than that of the other strategies. The mean monthly return of the premium strategy is not different from zero at usual significance levels and its Sharpe ratio is only 0.078. The relatively poor performance of the premium passthrough strategy is partially caused by the strong negative convexity of the premium passthroughs. Indeed, the passthroughs in the premium strategy have an average convexity of -1.53 compared to -1.44 for the passthroughs in the par strategy and -1.11 for the passthroughs in the discount strategy.

5. FIXED INCOME VOLATILITY ARBITRAGE

In this section, we examine the returns from following a fixed income volatility arbitrage strategy. Volatility arbitrage has a long tradition as a popular and widely-used strategy among Wall Street firms and other major financial market participants. Volatility arbitrage also plays a major role among fixed income hedge funds. For example, Lowenstein (2000) reports that LTCM lost more than $1.3 billion in volatility arbitrage positions prior to the fund’s demise in 1998.

In its simplest form, volatility arbitrage is often implemented by selling options and then delta-hedging the exposure to the underlying asset. In doing this, investors hope to profit from the well-known tendency of implied volatilities to exceed subsequent realized volatilities. If the implied volatility is higher than the realized volatility, then selling options produces an excess return proportional to the gamma of the option times the difference between the implied variance and the realized variance of the underlying asset.\(^9\)

In implementing a fixed income volatility arbitrage strategy, we focus on interest rate caps. Interest rate caps are among the most important and liquid fixed income options in the market. Interest rate caps consist of portfolios of individual European

\(^9\)For discussions of the relation between implied and realized volatilities, see Day and Lewis (1988), Lamoureux and Lastrapre (1993), and Canina and Figlewski (1993).
options on the Libor rate (for example, see Longstaff, Santa-Clara, and Schwartz (2001)). Strategy returns, however, would be similar if we focused on cap/floor straddles instead. The most-liquid cap maturities are one, two, three, four, five, seven, and ten years. At-the-money caps are struck at the swap rate for the corresponding maturity. The strategy can be thought of as selling a $100 notional amount of at-the-money interest rate caps and delta-hedging the position using Eurodollar futures. In actuality, however, the strategy is implemented in a slightly different way that involves a series of short-term volatility swaps. This alternative approach is essentially the equivalent of shorting caps, but allows us to avoid a number of technicalities. The details of how the strategy is implemented are described in the Appendix.

The data used in constructing an index of cap volatility arbitrage returns consist of the swap market data described in Section 2, daily Eurodollar futures closing prices obtained from the Chicago Mercantile Exchange, and interest rate cap volatilities provided by Citigroup and the Bloomberg system. To incorporate transaction costs, we assume that the implied volatility at which we sell caps is one percent less than the market midpoint of the bid-ask spread (for example, at a volatility of 17 percent rather than at the midmarket volatility of 18 percent). Since the bid-ask spread for caps is typically less than one percent (or one vega), this gives us conservative estimates of the returns from the strategy. The excess return for a given month can be computed from the difference between the implied variance of a caplet at the beginning of the month, and the realized variance for the corresponding Eurodollar futures contracts over the month. The deltas and gammas for the individual caplets can be calculated using the standard Black (1976) model used to quote cap prices in this market. Although the Black model is used to compute hedge ratios, the strategy actually requires little in the way of modeling sophistication. To see this, recall that in the Black model, the delta of an at-the-money straddle is essentially zero. Thus, this strategy could be implemented almost entirely without the use of a model by simply selling cap/floor straddles over time.

Table 4 reports summary statistics for the volatility arbitrage return indexes based on the individual cap maturities. As shown, with the exception of the ten-year caps, the volatility arbitrage strategy tends to produce positive excess returns. The average excess returns range from just below zero to nearly 0.70 percent per month. The average excess return for the three-year cap strategy is significant at the ten-percent level, and the average excess return for the four-year cap strategy is significant at the five-percent level. As an illustration of why this strategy produces positive excess returns, Figure 4 graphs the implied volatility of a four-year cap against the average (over the corresponding 15 Eurodollar futures contracts used to hedge the cap) realized Eurodollar futures volatility (both expressed in terms of annualized basis point volatility). In this figure, the implied volatility clearly tends to be higher than the realized volatility. The Sharpe ratios for the strategies range from -0.08 to 0.82. Unlike the previous strategies considered, volatility arbitrage produces excess
returns that are highly negatively skewed. In particular, the skewness coefficients for all seven strategies are negative. Thus, these excess returns appear more consistent with the notion of “picking up nickels in front of a steamroller.” The excess returns again display more kurtosis than would normally distributed random variables. These strategies require far less capital for a $100 notional trade than the previous strategies.

6. CAPITAL STRUCTURE ARBITRAGE

Capital structure arbitrage (or alternatively, credit arbitrage) refers to a class of fixed income trading strategies that exploit mispricing between a company’s debt and its other securities (such as equity). With the exponential growth in the credit default swap (CDS) market in the last decade, this strategy has become increasingly popular with proprietary trading desks at investment banks.\(^{10}\) In fact, Euromoney reports that some traders describe this strategy as the “most significant development since the invention of the credit default swap itself nearly ten years ago” (Currie and Morris (2002)). Furthermore, the Financial Times reports that “hedge funds, faced with weak returns or losses on some of their strategies, have been flocking to a new one called capital structure arbitrage, which exploits mispricings between a company’s equity and debt” (Skorecki (2004)).

This section implements a simple version of capital structure arbitrage for a large cross-section of obligors. The purpose is to analyze the risk and return of the strategy as commonly implemented in the industry. Using the information on the equity price and the capital structure of an obligor, we compute its theoretical CDS spread and the size of an equity position needed to hedge changes in the value of the CDS, or what is commonly referred to as the equity delta. We then compare the theoretical CDS spread with the level quoted in the market. If the market spread is higher (lower) than the theoretical spread, we short (long) the CDS contract, while simultaneously maintaining the equity hedge. The strategy would be profitable if, subsequent to initiating a trade, the market spread and the theoretical spread converge to each other.

More specifically, we generate the predicted CDS spreads using the CreditGrades model, which was jointly devised by several investment banks as a market standard for

\(^{10}\)Credit default swaps are essentially insurance contracts against the default of an obligor. Specifically, the buyer of the CDS contract pays a premium each quarter, denoted as a percentage of the underlying bond’s notional value in basis points. The seller agrees to pay the notional value for the bond should the obligor default before the maturity of the contract. Credit default swaps can be used by commercial banks to protect the value of their loan portfolios. For a more detailed description of the CDS contract, see Longstaff, Mithal, and Neis (2004).
evaluating the credit risk of an obligor. It is loosely based on Black and Cox (1976), with default defined as the first passage of a diffusive firm value to an unobserved “default threshold.” For CDS data we use the comprehensive coverage provided by the Markit Group, which consists of daily spreads of five-year CDS contracts on North American industrial obligors from 2001 to 2004. To facilitate the trading analysis, we require that an obligor have at least 252 daily CDS spreads no more than two weeks apart from each other. After merging firm balance sheet data from Compustat and equity prices from CRSP, the final sample contains 135,759 daily spreads on 261 obligors. Details on the calibration of the model and the trading strategy are provided in the Appendix. This strategy clearly requires a high level of financial knowledge to implement.

To illustrate the intuition behind the trading strategy, we present the market spread, the theoretical spread, and the equity price for General Motors in Figure 5. First, we observe that there is a negative correlation between the CDS spread and the equity price. Indeed, the correlation between changes in the equity price and the market spread for GM is -0.32. Moreover, the market spread appears to be more volatile, reverting to the model spread over the long run. For example, the market spread widened to over 440 basis points during October 2002, while the model spread stayed below 300 basis points. This gap diminished shortly thereafter, and completely disappeared by February 2003. The arbitrageur would have profited handsomely if he were to short CDS and short equity as a hedge during this period. Note, however, that if the arbitrageur placed the same trades two months earlier in August 2002, he would have experienced losses as the CDS spread continued to diverge. The short equity hedge would have helped to some extent in this case, but its effectiveness remains doubtful due to the low correlation between the CDS spread and the equity price.

Incidentally, a similar scenario played out again in May 2005 when GM’s debt was on the verge of being downgraded. Seeing GM’s CDS becoming ever more expensive, many hedge funds shorted CDS on GM and hedged their exposure by shorting GM equity. GM’s debt was indeed downgraded shortly afterwards, but not before Kirk Kerkorian announced a $31-per-share offer to increase his stake in GM, causing the share price to soar. According to The Wall Street Journal, this “dealt the hedge funds a painful one-two punch: their debt bets lost money, and the loss was compounded when their hedge lost out as the stock price rose” (Zuckerman (2005)). Overall, the GM experience suggests that the risk for individual trades is typically a combination of rapidly rising market spreads and imperfect hedging from the offsetting equity positions.

11 For details about the model, see the CreditGrades Technical Document (2002).

12 This criterion is consistent with capital structure arbitrageurs trading in the most liquid segment of the CDS market. On the practical side, it also yields a reasonably broad sample.
We implement the trading strategy for all obligors as follows. For each day t in the sample period of an obligor, we check whether $c_t > (1 + \alpha) c_t'$, where c_t and c_t' are the market and model spreads, respectively, and α is called the trigger level for the strategy. If this criterion is satisfied, we short a CDS contract with a notional amount of $100 and short an equity position as given by the CG model.13 The positions are liquidated when the market spread and the model spread become equal, or after 180 days, whichever occurs first. We assume a five-percent bid-ask spread for trading CDS. This is a realistic estimate of CDS market transaction costs in recent periods.

Since there are 261 obligors in the final sample, we typically have thousands of open trades throughout the sample period. We create the monthly index return as follows. First, since the CDS position has an initial value of zero, we assume that each trade is endowed with an initial level of capital, from which the equity hedge is financed. All subsequent cash flows, such as CDS premiums and cash dividends on the stock position, are credited to or deducted from this initial capital. We also compute the value of the outstanding CDS position using the CG model, and obtain daily excess returns for each trade. Then, we calculate an equally-weighted average daily return across all open trades for each day in the sample, and compound them into a monthly frequency. This yields 48 numbers that represent monthly excess returns obtained by holding an equally-weighted portfolio of all available capital structure arbitrage trades.

Table 5 summarizes the monthly excess returns for six strategies implemented for three trading trigger levels and for investment-grade or speculative-grade obligors. First, we notice that the amount of initial capital required to generate a ten-percent annualized standard deviation is several times larger than for any of the previous strategies. This is an indication of the risk involved in capital structure arbitrage. In fact, results not presented here show that convergence occurs for only a small fraction of the individual trades. Furthermore, although Table 5 does not show any significant change in the risk and return of the strategies when the trade trigger level is increased from 1 to 2, the mean return can in fact become zero or negative at lower values of α, say 0.5. This suggests that the information content of a small deviation between the market spread and the predicted spread is low, and capital structure arbitrage becomes profitable only when implemented at higher threshold levels. Three of the six strategies have average monthly excess returns that are statistically significant at the five-percent level. The annualized Sharpe ratios are consistently in the range of 0.7 to 0.9, which are remarkably similar to the other types of fixed income arbitrage strategies studied in this paper. Finally, observe that these excess returns all display positive skewness, and have more kurtosis than would a normally distributed random variable.

13We also consider the strategy of buying CDS contracts and putting on a long equity hedge when $c_t' > (1 + \alpha) c_t$. This strategy yields slightly lower excess returns.
7. FIXED INCOME ARBITRAGE RISK AND RETURN

In this section, we study the risk and return characteristics of the fixed income arbitrage strategies. In particular, we explore whether the excess returns generated by the strategies represent compensation for exposure to systematic market factors.

7.1 Risk-Adjusted Returns

The five fixed income arbitrage strategies we study are often described in hedge fund marketing materials as “market-neutral” strategies. For example, since the swap spread strategy consists of a long position in a swap and an offsetting short position in a Treasury bond with the same maturity (or vice versa), this trade is often viewed as having no directional market risk. In actuality, however, this strategy is subject to the risk of a major widening in the Treasury-repo spread. Similar arguments can be directed at each of the other arbitrage strategies we consider. If the residual risks of these strategies are correlated with market factors, then the excess returns reported in previous tables may in fact represent compensation for the underlying market risk of these strategies.

To examine this issue, our approach will be to regress the excess returns for the various strategies on the excess returns of a number of equity and bond portfolios. To control for equity-market risk, we use the excess returns for the Fama-French (1993) market (R_M), small-minus-big (SMB), high-minus-low (HML), and up-minus-down (momentum or UMD) portfolios (excess returns are provided courtesy of Ken French). Also, we include the excess returns on the S&P bank stock index (from the Bloomberg system). To control for bond market risk, we use the excess returns on the CRSP Fama two-year, five-year, and ten-year Treasury bond portfolios. As controls for default risk, we also use the excess returns for a portfolio of A/BBB-rated industrial bonds, and for a portfolio of A/BBB-rated bank sector bonds (provided by Merrill Lynch and reported in the Bloomberg system). Table 6 reports the regression results for each of the strategies, including the value of the alpha (the intercept of the regression), along with the t-statistics for the alpha and the coefficients of the excess returns on the equity and fixed income portfolios. Also reported are the R^2 values for the regressions.

It is important to observe that a number of these factors are likely to be sensitive to major financial market “events” such as a sudden flight to quality or to liquidity (similar to that which occurred after the Russian Sovereign default in 1998 that led to the LTCM hedge fund crisis; see Dunbar (2000) and Duffie, Pedersen, and Singleton (2003)). For example, Longstaff (2003) shows that the yield spread between Treasury and agency bonds is sensitive to macroeconomic factors such as consumer sentiment that portend the risk of such a flight. By including measures such as the excess returns on Treasury, banking, and general industrial bonds, or on banking stocks, we can control for the component of the fixed income arbitrage returns that is simply
compensation for bearing the risk of major (but perhaps not-yet-realized) financial events. This is because the same risk would be present, and presumably compensated, in the excess returns from these equity and bond portfolios.

We turn first to the results for the swap spread arbitrage strategies. Recall that most of these eight strategies generate significant mean excess returns. Surprisingly, Table 6 shows that after controlling for their residual market risk, none of the eight strategies results in a significant alpha. In fact, four of the swap spread strategies have negative alphas.

Intuitively, the reason for these results is that the swap spread arbitrage strategy actually has a significant amount of market risk, and the excess returns generated by the strategy are simply compensation for that risk. Thus, there is very little “arbitrage” in this fixed income arbitrage strategy. This interpretation is strengthened by the fact that the R^2 values for the swap spread strategies range from about 10 to 25 percent. Thus, a substantial portion of the variation in the excess returns for the swap spread strategies is explained by the excess returns on the equity and bond portfolios. In particular, Table 6 shows that a number of the strategies have significant positive loadings on the market factor, significant negative loadings on the SMB and bank equity factors, significant loadings on the Treasury factors, and significant positive loadings on both the corporate bond factors.

The fact that these strategies have equity market risk may seem counterintuitive given that we are studying pure fixed income strategies. Previous research by Campbell (1987), Fama and French (1993), Campbell and Taksler (2002) and others, however, documents that there are common factors driving returns in both bond and stock markets. Our results show that the same is also true for these fixed income arbitrage strategies. These results are consistent with the view that the financial sector plays a central role in asset pricing. In particular, the swap spread strategy has direct exposure to the risk of a financial sector event or crisis. The commonality in returns, however, suggests that both the stock, Treasury, and corporate bond markets have exposure to the same risk. Thus, “financial-event” risk may be an important source of the commonality in returns across different types of securities.

Turning next to the yield curve arbitrage strategies, Table 6 shows that the results are almost the opposite of those for the swap spread arbitrage strategies. In particular, almost all of the yield curve arbitrage strategies result in significant alphas (most at the five-percent level). The alpha estimates range from about 0.36 to 0.82 percent per month and in some cases, are actually larger than the average value of the raw excess returns.

In general, the R^2 values for the yield curve arbitrage strategies are small, ranging from about 4 to 12 percent. Interestingly, the only significant source of market risk in this strategy comes from a negative relation with the excess returns on general industrial corporate bonds (not from the bank sector bonds). One interpretation of
this result may be that while the hedging approach used in the strategy is effective at eliminating the exposure to two major term structure factors, more than two factors drive the swap term structure. This interpretation is consistent with recent empirical evidence about the determinants of swap rates such as Duffie and Singleton (1997), and Liu, Longstaff, and Mandell (2004).

The mortgage arbitrage strategies shown in Table 6 also appear to produce large alphas. The alpha for the discount mortgage strategy is 0.725 percent per month and is significant at the five-percent level. Similarly, the alpha for the par strategy is 0.555 percent per month and is significant at the ten-percent level. The alpha for the premium strategy is not significant.

Note that these mortgage strategies also have a substantial amount of market risk. In particular, the R^2 values for the regressions range from about 14 to 19 percent. For example, the strategies tend to have negative betas with respect to the market, but have positive loadings on the general industrial corporate bond factor.

The volatility arbitrage strategies have returns that are substantially different from those of the other strategies. In particular, the alpha of only one of the seven volatility arbitrage strategies is significant at approximately the ten-percent level; the other volatility strategies produce insignificant alphas. Also, the strategies do not appear to have much in the way of market risk since the R^2 values are generally quite small.

Finally, recall that we have only 48 months of excess returns for the capital structure arbitrage strategies since data on CDS contracts prior to 2001 are not readily available because of the illiquidity of the market. Thus, one might expect that there would be little chance of detecting a significant alpha in this strategy. Despite this, Table 6 provides evidence that capital structure arbitrage does provide excess returns even after risk adjustment. Specifically, four of the six capital structure arbitrage strategies result in alphas that are significant at the ten-percent level. In each of these four cases, the alphas are in excess of one percent per month. Thus, these alpha estimates are the largest of all of the fixed income arbitrage strategies we consider.

Despite the large positive alphas for these capital structure arbitrage strategies, the R^2 values show that the strategies also have a large amount of market risk. These R^2 values are generally in the range of 15 to 35 percent. Interestingly, these strategies have significant positive loadings on the industrial bond factor and significant negative loadings on the SMB factor. Since both the industrial bond and SMB factors are correlated with corporate defaults, this suggests that there is an important business-cycle component to the returns on capital structure arbitrage.\footnote{For evidence about the relation between the SMB factor and default risk, see Vassalou and Xing (2004).}
Although not shown, we also calculate correlations among the various strategies. Not surprisingly, excess returns within the same strategy are often (although not always) highly positively correlated. Across strategies, however, the results indicate that there tends to be very little correlation. In fact virtually all of the cross-strategy correlations range from about \(-0.20\) to 0.30, with most in the range of \(-0.10\) to 0.10.

7.2 Historical Fixed Income Hedge Fund Returns

We have focused on return indexes generated by following specific fixed income arbitrage strategies over time rather than on the actual returns reported by hedge funds. As discussed earlier, there are a variety of important reasons for adopting this approach, including avoiding survivorship and backfill biases (see Malkiel and Saha (2004)), holding leverage fixed in the analysis, etc. To provide additional perspective, however, we repeat the analysis using actual fixed income arbitrage hedge fund return data from several widely-cited industry sources.

In particular, we obtain monthly return data from Credit Suisse First Boston (CSFB)/Tremont Index LLC for the HEDG Fixed Income Arbitrage Index. The underlying data for this index is based on the TASS database. The sample period for this data is January 1994 to December 2004. To be included in the index, funds must have a track record in the TASS database of at least one year, have an audited financial statement, and have at least $10 million in assets.\(^{15}\) This index is value weighted. The TASS database includes data on more than 4,500 hedge funds.

We also obtain monthly return data for the Hedge Fund Research Institute (HFRI) Fixed Income Arbitrage Index. Although returns dating back to 1990 are provided, we only use returns for the same period as for the CSFB/Tremont Index to insure comparability. This index is fund or equally weighted and has no minimum fund size or age requirement for inclusion in the index. This data source tracks approximately 1,500 hedge funds.

The properties of the fixed income arbitrage hedge fund returns implied by these industry sources are similar in many ways to those for the return indexes described in the previous section. In particular, the annualized average return and standard deviation of the CSFB/Tremont Fixed Income Arbitrage Index returns are 6.46 and 3.82 percent, respectively (excess return 2.60 percent). These values imply a Sharpe ratio of about 0.68 (which is close to the Sharpe ratio of 0.72 reported by Tremont/TASS (2004)). The annualized average return and standard deviation for the HFRI Fixed Income Arbitrage Index are 5.90 and 4.02 percent, respectively (excess return 2.05 percent). These values imply a Sharpe ratio of 0.51. On the other hand, there are some important differences between the CSFB/Tremont and HFRI indexes and our return indexes. In particular, the CSFB/Tremont and HFRI display a high level of negative skewness. The skewness parameters for the CSFB/Tremont and HFRI indexes

\(^{15}\)See Credit Suisse First Boston (2002) for a discussion of the index construction rules.
are -3.23 and -3.07, respectively. Recall that with the exception of the volatility arbitrage strategies, most of our return indexes display positive (or only slight negative) skewness. Similarly, the CSFB/Tremont and HFRI indexes display significant kurtosis, with coefficients of 17.03 and 16.40, respectively.\footnote{The effects of various types of biases and index construction on the properties of fund return indexes are discussed in Brown, Goetzmann, Ibbotson, and Ross (1992), Brooks and Kat (2002), Amin and Kat (2003), and Brulhart and Klein (2005).}

Although the correlations between the CSFB/Tremont and HFRI indexes and our return indexes vary across strategies, these correlations are typically in the range of about -0.10 to 0.30. In particular, the average correlations between the swap spread arbitrage returns and the CSFB/Tremont and HFRI indexes are 0.12 and 0.18, respectively. The average correlations between the yield curve arbitrage returns and the two indexes are 0.02 and -0.02, respectively. The average correlations between the mortgage arbitrage returns and the two indexes are 0.22 and 0.30, respectively. The average correlations between the volatility arbitrage returns and the two indexes are 0.15 and 0.29, respectively. The average correlations between the capital structure arbitrage returns and the two indexes are -0.05 and 0.26 respectively. The reason for the slightly negative correlation between the indexes and the capital structure arbitrage returns is possibly due to the fact that this strategy is relatively new and may not yet represent a significant portion of the industry fixed income arbitrage index. In summary, while the correlations are far from perfect, there is a significant degree of correlation between our return indexes and those based on reported hedge fund return data. Furthermore, these correlations are similar to the correlation of 0.36 reported by Mitchell and Pulvino (2001) between their return index and merger arbitrage returns reported by industry sources.

Table 6 also reports the results from the regression of the excess returns from the two indexes on the vector of excess returns described in the previous subsection. As shown, both the CSFB/Tremont and HFRI indexes appear to have significant alphas after controlling for equity and fixed income market factors. The alpha for the CSFB/Tremont index is 0.412 percent per month; the alpha for the HFRI index is 0.479 percent per month. Both of these alphas are significant at the five-percent level. It is worth reiterating the caution, however, that these indexes may actually overstate the returns of hedge funds. This is because of the potentially serious survivorship and backfill biases in these indexes identified by Malkiel and Saha (2004) and others. Thus, care should be used in interpreting these results. Furthermore, these biases (along with the heterogeneity of leverage across hedge funds and over time) may also be contributing factors in explaining the difference in the skewness between the CSFB/Tremont and HFRI indexes and the return indexes for our fixed income arbitrage strategies. The CSFB/Tremont index appears to have significant exposure to the returns on five-year Treasuries and on the portfolio of bank bonds.
This is consistent with Fung and Hsieh (2003) who find that fixed income arbitrage strategy returns are highly correlated with changes in credit spreads. The HFRI index has significant exposure to the returns on ten-year Treasuries. The R^2 values for the regressions are similar to those for the individual fixed income arbitrage strategy regressions.

7.3 Arbitrage and Hedge Fund Capital

Theory suggests that as more capital is directed towards fixed income arbitrage, any excess returns from following arbitrage strategies should dissipate.\(^1\) In this subsection, we test this hypothesis directly by regressing the risk-adjusted excess returns (the residuals from the regression of excess returns on the equity and fixed income factors) on annual changes in a measure of the total amount of capital devoted to fixed income arbitrage.

Figure 6 plots the time series of fixed income arbitrage hedge fund capital from 1993 to 2004. The data are quarterly and are obtained from the Tremont/TASS (2004) report on hedge fund asset flows. As shown, the amount of capital directed toward fixed income arbitrage has grown dramatically since 1993. The growth, however, has not been monotonic. In fact, immediately after the 1998 LTCM hedge fund crisis, the total amount of capital devoted to fixed income arbitrage decreased and then remained nearly constant for several years. In the past several years, however, the amount of capital in this strategy has skyrocketed.

Table 7 reports the results from the regression of the risk-adjusted excess returns from the various strategies on the change in the amount of fixed income arbitrage hedge fund capital over the previous year. For each month in the sample period, we use the TASS measure of total capital for the end of the quarter as the measure of fixed income arbitrage hedge fund capital. Note that we would expect a negative sign in this regression if increased capital results in smaller excess returns.

The results of the regression are intriguing. For the swap spread arbitrage strategies, the sign of the regression coefficient is uniformly negative, although the t-statistic is never significant. In contrast, for seven out of the eight yield curve arbitrage strategies, the relation is positive. Furthermore, the regression coefficient is significant at either the ten- or five-percent level for three of the strategies. Even stronger results hold for the mortgage arbitrage strategies. All three of the mortgage arbitrage strategies result in significant positive relations between the risk-adjusted excess returns and the amount of fixed income hedge fund capital. For the discount and par strategies, the regression R^2 value is greater than ten percent. The results are almost the reverse for the volatility and capital structure arbitrage strategies. For both of these strategies, the sign of the regression coefficient is uniformly negative. This negative relation

is statistically significant at the ten-percent level for six out of the seven volatility arbitrage strategies, and for one out of six of the capital structure arbitrage strategies.

What are we to make of these results? First, these regressions demonstrate clearly that the amount of capital devoted to arbitrage is correlated with the profitability of arbitrage strategies. For many of the strategies we consider, the direction of the effect is consistent with theory. For others, however, more capital seems to lead to higher excess returns. At this point, it is important to stress that the measure of fixed income arbitrage hedge fund capital we use is an aggregate measure across all styles of fixed income arbitrage strategies. Thus, it is possible that changes in the amount of capital devoted to yield curve and mortgage arbitrage strategies are not perfectly correlated with the broad measure we have access to. On the other hand, we have had discussions with traders at a number of fixed income arbitrage hedge funds who point out that there can be positive effects of having more capital in some strategies. In particular, increased capital can improve the liquidity of the market for the underlying securities being traded and can lead to more rapid convergence when there are pricing divergences. For example, Liu and Longstaff (2004) show that arbitrageurs may make larger profits when there are many small but rapidly-converging arbitrages rather than a few large but slowly-converging arbitrages. Thus, it is possible that the relation between excess returns and hedge fund capital could be negative for some strategies but positive for others. Clearly, however, our results suggest that the role of hedge fund capital in determining excess returns may be more complex than previously believed.

8. CONCLUSION

This paper conducts the most comprehensive study to date of the risk and return characteristics of fixed income arbitrage. Specifically, we construct monthly return indexes for swap spread, yield curve, mortgage, volatility, and capital structure (or credit) arbitrage over extended sample periods.

While these are all widely-used fixed income arbitrage strategies, there are substantial differences among them as well. For example, very little modeling is required to implement the swap spread and volatility arbitrage strategies, while complex models and hedge ratios must be estimated for the other strategies. While attempting to be market neutral, some of the strategies have residual exposure to market-wide risk factors. For example, swap spread arbitrage is sensitive to a crisis in the banking sector, and mortgage arbitrage is sensitive to a large drop in interest rates triggering prepayments. These considerations motivate us to examine the risk and return characteristics of fixed income arbitrage, both before and after adjusting for market risks.

We find a host of interesting results. To neutralize the effect of leverage, we
choose a level of initial capital to normalize the volatility of the returns to ten percent per annum across all strategies. We find that all five strategies yield sizable positive excess returns and Sharpe ratios similar to those reported by the hedge fund industry. The required initial capital ranges from a few dollars per $100 notional for volatility and yield curve arbitrage to $50 or more for capital structure arbitrage. With the exception of volatility arbitrage, the returns have a positive skewness, contrary to the common wisdom that risk arbitrage generates small positive returns most of the time, but experiences infrequent heavy losses.

We also find that most of the strategies are sensitive to various equity and bond market factors. Besides confirming the role of market factors in explaining swap spread arbitrage and mortgage arbitrage returns, we find that yield curve arbitrage returns are related to a combination of Treasury returns that mimic a “curvature factor,” and capital structure arbitrage returns are related to factors that proxy for economy-wide financial distress. Interestingly, we find that the three strategies that require the most “intellectual capital” to implement command positive excess returns even after adjusting for market risks.

To further examine the risk-adjusted excess returns, we regress them on changes in the amount of capital invested in fixed income arbitrage. In theory, too much capital will likely drive down the returns. On the other hand, however, intermediate levels of capital may actually improve liquidity and enable trades to converge more rapidly. Consistent with this view, we do not find a uniformly negative coefficient for hedge fund capital across all strategies.
A. Swap Spread Arbitrage.

The swap data for the study consist of month-end observations of the three-month Libor rate and midmarket swap rates for two-, three-, five-, seven-, and ten-year maturity swaps. These maturities represent the most-liquid and actively-traded maturities for swap contracts. All of these rates are based on end-of-trading-day quotes available in New York to insure comparability of the data. In estimating the parameters, we are careful to take into account daycount differences among the rates since Libor rates are quoted on an actual/360 basis while swap rates are semiannual bond equivalent yields. There are two sources for the swap data. The primary source is the Bloomberg system which uses quotations from a number of swap brokers. The data for Libor rates and for swap rates from the pre-1990 period are provided by Citigroup. As an independent check on the data, we also compare the rates with quotes obtained from Datastream and find the two sources of data to be very similar.

The Treasury data consist of month-end observations of the constant maturity Treasury (CMT) rates published by the Federal Reserve in the H-15 release for maturities of two, three, five, seven, and ten years. These rates are based on the yields of currently traded bonds of various maturities and reflect the Federal Reserve’s estimate of what the par or coupon rate would be for these maturities if the Treasury were to issue these securities. CMT rates are widely used in financial markets as indicators of Treasury rates for the most-actively-traded bond maturities. Since CMT rates are based heavily on the most-recently-auctioned bonds for each maturity, they provide an accurate estimate of yields for the most-liquid on-the-run Treasury bonds. As such, these rates are more likely to reflect actual market prices than quotations for less-liquid off-the-run Treasury bonds. Finally, data on three-month general collateral repo rates are obtained from Bloomberg as well as Citigroup.

In implementing the swap-spread strategy, we need an estimate of the expected average value of S_t over various horizons. To this end, we assume that the dynamics of the spread are given by the Gaussian process

$$dS = (\mu - \kappa S) \, dt + \sigma \, dZ,$$

where μ, κ, and σ are constants and Z_t is a standard Brownian motion. To estimate the parameters of this process, we regress monthly changes in the spread S on the lagged value of the spread. The resulting regression coefficients imply that the dynamics of the spread S_t are well described by

$$dS = (1.0717 - 3.9604 \, S) \, dt + 0.3464 \, dZ.$$
These dynamics imply that the long-run steady-state mean and standard deviation of S_t are 27.1 and 12.3 basis points, respectively, agreeing well with historical values.

To determine the expected average value of S_t over the next T periods, we first solve the stochastic differential equation above for S_t and then integrate the solution over T periods. Taking the expectation of the resulting expression gives

$$E_t \left[\frac{1}{T} \int_t^{t+T} S_{\tau} d\tau \right] = \frac{\mu}{\kappa} + \frac{1}{\kappa T} \left(S_t - \frac{\mu}{\kappa} \right) \left(1 - e^{-\kappa T} \right). \quad (A3)$$

Given this expression, we initiate the swap spread strategy whenever the current swap spread is more than 10 or 20 basis points greater than (or less than) the expected average value. Once executed, the strategy is held until either the horizon date of the swap and bond, or until the strategy converges. Convergence occurs when the swap spread for the remaining horizon of the strategy is less than or equal to (greater than or equal to) the expected average value of the spread S_t over the remaining horizon of the strategy.

To calculate the returns from the strategy, we need to specify transaction costs and the valuation methodology. For transaction costs, we assume values that are relatively large in comparison to those paid by large institutional investors such as major fixed income arbitrage hedge funds. In a recent paper, Fleming (2003) estimates that the bid-ask spread for actively-traded Treasuries is 0.20 32nds for two-year maturities, 0.39 32nds for five-year maturities, and 0.78 32nds for ten-year maturities. To be conservative, we assume that the bid-ask spread for Treasuries is one 32nd. Similarly, typical bid-ask spreads for actively-traded swap maturities are on the order of 0.50 basis points. We assume that the bid-ask spread for swaps is one basis point. Finally, we assume that the repo bid-ask spread is ten basis points. Thus, the repo rate earned on the proceeds from shorting a Treasury bond are ten basis points less than the cost of financing a Treasury bond. This value is based on a number of discussions with bond traders at various Wall Street firms who typically must pay a spread of up to ten basis points to short a specific Treasury bond. In some situations, a Treasury bond can trade special in the sense that the cost of shorting the bond can increase to 50 or 100 basis points or more temporarily (see Duffie (1996), Duffie, Gârleanu, and Pedersen (2002), and Krishnamurthy (2002)). The effect of special repo rates on the analysis would be to reduce the total excess return from the strategy slightly.

Turning to the valuation methodology, our approach is as follows. For each month of the sample period, we first construct discount curves from both Treasury and swap market data. For the Treasury discount curve, we use the data for the constant maturity six-month, one-year, two-year, three-year, five-year, seven-year, and ten-year CMT rates from the Federal Reserve. We then use a standard cubic spline algorithm to interpolate these par rates at semiannual intervals. These par rates are
then bootstrapped to provide a discount function at semiannual intervals. To obtain the value of the discount function at other maturities, we use a straightforward linear interpolation of the corresponding forward rates. In addition, we constrain the three-month point of the discount function to match the three-month Treasury rate. We follow the identical procedure in solving for the swap discount function. Treasury and swap positions can then be valued by discounting their fixed cash flows using the respective bootstrapped discount function.

B. Yield Curve Arbitrage.

To implement this strategy, we assume that the riskless rate is given by \(r_t = X_t + Y_t \), where \(X_t \) and \(Y_t \) follow the dynamics

\[
\begin{align*}
dX &= (\alpha - \beta X) \, dt + \sigma \, dZ_1, \quad (A4) \\
dY &= (\mu - \gamma Y) \, dt + \eta \, dZ_2, \quad (A5)
\end{align*}
\]

under the risk-neutral measure, where \(Z_1 \) and \(Z_2 \) are standard uncorrelated Brownian motions. With this formulation, zero-coupon bond prices are easily shown to be given by the two-dimensional version of the Vasicek (1977) term structure model.

To estimate the six parameters, we do the following. We pick a trial value of the six parameters. Then, for each month during the sample period, we solve for the values of \(X_t \) and \(Y_t \) that fit exactly the one-year and ten-year points along the swap curve. We then compute the sum of the squared differences between the model and market values for the two-, three-, five-, and seven-year swaps for that month. We repeat the process over all months, summing the squared differences over the entire sample period. We then iterate over parameter values until the global minimum of the sum of squared errors is obtained. The resulting parameter estimates are \(\alpha = 0.0009503 \), \(\beta = 0.0113727 \), \(\sigma = 0.0548290 \), \(\mu = 0.0240306 \), \(\gamma = 0.4628664 \), and \(\eta = 0.0257381 \).

With these parameter values, we again solve for the values of \(X_t \) and \(Y_t \) that fit exactly the one-year and ten-year points along the swap curve. From this fitted model, we determine the difference between the model and market values of the two-, three-, five-, and seven-year swaps. If the difference exceeds the trigger level of either five or ten basis points, we go long (or short) the swap and hedge it with offsetting positions in one-year and ten-year swaps. The hedge ratios are given analytically by the derivatives of the swap values with respect to the state variables \(X_t \) and \(Y_t \). Once implemented, the trade is held for 12 months, or until the market swap rate converges to its model value. The swap transaction costs used in computing returns are the same as those described above for the swap spread arbitrage strategy.
C. Mortgage Arbitrage.

The MBS data used in the strategy are from the Bloomberg system. The mortgage data are for the period between November 1996 and December 2004. The data are composed of the current mortgage coupon, price, OAS, actual prepayment speed (CPR), and weighted-average time to maturity of generic GNMA passthroughs with coupons of 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, and 8.5 percent. The mortgage repo rates are the end-of-month one-month values. The mortgages in the pools are assumed to have initial terms of 30 years. Daily five-year swap rates are used to estimate hedge ratios. The assumed bid-ask spread for passthroughs is 1.28 32nds. This is the average bid-ask spread obtained from the Bloomberg system of generic GNMA passthroughs with coupons of six and seven percent. As before, the repo bid-ask spread is ten basis points and the swap bid-ask spread is one basis point. Most of the MBS passthrough trading is on a to-be-announced (TBA) basis. This means that at the time a trade is made, neither party to the trade knows exactly which pool of passthroughs will be exchanged. The TBA trades are settled once a month. The settlement dates are generally around the 21st of the month for GNMA passthroughs and are specified by the Bond Market Association. Settlement dates for trades from November 1996 and December 1999 are from the Bond Market Association newsletter. Settlement dates for trades from January 2000 to December 2004 are from the Bloomberg system.

The hedge ratios are estimated by a nonparametric regression of the prices of each passthrough on the five-year swap rate. The constrained nonparametric estimation follows the method developed by Aït-Sahalia and Duarte (2003), which is composed of an isotonic regression followed by a linear-kernel regression. In this method, passthrough prices are assumed to be a decreasing function of the level of the five-year swap rate. One regression is performed for each passthrough coupon. The kernel used is normal and the bandwidths are chosen by cross-validation over a grid of possible bandwidths. Because swap rates are very persistent, we follow a procedure similar to the one in Boudoukh, Whitelaw, Richardson, and Stanton (1997) and perform the cross validation omitting all the data points in an interval. The bandwidth values are 0.001045 for the 4.5 percent passthrough, 0.0007821 for the 5.0 percent passthrough, 0.001384 for the 5.0 percent passthrough, 0.002926 for the 6.0 and 6.5 percent passthroughs, 0.002922 for the 7.0, 7.5, and 8.0 percent passthroughs, and 0.002473 for the 8.5 percent passthrough. The isotonic regression assumes that for each rate level there is only one observed price. In the sample, however, we observe various prices at the same rate level. To circumvent this problem, we take the average of the observed prices for each rate level before we run the isotonic regression. We note that the method developed by Aït-Sahalia and Duarte also allows for restrictions on the second derivative of the estimated function. In this application, however, we are only imposing restrictions on the first derivative because the price of passthroughs can be either a convex or concave function of the interest rate.

We implement the strategy in the following way. At the end of each month in
the sample, a decision is made with respect to holding, buying, or selling a MBS passthrough. The decision is based on the current mortgage coupon and on the previous month’s portfolio. Assume for instance that on the last trading day of the month, a hedge fund commits a certain amount of capital C_t to implement the MBS discount strategy. As part of this strategy the hedge fund buys a $100 notional amount of the MBS passthrough trading at a discount with coupon closest to the current mortgage coupon. At the same time, the hedge fund enters in a dollar roll and pays fixed in an interest rate swap. At the end of the next month, the hedge fund checks whether the passthrough purchased the previous month still satisfies the requirement of being at a discount with coupon closest to the current coupon. If so, the hedge fund continues to hold it, rebalances the hedge with a new five-year swap, and enters into a new dollar roll. If the passthrough does not satisfy this requirement, then the hedge fund sells it, closes the margin account, and restarts the strategy with a new MBS passthrough. The premium and the par passthrough strategies work in the same way.

The return calculation of the trading strategy is better clarified by means of an example. Assume that the hedge fund buys a $100 notional amount of a MBS passthrough at P_t^{Ask} for settlement on the date S_1, and, to hedge its interest rate exposure, pays fixed on a five-year interest rate swap. To finance its long MBS position, the hedge fund uses a dollar roll in which the hedge fund agrees to deliver a $100 notional amount of a MBS passthrough at S_1 in exchange for the dollar amount P_t^{Bid} and to receive a $100 notional amount of a passthrough at the settlement date S_2 in exchange for the dollar amount P_t^{Roll}. At the end of the following month $t+1$ the hedge fund decides to sell the $100 MBS position at price P_{t+1}^{Bid} for settlement at S_2 and unwind the five-year swap hedge. The net cash flows of the MBS transactions are $-(P_t^{Ask} - P_t^{Bid})$ at time S_1, and $(P_{t+1}^{Bid} - P_t^{Roll})$ at time S_2. The profit (or loss) of the MBS part of this trade is therefore $PV_{t+1}(P_{t+1}^{Bid} - P_t^{Roll}) - PV_t(P_t^{Ask} - P_t^{Bid})$, where PV_t is the time-t value of the cash flows. In addition to the profits related to the MBS, the hedge fund also has profit from the swaps and from the capital invested in the margin account. The monthly return of this strategy is therefore the sum of the profits of all the parts of the strategy divided by C_t. Capital is allocated when a passthrough is purchased and is updated afterwards by the profits (or losses) of the strategy.

Note that the MBS return in the expression $PV_{t+1}(P_{t+1}^{Bid} - P_t^{Roll}) - PV_t(P_t^{Ask} - P_t^{Bid})$ does not depend directly on the actual MBS passthrough prepayment because the counterparty of the hedge fund in the dollar roll keeps all of the cash flows of the passthrough that occur between S_1 and S_2. As a consequence, the value of P_t^{Roll} depends on the dealer forecast at time t of the prepayment cash flows between S_1 and S_2. The value of P_t^{Roll} is calculated as in the Bloomberg roll analysis (see Biby, Modukuri, and Hargrave (2001) for details about this calculation). We assume that the implied cost of financing for the roll is the mortgage repo rate plus the bid-ask spread. In addition, as in Dynkin, Hyman, Konstantinovsky, and Roth (2001), we assume that
the forecast prepayment level is equal to the prepayment level of the month when the roll is initiated. In reality, the level of prepayments during the month when the roll is initiated is only disclosed to investors at the beginning of the subsequent month.

D. Volatility Arbitrage.

Our approach for computing the returns from volatility arbitrage is based on entering into a sequence of one-month volatility swaps that pay the arbitrageur the difference between the initial implied variance of an interest rate caplet and the realized variance for the corresponding Eurodollar futures contract each month. This strategy benefits directly whenever the realized volatility is less than the implied volatility of interest rate caps and floors. This strategy is scaled to allow it to mimic the returns that would be obtained by shorting caps (and/or floors) in a way that keeps the portfolio continuously delta and vega hedged.

To illustrate the equivalence, imagine that the market values interest rate caplets using the Black (1976) model and that the implied volatility is constant (or that vega risk is zero). From Black, it can be shown that the price C of a caplet would satisfy the following partial differential equation,

$$\frac{\sigma^2 F^2}{2} C_{FF} - r C + C_t = 0, \quad (A6)$$

where F is the corresponding forward rate and σ^2 is the implied volatility. Now assume that the actual dynamics of the forward rate under the physical measure are given by $dF = \mu_F dt + \hat{\sigma} F dZ$. Form a portfolio ($\Pi$) with a short position in a caplet hedged with a futures contract. Applying Itô’s Lemma to the hedged portfolio gives

$$d\Pi = \left(\Pi_t + \frac{\hat{\sigma}^2 F^2}{2} \Pi_{FF} \right) dt. \quad (A7)$$

Since the initial value of the futures contract is zero, its derivative with respect to time is zero, and its second derivative with respect to F is zero (we abstract from the slight convexity differences between forwards and futures), we obtain

$$d\Pi = \left(-C_t - \frac{\hat{\sigma}^2 F^2}{2} C_{FF} \right) dt. \quad (A8)$$

Substituting C_t from Equation (A6) in Equation (A8) gives

$$d\Pi = \left(\frac{\sigma^2 - \hat{\sigma}^2}{2} F^2 C_{FF} + r \Pi \right) dt. \quad (A9)$$
The value of this portfolio today is equal to the capital amount invested in this strategy. The excess profit of this strategy over a small period of time is approximately

\[
\frac{(\sigma^2 - \hat{\sigma}^2)F^2}{2}C_{FF} \, dt. \tag{A10}
\]

Thus, the instantaneous excess return on the strategy would be proportional to the gamma of the caplet times the difference between the implied and realized variance of the forward rate process. Note that this quantity is identical to the profit on a volatility swap where the notional amount is scaled by \(F^2C_{FF}/2\). This means that we can think of the trading strategy as either a volatility swap strategy or a short delta-hedged position in a caplet (holding implied volatility constant over the month).

We calculate the excess returns from the volatility arbitrage strategy by calculating the quantity in Equation (A10) for each individual caplet. As the implied volatility for the individual caplets within a cap, we use the market-quoted volatility for the cap. A one-percent bid/ask spread represents a realistic value for interest rate caps and floors. Alternatively, a one-percent transaction cost would also be realistic for a volatility swap (which can be approximated by an at-the-money-forward cap/floor straddle). As the realized volatility for each individual caplet, we use the volatility of the Eurodollar futures contract with maturity corresponding to the caplet. Using a one-month horizon for the strategy minimizes the effects of changes in the “moneyness” of the caps on the time series of returns.

E. Capital Structure Arbitrage.

We provide a brief summary of the CreditGrades (CG) model, the selection of its parameters, and the use of the model in our capital structure arbitrage trading analysis. For details about the model and the associated pricing formulas, the reader is referred to the CreditGrades Technical Document (2002, CGTD).

CreditGrades is a structural model in the tradition of Merton (1974), Black and Cox (1976), and Longstaff and Schwartz (1995). It assumes that the firm value is a diffusion, and default occurs when the firm value reaches a lower threshold called the “default barrier.” Deviating slightly from the traditional structural models, however, CG assumes that the default barrier is an unknown constant that is drawn from a known distribution. This assumption helps to boost short-term credit spreads in a way similar to Duffie and Lando (2001).

To generate a predicted CDS spread, CG requires a set of seven inputs: the equity price \(S\), the debt per share \(D\), the mean default barrier as a percentage of debt per share \(\overline{L}\), its standard deviation \(\lambda\), the bond recovery rate \(R\), the equity volatility \(\sigma_S\), and the risk-free interest rate \(r\). Consistent with the empirical analysis in the CGTD, we define \(D\) as total liabilities (taken from Compustat) divided by common shares outstanding, \(\sigma_S\) as the 1,000-day historical equity volatility, \(r\) as the five-year

29
constant maturity Treasury yield, and let λ be equal to 0.3. However, rather than setting \overline{T} to be 0.5 and taking the bond recovery rate from a proprietary database as in the CGTD, we set R to be 0.5 and estimate the mean default barrier \overline{T} by fitting the first ten daily market spreads of an obligor to the CG model. This is consistent with the historical recovery rates on senior unsecured debt and the literature on endogenous bankruptcy. For example, in Leland (1994) and Leland and Toft (1996), the default barrier is chosen by the manager with consideration for the fundamental characteristics of the company, such as the asset volatility and the payout rate.

The CG model is used in the trading analysis in three ways. Properly estimated with the above procedure, we first use it to calculate a time series of predicted CDS spreads for the entire sample period for each obligor. The comparison between the predicted spreads and the market spreads forms the basis of the trading strategy as explained in Section 6. Second, to calculate the daily returns on an open trade, we must keep track of the total value of the positions, notably the value of a CDS position that has been held for up to 180 days. The Markit CDS database used in this study, however, provides only the spreads on newly issued five-year contracts. We note that the value of an existing contract can be approximated by the change in five-year CDS spreads multiplied by the value of a five-year annuity, whose cash flows are contingent on the survival of the obligor. We use the term structure of survival probabilities from the CG model to mark to market the CDS position. Third, we numerically differentiate the value of the CDS position with respect to the equity price to identify the size of the equity hedge.

The trading analysis performed in Section 6 assumes a maximum holding period of 180 days, a CDS bid-ask spread of five percent, and a static equity hedge that is held fixed throughout a trade. It ignores the cost of trading equity because CDS market bid-ask spreads are likely to be the dominant source of transaction costs. We have experimented with setting different holding periods (30 to 360 days), updating the equity hedge daily, and computing the CDS market value using a reduced-form approach (such as Duffie and Singleton (1999)), all with results similar to those in Table 5. In addition, the average monthly excess returns remain positive even when the CDS bid-ask spread increases to ten percent.
REFERENCES

Credit Suisse First Boston, 2002, CSFB/Tremont Hedge Fund Index, Index Construction Rules, March 4.

Duffie, D., and M. Huang, 1996, Swap Rates and Credit Quality, *Journal of Finance*

Dunbar, N., 2000, Inventing Money, West Sussex: John Wiley & Sons Ltd.

Fung, W., and D. Hsieh, 2003, The Risk in Hedge Fund Strategies: Alternative Al-

He, H., 2000, Modeling Term Structures of Swap Spreads, Working paper, Yale University.

Table 1

Summary Statistics for the Swap Spread Arbitrage Strategy. This table reports the indicated summary statistics for the monthly percentage excess returns from the swap spread arbitrage strategy. Trigger denotes the basis-point difference between the swap spread and the expected average Libor-repo spread that is required to implement the strategy. Swap denotes the swap maturity used in the strategy. N denotes the number of monthly excess returns. Capital is the initial amount of capital required per $100 notional of the arbitrage strategy to give a ten-percent annualized standard deviation of excess returns. The t-statistics for the means are corrected for the serial correlation of excess returns. Ratio Neg. is the proportion of negative excess returns. The sample period for the strategy is December 1988 to December 2004.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS1</td>
<td>10 bp</td>
<td>2 yr</td>
<td>193</td>
<td>3.453</td>
<td>0.548</td>
<td>2.66</td>
<td>−12.549</td>
<td>0.000</td>
<td>10.610</td>
<td>−0.025</td>
<td>2.722</td>
<td>0.342</td>
<td>−0.010</td>
<td>0.657</td>
</tr>
<tr>
<td>SS2</td>
<td>3 yr</td>
<td></td>
<td>193</td>
<td>4.755</td>
<td>0.601</td>
<td>3.57</td>
<td>−9.389</td>
<td>0.151</td>
<td>13.827</td>
<td>0.580</td>
<td>3.072</td>
<td>0.316</td>
<td>−0.208</td>
<td>0.722</td>
</tr>
<tr>
<td>SS3</td>
<td>5 yr</td>
<td></td>
<td>193</td>
<td>7.462</td>
<td>0.418</td>
<td>2.16</td>
<td>−13.263</td>
<td>0.000</td>
<td>8.275</td>
<td>−0.491</td>
<td>3.030</td>
<td>0.285</td>
<td>−0.073</td>
<td>0.501</td>
</tr>
<tr>
<td>SS4</td>
<td>10 yr</td>
<td></td>
<td>193</td>
<td>15.063</td>
<td>0.297</td>
<td>1.66</td>
<td>−10.626</td>
<td>0.122</td>
<td>10.526</td>
<td>−0.157</td>
<td>2.791</td>
<td>0.394</td>
<td>−0.152</td>
<td>0.356</td>
</tr>
<tr>
<td>SS5</td>
<td>20 bp</td>
<td>2 yr</td>
<td>193</td>
<td>2.959</td>
<td>0.318</td>
<td>1.47</td>
<td>−15.063</td>
<td>0.000</td>
<td>12.352</td>
<td>0.005</td>
<td>6.392</td>
<td>0.181</td>
<td>0.038</td>
<td>0.381</td>
</tr>
<tr>
<td>SS6</td>
<td>3 yr</td>
<td></td>
<td>193</td>
<td>4.110</td>
<td>0.461</td>
<td>2.75</td>
<td>−10.825</td>
<td>0.000</td>
<td>16.174</td>
<td>0.491</td>
<td>6.595</td>
<td>0.155</td>
<td>−0.211</td>
<td>0.554</td>
</tr>
<tr>
<td>SS7</td>
<td>5 yr</td>
<td></td>
<td>193</td>
<td>7.164</td>
<td>0.325</td>
<td>1.75</td>
<td>−11.312</td>
<td>0.000</td>
<td>9.320</td>
<td>−0.415</td>
<td>2.459</td>
<td>0.275</td>
<td>−0.111</td>
<td>0.390</td>
</tr>
<tr>
<td>SS8</td>
<td>10 yr</td>
<td></td>
<td>193</td>
<td>14.642</td>
<td>0.323</td>
<td>1.75</td>
<td>−11.064</td>
<td>0.000</td>
<td>11.229</td>
<td>−0.094</td>
<td>3.687</td>
<td>0.295</td>
<td>−0.118</td>
<td>0.388</td>
</tr>
</tbody>
</table>
Table 2

Summary Statistics for the Yield Curve Arbitrage Strategy. This table reports the indicated summary statistics for the monthly percentage excess returns from the yield curve arbitrage strategy. Trigger denotes the basis-point difference between the model and market values of the swap required to implement the strategy. Swap denotes the swap maturity used in the strategy. \(N \) denotes the number of monthly excess returns. Capital is the initial amount of capital required per $100 notional of the arbitrage strategy to give a ten-percent annualized standard deviation of excess returns. The \(t \)-statistics for the means are corrected for the serial correlation of excess returns. Ratio Neg. is the proportion of negative excess returns. The sample period for the strategy is December 1988 to December 2004.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>YC1</td>
<td>5 bp</td>
<td>2 yr</td>
<td>193</td>
<td>5.476</td>
<td>0.460</td>
<td>2.38</td>
<td>−6.072</td>
<td>0.000</td>
<td>10.099</td>
<td>0.521</td>
<td>0.469</td>
<td>0.394</td>
<td>−0.075</td>
<td>0.552</td>
</tr>
<tr>
<td>YC2</td>
<td>3 yr</td>
<td></td>
<td>193</td>
<td>8.499</td>
<td>0.509</td>
<td>2.38</td>
<td>−5.895</td>
<td>0.000</td>
<td>10.724</td>
<td>0.532</td>
<td>0.469</td>
<td>0.420</td>
<td>0.029</td>
<td>0.610</td>
</tr>
<tr>
<td>YC3</td>
<td>5 yr</td>
<td></td>
<td>193</td>
<td>9.244</td>
<td>0.580</td>
<td>2.90</td>
<td>−7.348</td>
<td>0.000</td>
<td>9.771</td>
<td>0.422</td>
<td>1.099</td>
<td>0.321</td>
<td>−0.039</td>
<td>0.696</td>
</tr>
<tr>
<td>YC4</td>
<td>7 yr</td>
<td></td>
<td>193</td>
<td>6.345</td>
<td>0.631</td>
<td>3.42</td>
<td>−7.431</td>
<td>0.000</td>
<td>14.287</td>
<td>0.631</td>
<td>3.615</td>
<td>0.202</td>
<td>−0.119</td>
<td>0.757</td>
</tr>
<tr>
<td>YC5</td>
<td>10 bp</td>
<td>2 yr</td>
<td>193</td>
<td>4.847</td>
<td>0.540</td>
<td>2.76</td>
<td>−6.878</td>
<td>0.000</td>
<td>10.056</td>
<td>0.569</td>
<td>0.902</td>
<td>0.301</td>
<td>−0.059</td>
<td>0.648</td>
</tr>
<tr>
<td>YC6</td>
<td>3 yr</td>
<td></td>
<td>193</td>
<td>7.891</td>
<td>0.486</td>
<td>2.31</td>
<td>−6.365</td>
<td>0.000</td>
<td>11.558</td>
<td>0.591</td>
<td>1.172</td>
<td>0.337</td>
<td>0.014</td>
<td>0.583</td>
</tr>
<tr>
<td>YC7</td>
<td>5 yr</td>
<td></td>
<td>193</td>
<td>7.794</td>
<td>0.615</td>
<td>3.29</td>
<td>−8.307</td>
<td>0.000</td>
<td>11.464</td>
<td>0.592</td>
<td>2.366</td>
<td>0.212</td>
<td>−0.108</td>
<td>0.738</td>
</tr>
<tr>
<td>YC8</td>
<td>7 yr</td>
<td></td>
<td>193</td>
<td>4.546</td>
<td>0.437</td>
<td>2.46</td>
<td>−10.306</td>
<td>0.000</td>
<td>20.032</td>
<td>2.156</td>
<td>14.953</td>
<td>0.088</td>
<td>−0.158</td>
<td>0.524</td>
</tr>
</tbody>
</table>
Table 3

Summary Statistics for the Mortgage Arbitrage Strategy. This table reports the indicated summary statistics for the monthly percentage excess returns from the mortgage arbitrage strategy. Mortgage denotes the type of mortgage backed securities used in the strategy—discount, par, or premium. N denotes the number of monthly excess returns. Capital is the initial amount of capital required per $100 notional of the arbitrage strategy to give a ten-percent annualized standard deviation of excess returns. The t-statistics for the means are corrected for the serial correlation of excess returns. Ratio Neg. is the proportion of negative excess returns. The sample period for the strategy is December 1996 to December 2004.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MA1</td>
<td>Discount</td>
<td>97</td>
<td>21.724</td>
<td>0.691</td>
<td>2.08</td>
<td>−6.794</td>
<td>0.592</td>
<td>11.683</td>
<td>0.882</td>
<td>2.929</td>
<td>0.383</td>
<td>0.128</td>
<td>0.830</td>
</tr>
<tr>
<td>MA2</td>
<td>Par</td>
<td>97</td>
<td>19.779</td>
<td>0.466</td>
<td>1.50</td>
<td>−7.600</td>
<td>0.478</td>
<td>11.676</td>
<td>0.330</td>
<td>2.263</td>
<td>0.402</td>
<td>0.059</td>
<td>0.560</td>
</tr>
<tr>
<td>MA3</td>
<td>Premium</td>
<td>97</td>
<td>16.910</td>
<td>0.065</td>
<td>0.23</td>
<td>−8.274</td>
<td>0.311</td>
<td>9.844</td>
<td>−0.274</td>
<td>1.452</td>
<td>0.402</td>
<td>−0.052</td>
<td>0.078</td>
</tr>
</tbody>
</table>
Table 4

Summary Statistics for the Fixed Income Volatility Arbitrage Strategy. This table reports the indicated summary statistics for the monthly percentage excess returns from the fixed income volatility arbitrage strategy of shorting at-the-money interest rate caps of the indicated maturity. N denotes the number of monthly excess returns. Capital is the initial amount of capital required per $100 notional of the arbitrage strategy to give a ten-percent annualized standard deviation of excess returns. The t-statistics for the means are corrected for the serial correlation of excess returns. Ratio Neg. is the proportion of negative excess returns. The sample period for the strategy is October 1989 to December 2004 (but is shorter for some strategies because cap volatility data for earlier periods are unavailable).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VA1</td>
<td>Short</td>
<td>1 yr</td>
<td>183</td>
<td>0.463</td>
<td>0.268</td>
<td>0.78</td>
<td>-9.833</td>
<td>0.448</td>
<td>7.745</td>
<td>-0.950</td>
<td>1.488</td>
<td>0.383</td>
<td>0.465</td>
<td>0.332</td>
</tr>
<tr>
<td>VA2</td>
<td></td>
<td>2 yr</td>
<td>183</td>
<td>0.734</td>
<td>0.389</td>
<td>1.11</td>
<td>-9.720</td>
<td>0.893</td>
<td>6.550</td>
<td>-0.962</td>
<td>1.579</td>
<td>0.383</td>
<td>0.465</td>
<td>0.467</td>
</tr>
<tr>
<td>VA3</td>
<td></td>
<td>3 yr</td>
<td>183</td>
<td>0.863</td>
<td>0.609</td>
<td>1.77</td>
<td>-9.675</td>
<td>1.092</td>
<td>6.851</td>
<td>-0.909</td>
<td>1.332</td>
<td>0.355</td>
<td>0.445</td>
<td>0.731</td>
</tr>
<tr>
<td>VA4</td>
<td></td>
<td>4 yr</td>
<td>183</td>
<td>0.953</td>
<td>0.682</td>
<td>2.08</td>
<td>-10.295</td>
<td>1.106</td>
<td>7.087</td>
<td>-0.989</td>
<td>1.644</td>
<td>0.311</td>
<td>0.409</td>
<td>0.819</td>
</tr>
<tr>
<td>VA5</td>
<td></td>
<td>5 yr</td>
<td>150</td>
<td>1.082</td>
<td>0.488</td>
<td>1.32</td>
<td>-9.997</td>
<td>0.912</td>
<td>6.654</td>
<td>-0.988</td>
<td>1.772</td>
<td>0.347</td>
<td>0.423</td>
<td>0.586</td>
</tr>
<tr>
<td>VA6</td>
<td></td>
<td>7 yr</td>
<td>135</td>
<td>1.279</td>
<td>0.270</td>
<td>0.72</td>
<td>-10.513</td>
<td>0.919</td>
<td>5.811</td>
<td>-1.221</td>
<td>2.331</td>
<td>0.393</td>
<td>0.398</td>
<td>0.324</td>
</tr>
<tr>
<td>VA7</td>
<td></td>
<td>10 yr</td>
<td>132</td>
<td>1.474</td>
<td>-0.068</td>
<td>-0.19</td>
<td>-12.819</td>
<td>0.400</td>
<td>5.072</td>
<td>-1.487</td>
<td>3.501</td>
<td>0.417</td>
<td>0.362</td>
<td>-0.082</td>
</tr>
</tbody>
</table>
Table 5

Summary Statistics for the Capital Structure Arbitrage Strategy. This table reports the indicated summary statistics for the monthly percentage excess returns from the capital structure arbitrage strategy. Rating denotes whether the strategy is applied to investment-grade or speculative-grade CDS obligors. Trigger denotes the ratio of the difference between the market spread and the model spread divided by the model spread, above which the strategy is implemented. N denotes the number of monthly excess returns. Capital is the initial amount of capital required per $100 notional of the arbitrage strategy to give a ten-percent annualized standard deviation of excess returns. The t-statistics for the means are corrected for the serial correlation of excess returns. Ratio Neg. is the proportion of negative excess returns. The sample period for the strategy is January 2001 to December 2004.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1</td>
<td>Invst.</td>
<td>1.00</td>
<td>48</td>
<td>47.000</td>
<td>0.768</td>
<td>1.95</td>
<td>−8.160</td>
<td>0.285</td>
<td>10.570</td>
<td>0.223</td>
<td>5.337</td>
<td>0.271</td>
<td>−0.055</td>
<td>0.922</td>
</tr>
<tr>
<td>CS2</td>
<td>1.50</td>
<td></td>
<td>48</td>
<td>52.300</td>
<td>0.613</td>
<td>1.25</td>
<td>−8.020</td>
<td>0.053</td>
<td>12.770</td>
<td>0.266</td>
<td>8.682</td>
<td>0.375</td>
<td>0.162</td>
<td>0.735</td>
</tr>
<tr>
<td>CS3</td>
<td>2.00</td>
<td></td>
<td>48</td>
<td>44.900</td>
<td>0.731</td>
<td>1.30</td>
<td>−4.640</td>
<td>0.000</td>
<td>13.790</td>
<td>0.342</td>
<td>10.075</td>
<td>0.417</td>
<td>0.296</td>
<td>0.877</td>
</tr>
<tr>
<td>CS4</td>
<td>Spec.</td>
<td>1.00</td>
<td>48</td>
<td>86.900</td>
<td>0.709</td>
<td>2.30</td>
<td>−8.680</td>
<td>0.000</td>
<td>7.680</td>
<td>0.331</td>
<td>2.646</td>
<td>0.167</td>
<td>−0.298</td>
<td>0.851</td>
</tr>
<tr>
<td>CS5</td>
<td>1.50</td>
<td></td>
<td>48</td>
<td>90.500</td>
<td>0.669</td>
<td>2.17</td>
<td>−7.250</td>
<td>0.000</td>
<td>10.920</td>
<td>0.358</td>
<td>4.661</td>
<td>0.146</td>
<td>−0.306</td>
<td>0.802</td>
</tr>
<tr>
<td>CS6</td>
<td>2.00</td>
<td></td>
<td>48</td>
<td>75.900</td>
<td>0.740</td>
<td>1.03</td>
<td>−1.730</td>
<td>0.000</td>
<td>15.210</td>
<td>0.448</td>
<td>15.889</td>
<td>0.104</td>
<td>0.505</td>
<td>0.887</td>
</tr>
</tbody>
</table>
Regression Results. This table reports the indicated summary statistics for the regression of monthly percentage excess returns on the excess returns of the indicated equity and bond portfolios. Results for the CSFP and HFRI fixed income arbitrage hedge fund return indexes are also reported. R_M is the excess returns on the CRSP value-weighted portfolio. SMB, HML, and UMD are the Fama-French small-minus-big, high-minus-low, and up-minus-down market factors, respectively. R_S is the excess return on an S&P index of bank stocks. R_2, R_3, and R_{10} are the excess returns on the CRSP Fama portfolios of two-year, five-year, and ten-year Treasury bonds, respectively. R_I and R_B are the excess returns on Merrill Lynch indexes of A/BAA-rated industrial bonds and A/BAA-rated bank bonds, respectively. The sample periods for the indicated strategies are as reported in the earlier tables.

\[
R_{it} = \alpha + \beta_1 R_{Mt} + \beta_2 SMB_t + \beta_3 HML_t + \beta_4 UMD_t + \beta_5 R_{St} + \beta_6 R_{2t} + \beta_7 R_{5t} + \beta_8 R_{10t} + \beta_9 R_{It} + \beta_{10} R_{Bt} + \epsilon_t
\]

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Alpha</th>
<th>Alpha</th>
<th>R_M</th>
<th>SMB</th>
<th>HML</th>
<th>UMD</th>
<th>R_S</th>
<th>R_2</th>
<th>R_5</th>
<th>R_{10}</th>
<th>R_I</th>
<th>R_B</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS1</td>
<td>0.207</td>
<td>0.86</td>
<td>1.41</td>
<td>-0.41</td>
<td>0.38</td>
<td>0.61</td>
<td>-1.10</td>
<td>1.95</td>
<td>-1.02</td>
<td>-0.55</td>
<td>-0.48</td>
<td>2.70</td>
<td>0.094</td>
</tr>
<tr>
<td>SS2</td>
<td>0.257</td>
<td>1.08</td>
<td>1.84</td>
<td>-0.84</td>
<td>1.25</td>
<td>1.23</td>
<td>-2.20</td>
<td>0.40</td>
<td>-0.42</td>
<td>-1.28</td>
<td>0.68</td>
<td>2.75</td>
<td>0.118</td>
</tr>
<tr>
<td>SS3</td>
<td>0.111</td>
<td>0.49</td>
<td>1.80</td>
<td>-2.29</td>
<td>0.37</td>
<td>0.73</td>
<td>-1.83</td>
<td>1.55</td>
<td>0.14</td>
<td>-4.14</td>
<td>2.30</td>
<td>2.74</td>
<td>0.216</td>
</tr>
<tr>
<td>SS4</td>
<td>-0.189</td>
<td>-0.86</td>
<td>2.88</td>
<td>-1.77</td>
<td>1.65</td>
<td>2.23</td>
<td>-1.98</td>
<td>2.28</td>
<td>1.40</td>
<td>-5.63</td>
<td>2.28</td>
<td>2.11</td>
<td>0.250</td>
</tr>
<tr>
<td>SS5</td>
<td>-0.076</td>
<td>-0.33</td>
<td>1.57</td>
<td>0.46</td>
<td>0.51</td>
<td>0.66</td>
<td>-1.93</td>
<td>2.90</td>
<td>-2.24</td>
<td>0.96</td>
<td>-1.96</td>
<td>4.05</td>
<td>0.159</td>
</tr>
<tr>
<td>SS6</td>
<td>0.118</td>
<td>0.49</td>
<td>1.99</td>
<td>-0.79</td>
<td>0.90</td>
<td>0.79</td>
<td>-2.34</td>
<td>1.58</td>
<td>-1.69</td>
<td>0.11</td>
<td>-0.28</td>
<td>3.05</td>
<td>0.105</td>
</tr>
<tr>
<td>SS7</td>
<td>-0.068</td>
<td>-0.30</td>
<td>2.55</td>
<td>-1.79</td>
<td>1.09</td>
<td>1.34</td>
<td>-2.42</td>
<td>1.61</td>
<td>0.01</td>
<td>-3.88</td>
<td>1.92</td>
<td>3.14</td>
<td>0.225</td>
</tr>
<tr>
<td>SS8</td>
<td>-0.172</td>
<td>-0.78</td>
<td>2.79</td>
<td>-1.86</td>
<td>1.63</td>
<td>2.19</td>
<td>-1.94</td>
<td>1.99</td>
<td>1.28</td>
<td>-5.38</td>
<td>2.54</td>
<td>1.98</td>
<td>0.241</td>
</tr>
<tr>
<td>YC1</td>
<td>0.365</td>
<td>1.48</td>
<td>0.44</td>
<td>0.49</td>
<td>0.08</td>
<td>0.31</td>
<td>0.14</td>
<td>2.16</td>
<td>-0.62</td>
<td>0.69</td>
<td>-1.74</td>
<td>0.27</td>
<td>0.043</td>
</tr>
<tr>
<td>YC2</td>
<td>0.409</td>
<td>1.68</td>
<td>0.09</td>
<td>0.84</td>
<td>0.55</td>
<td>0.82</td>
<td>0.22</td>
<td>2.22</td>
<td>-0.07</td>
<td>0.04</td>
<td>-2.22</td>
<td>0.77</td>
<td>0.071</td>
</tr>
<tr>
<td>YC3</td>
<td>0.535</td>
<td>2.19</td>
<td>-0.47</td>
<td>1.38</td>
<td>0.71</td>
<td>0.76</td>
<td>0.57</td>
<td>1.35</td>
<td>-1.45</td>
<td>1.96</td>
<td>-2.58</td>
<td>1.57</td>
<td>0.068</td>
</tr>
<tr>
<td>YC4</td>
<td>0.818</td>
<td>3.38</td>
<td>-1.15</td>
<td>1.96</td>
<td>0.26</td>
<td>0.86</td>
<td>1.04</td>
<td>-0.37</td>
<td>-0.44</td>
<td>1.81</td>
<td>-2.32</td>
<td>0.26</td>
<td>0.089</td>
</tr>
<tr>
<td>YC5</td>
<td>0.582</td>
<td>2.36</td>
<td>-0.81</td>
<td>1.25</td>
<td>-0.25</td>
<td>0.16</td>
<td>1.03</td>
<td>1.44</td>
<td>0.10</td>
<td>0.23</td>
<td>-1.86</td>
<td>0.27</td>
<td>0.057</td>
</tr>
<tr>
<td>YC6</td>
<td>0.521</td>
<td>2.14</td>
<td>-1.04</td>
<td>0.93</td>
<td>-0.22</td>
<td>0.14</td>
<td>0.88</td>
<td>1.98</td>
<td>-0.09</td>
<td>-0.00</td>
<td>-2.02</td>
<td>0.76</td>
<td>0.075</td>
</tr>
<tr>
<td>YC7</td>
<td>0.638</td>
<td>2.64</td>
<td>-0.85</td>
<td>1.78</td>
<td>0.33</td>
<td>0.86</td>
<td>0.62</td>
<td>0.84</td>
<td>-1.57</td>
<td>2.28</td>
<td>-3.10</td>
<td>2.31</td>
<td>0.094</td>
</tr>
<tr>
<td>YC8</td>
<td>0.653</td>
<td>2.74</td>
<td>-0.48</td>
<td>-0.56</td>
<td>-0.07</td>
<td>0.21</td>
<td>-0.27</td>
<td>1.27</td>
<td>-1.33</td>
<td>1.11</td>
<td>-2.30</td>
<td>1.44</td>
<td>0.117</td>
</tr>
<tr>
<td>MA1</td>
<td>0.725</td>
<td>2.12</td>
<td>-1.42</td>
<td>-1.46</td>
<td>-1.33</td>
<td>-0.87</td>
<td>1.05</td>
<td>-0.74</td>
<td>-0.24</td>
<td>-0.39</td>
<td>2.52</td>
<td>-0.61</td>
<td>0.160</td>
</tr>
<tr>
<td>MA2</td>
<td>0.555</td>
<td>1.61</td>
<td>-1.64</td>
<td>-1.20</td>
<td>-1.68</td>
<td>-1.23</td>
<td>0.72</td>
<td>-0.23</td>
<td>-1.74</td>
<td>1.07</td>
<td>1.82</td>
<td>0.02</td>
<td>0.142</td>
</tr>
<tr>
<td>MA3</td>
<td>0.157</td>
<td>0.47</td>
<td>-2.08</td>
<td>-1.45</td>
<td>-1.61</td>
<td>-0.91</td>
<td>1.00</td>
<td>0.51</td>
<td>-2.68</td>
<td>1.18</td>
<td>2.41</td>
<td>-0.15</td>
<td>0.191</td>
</tr>
<tr>
<td>Strategy</td>
<td>Alpha</td>
<td>Alpha</td>
<td>R_M</td>
<td>SMB</td>
<td>HML</td>
<td>UMD</td>
<td>R_S</td>
<td>R_2</td>
<td>R_5</td>
<td>R_{10}</td>
<td>R_I</td>
<td>R_B</td>
<td>R^2</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>VA1</td>
<td>-0.062</td>
<td>-0.24</td>
<td>0.02</td>
<td>-0.07</td>
<td>0.35</td>
<td>0.76</td>
<td>-0.75</td>
<td>1.90</td>
<td>-0.99</td>
<td>-0.86</td>
<td>1.47</td>
<td>0.53</td>
<td>0.061</td>
</tr>
<tr>
<td>VA2</td>
<td>0.074</td>
<td>0.29</td>
<td>0.60</td>
<td>-0.71</td>
<td>0.39</td>
<td>0.92</td>
<td>-1.27</td>
<td>1.44</td>
<td>-0.78</td>
<td>-0.85</td>
<td>1.42</td>
<td>0.56</td>
<td>0.056</td>
</tr>
<tr>
<td>VA3</td>
<td>0.305</td>
<td>1.21</td>
<td>0.67</td>
<td>-1.29</td>
<td>0.22</td>
<td>0.93</td>
<td>-1.43</td>
<td>1.06</td>
<td>-1.01</td>
<td>-0.41</td>
<td>1.21</td>
<td>0.57</td>
<td>0.064</td>
</tr>
<tr>
<td>VA4</td>
<td>0.415</td>
<td>1.65</td>
<td>0.53</td>
<td>-1.56</td>
<td>0.03</td>
<td>0.95</td>
<td>-1.34</td>
<td>0.71</td>
<td>-0.93</td>
<td>-0.23</td>
<td>1.65</td>
<td>0.53</td>
<td>0.066</td>
</tr>
<tr>
<td>VA5</td>
<td>0.228</td>
<td>0.83</td>
<td>0.37</td>
<td>-1.59</td>
<td>0.06</td>
<td>1.09</td>
<td>-1.11</td>
<td>0.80</td>
<td>-0.97</td>
<td>-0.24</td>
<td>0.83</td>
<td>0.55</td>
<td>0.081</td>
</tr>
<tr>
<td>VA6</td>
<td>0.069</td>
<td>0.24</td>
<td>0.23</td>
<td>-1.87</td>
<td>-0.05</td>
<td>1.09</td>
<td>-0.99</td>
<td>0.42</td>
<td>-0.85</td>
<td>-0.02</td>
<td>1.22</td>
<td>0.21</td>
<td>0.098</td>
</tr>
<tr>
<td>VA7</td>
<td>-0.278</td>
<td>-0.97</td>
<td>0.36</td>
<td>-2.10</td>
<td>0.12</td>
<td>1.42</td>
<td>-1.02</td>
<td>0.19</td>
<td>-0.81</td>
<td>0.21</td>
<td>1.11</td>
<td>0.17</td>
<td>0.127</td>
</tr>
<tr>
<td>CS1</td>
<td>1.073</td>
<td>1.66</td>
<td>0.58</td>
<td>-1.94</td>
<td>0.55</td>
<td>0.59</td>
<td>0.59</td>
<td>0.52</td>
<td>-1.04</td>
<td>1.05</td>
<td>-0.30</td>
<td>-0.12</td>
<td>0.252</td>
</tr>
<tr>
<td>CS2</td>
<td>0.803</td>
<td>1.34</td>
<td>1.55</td>
<td>-2.06</td>
<td>0.85</td>
<td>0.32</td>
<td>-0.73</td>
<td>0.32</td>
<td>-1.01</td>
<td>0.96</td>
<td>0.66</td>
<td>-0.68</td>
<td>0.352</td>
</tr>
<tr>
<td>CS3</td>
<td>1.076</td>
<td>1.70</td>
<td>1.45</td>
<td>-1.78</td>
<td>0.50</td>
<td>0.38</td>
<td>-1.64</td>
<td>0.11</td>
<td>-0.48</td>
<td>0.44</td>
<td>0.98</td>
<td>-0.91</td>
<td>0.280</td>
</tr>
<tr>
<td>CS4</td>
<td>0.432</td>
<td>0.69</td>
<td>-0.61</td>
<td>-0.71</td>
<td>1.23</td>
<td>0.53</td>
<td>0.38</td>
<td>-0.35</td>
<td>-0.40</td>
<td>-0.70</td>
<td>1.80</td>
<td>0.43</td>
<td>0.303</td>
</tr>
<tr>
<td>CS5</td>
<td>1.150</td>
<td>1.67</td>
<td>-1.47</td>
<td>-0.38</td>
<td>1.64</td>
<td>1.46</td>
<td>0.48</td>
<td>-1.08</td>
<td>-0.35</td>
<td>0.11</td>
<td>0.96</td>
<td>-0.11</td>
<td>0.149</td>
</tr>
<tr>
<td>CS6</td>
<td>1.235</td>
<td>1.95</td>
<td>-0.72</td>
<td>-0.40</td>
<td>0.50</td>
<td>0.96</td>
<td>-1.36</td>
<td>2.14</td>
<td>1.61</td>
<td>-1.03</td>
<td>2.50</td>
<td>-2.03</td>
<td>0.282</td>
</tr>
<tr>
<td>CSFB</td>
<td>0.412</td>
<td>3.87</td>
<td>-0.80</td>
<td>0.79</td>
<td>-0.09</td>
<td>0.71</td>
<td>0.32</td>
<td>1.06</td>
<td>-2.30</td>
<td>0.17</td>
<td>-0.06</td>
<td>2.69</td>
<td>0.159</td>
</tr>
<tr>
<td>HFRI</td>
<td>0.479</td>
<td>4.22</td>
<td>-1.70</td>
<td>0.73</td>
<td>-0.59</td>
<td>0.44</td>
<td>0.81</td>
<td>0.20</td>
<td>0.84</td>
<td>-2.76</td>
<td>1.52</td>
<td>0.40</td>
<td>0.139</td>
</tr>
</tbody>
</table>
Table 7

Results from the Regression of Risk-Adjusted Returns on Changes in Aggregate Fixed Income Arbitrage Hedge Fund Capital. This table reports results from the regression of the risk-adjusted returns for the arbitrage strategies (the residuals from the regression in Table 6) on the change in the Tremont/TASS (2004) measure of total fixed income arbitrage hedge fund capital over the prior year. Results for the CSFP and HFRI fixed income arbitrage hedge fund return indexes are also reported. The table reports the estimated slope coefficient β_1 and its t-statistic, along with the R^2 of the regression.

$$\text{Res}_{it} = \beta_0 + \beta_1 \Delta \text{Capital}_t + \epsilon_{it}.$$

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Slope Coefficient</th>
<th>t-Statistic</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS1</td>
<td>-0.02765</td>
<td>-0.74</td>
<td>0.005</td>
</tr>
<tr>
<td>SS2</td>
<td>-0.04245</td>
<td>-1.08</td>
<td>0.010</td>
</tr>
<tr>
<td>SS3</td>
<td>-0.05442</td>
<td>-1.20</td>
<td>0.012</td>
</tr>
<tr>
<td>SS4</td>
<td>-0.06964</td>
<td>-1.40</td>
<td>0.017</td>
</tr>
<tr>
<td>SS5</td>
<td>-0.01686</td>
<td>-0.49</td>
<td>0.002</td>
</tr>
<tr>
<td>SS6</td>
<td>-0.03647</td>
<td>-0.91</td>
<td>0.007</td>
</tr>
<tr>
<td>SS7</td>
<td>-0.05395</td>
<td>-1.17</td>
<td>0.011</td>
</tr>
<tr>
<td>SS8</td>
<td>-0.07728</td>
<td>-1.53</td>
<td>0.020</td>
</tr>
<tr>
<td>YC1</td>
<td>0.02061</td>
<td>0.43</td>
<td>0.002</td>
</tr>
<tr>
<td>YC2</td>
<td>0.09093</td>
<td>1.83</td>
<td>0.028</td>
</tr>
<tr>
<td>YC3</td>
<td>0.11140</td>
<td>2.13</td>
<td>0.037</td>
</tr>
<tr>
<td>YC4</td>
<td>0.03317</td>
<td>0.61</td>
<td>0.003</td>
</tr>
<tr>
<td>YC5</td>
<td>-0.00309</td>
<td>-0.06</td>
<td>0.000</td>
</tr>
<tr>
<td>YC6</td>
<td>0.09812</td>
<td>1.97</td>
<td>0.032</td>
</tr>
<tr>
<td>YC7</td>
<td>0.01343</td>
<td>0.26</td>
<td>0.001</td>
</tr>
<tr>
<td>YC8</td>
<td>0.00887</td>
<td>0.16</td>
<td>0.000</td>
</tr>
<tr>
<td>MA1</td>
<td>0.15615</td>
<td>3.26</td>
<td>0.101</td>
</tr>
<tr>
<td>MA2</td>
<td>0.16879</td>
<td>3.52</td>
<td>0.116</td>
</tr>
<tr>
<td>MA3</td>
<td>0.10148</td>
<td>2.10</td>
<td>0.044</td>
</tr>
<tr>
<td>VA1</td>
<td>-0.04887</td>
<td>-0.95</td>
<td>0.008</td>
</tr>
<tr>
<td>VA2</td>
<td>-0.10111</td>
<td>-1.90</td>
<td>0.030</td>
</tr>
<tr>
<td>VA3</td>
<td>-0.13628</td>
<td>-2.56</td>
<td>0.053</td>
</tr>
<tr>
<td>VA4</td>
<td>-0.13923</td>
<td>-2.59</td>
<td>0.054</td>
</tr>
<tr>
<td>VA5</td>
<td>-0.13299</td>
<td>-2.69</td>
<td>0.054</td>
</tr>
<tr>
<td>VA6</td>
<td>-0.10814</td>
<td>-2.21</td>
<td>0.040</td>
</tr>
<tr>
<td>VA7</td>
<td>-0.08555</td>
<td>-1.76</td>
<td>0.026</td>
</tr>
<tr>
<td>CS1</td>
<td>-0.06655</td>
<td>-1.08</td>
<td>0.024</td>
</tr>
<tr>
<td>CS2</td>
<td>-0.08342</td>
<td>-1.46</td>
<td>0.044</td>
</tr>
<tr>
<td>CS3</td>
<td>-0.08987</td>
<td>-1.50</td>
<td>0.046</td>
</tr>
<tr>
<td>CS4</td>
<td>-0.06396</td>
<td>-1.07</td>
<td>0.024</td>
</tr>
<tr>
<td>CS5</td>
<td>-0.07963</td>
<td>-1.21</td>
<td>0.031</td>
</tr>
<tr>
<td>CS6</td>
<td>-0.11067</td>
<td>-1.87</td>
<td>0.071</td>
</tr>
<tr>
<td>CSFB</td>
<td>-0.01487</td>
<td>-0.79</td>
<td>0.005</td>
</tr>
<tr>
<td>HFRI</td>
<td>0.01298</td>
<td>0.63</td>
<td>0.003</td>
</tr>
</tbody>
</table>
Figure 1. Swap Spreads and Expected Average Libor-Repo Spreads. These graphs plot the expected average value of the Libor-repo spread and the corresponding swap spread for the indicated horizons. All spreads are in basis points.
Figure 2. Deviations Between Market and Model Swap Rates. These graphs plot the difference between the market swap rates for the indicated horizons and the corresponding values implied by the two-factor affine model fitted to match exactly the one-year and ten-year swap rates. All deviations are in basis points.
Figure 3. Passthrough Price as a Function of Swap Rates. The top panel of this figure displays the nonparametric estimate of the price of the seven-percent GNMA passthrough as a function of the five-year swap rate. Each point in this figure represents 25 daily observations. The bottom panel displays the value of a portfolio with $100 notional amount of this passthrough duration-hedged with a five-year swap. The hedge is initiated when the swap rate is 6.06 percent.
Figure 4. Implied and Realized Basis Point Volatility of Four-Year Interest Rate Caps. This graph plots the implied annualized basis point volatility for a four-year interest rate cap along with the average annualized realized basis point volatility over the subsequent month of the Eurodollar futures contracts corresponding to the individual caplets of the cap.
Figure 5. General Motors CDS Spreads and Equity Price. This figure displays the market CDS spread, the model CDS spread, and the equity price for General Motors. The CDS spreads are in basis points.
Figure 6. Total Fixed Income Arbitrage Hedge Fund Capital. This graph shows the total capital in fixed income arbitrage hedge fund strategies for the indicated dates reported in the Tremont/Tass (2004) Asset Flows Report.