Lawrence Berkeley National Laboratory
Recent Work

Title
Center for Beam Physics Annual Report 1994-95

Permalink
https://escholarship.org/uc/item/6zz1755h

Author
Brunotts, F.

Publication Date
1995-05-01
Center for Beam Physics

1994-95

Accelerator and Fusion Research Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

May 1995

Prepared for the U.S. Department of Energy under Contract No. DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California and shall not be used for advertising or product endorsement purposes.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE Contractors from the Office of Scientific and Technical Information
P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road, Springfield, VA 22161

Lawrence Berkeley Laboratory is an equal opportunity employer.

Cover Illustration

More than ten billion electrons in a 60-cm-long bunch (2 ns) are produced from the thermionic cathode of the Advanced Light Source injector gun. The electron beam is transported through a seven-cell linear accelerator structure. Light emitted by the accelerated electrons (via transition radiation) when they traverse an ultrathin foil is captured on a streak camera with picosecond time resolution. Without prebunching, these electrons are trapped and accelerated into many radiofrequency buckets (top). To increase the peak current, powerful prebunchers are used to shorten the electron bunch length one hundred times (20 ps) before entering the accelerating structures (middle). One electron bunch is then made to collide (bottom) with a focused terawatt near-infrared pulse (small spot at the bottom) in an attempt, at the Center's Beam Test Facility, to produce femtosecond x-ray pulses—the shortest ever aimed toward time-resolved studies of nuclear motion in ultrafast dynamic processes.
CENTER FOR BEAM PHYSICS

1994-95

Accelerator and Fusion Research Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

May 1995

This work was supported principally by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Support came from the Director, Office of Energy Research, through the Office of Basic Energy Sciences (Materials Sciences Division) and the Office of High Energy and Nuclear Physics (High Energy Physics Division).
Mailing Address:

CENTER FOR BEAM PHYSICS
Mailstop 71-259
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, CA 94720

Phone: (510) 486-5792
Fax: (510) 486-7981
E-mail: CBP@lbl.gov
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Contents

Welcome to CBP ... 2
Facilities .. 4
Organizational Chart ... 6
Roster ... 8
Profiles
Scientific and Technical Staff ... 9
UCB Faculty Associates .. 23
International Visitors ... 25
Post Docs .. 27
Center Affiliates .. 29
Administrative Support ... 39
Students ... 41
Participating Guests (Emeriti) .. 47
Principal Collaborators .. 51
Summary of Activities ... 53
Publications and Presentations .. 77
The Center for Beam Physics is a multidisciplinary research and development unit in the Accelerator and Fusion Research Division at the Lawrence Berkeley Laboratory of the University of California. At the heart of the Center’s mission is the fundamental quest for mechanisms of acceleration, radiation, transport, and focusing of energy and information. Dedicated to exploring the frontiers of particle and photon beam physics, its primary mission is to promote the science and technology of the production, manipulation, storage, and control of systems of charged particles and photons—often in the form of “beams” with directed energy and embedded information—as applied to studies of the fundamental structure and processes of the natural world. The Center serves this mission via conceptual studies, theoretical and experimental research, design and development, institutional project involvement, external collaborations, association with industry, and technology transfer. These activities support exploring the next steps in the development of particle accelerators, further continuing the tradition of pioneering accelerator research at the Laboratory since its inception in 1932. The program of the Center is not limited to specific programmatic categories of the Department of Energy, but rather serves wide areas of research. The research program of the Center is directly linked to advances in high-energy and nuclear physics, condensed-matter research, the material and chemical sciences, physics at high-energy density, the life sciences, and various industrial applications.
Yet another important mission of the Center is education of students, the scientific community, and the society at large via graduate instruction, research supervision, pedagogical expositions, and public service.

Special features of the Center’s program include addressing R&D issues needing long development time and providing a platform for conception, initiation, and support of institutional projects based on beams. The Center brings to bear a significant amount of diverse, complementary, and self-sufficient expertise in accelerator physics, synchrotron radiation, advanced microwave techniques, plasma physics, optics, and lasers on the forefront R&D issues in particle and photon beam research. In addition to functioning as a clearinghouse for novel ideas and concepts and related R&D (e.g., various theoretical and experimental studies in beam physics such as nonlinear dynamics, phase-space control, laser-beam–plasma interaction, free-electron lasers, optics, and instrumentation), the Center provides significant support to Laboratory facilities and initiatives (e.g., the Advanced Light Source (ALS), the PEP-II asymmetric B-factory).

The multidisciplinary programs of the Center are funded by various divisions within the DOE (largely by High Energy and Nuclear Physics and Basic Energy Sciences), as well as by Laboratory-directed R&D funds. The Center also manages three in-house research facilities: the Lambertson Beam Electrodynamics Laboratory, the CBP Laser-Optics Laboratory, and the Beam Test Facility at the ALS. Formal external collaborations include SLAC-LBL-LLNL PEP-II and NLC studies, Stanford-LBL-BNL-TRW on FEL SCRF technology, LBL-Stanford on FEL diagnostics, CEBAF-LBL on IRFEL studies, LBL—Peking University on Photocathode/SCRF technology, and LBL-BNL on heavy-ion cooling for RHIC.

This roster and annual report provides a glimpse of the scientists, engineers, technical support, students, and administrative staff that make up the CBP’s outstanding team and gives a flavor of our multifaceted activities during 1994 and 1995. We welcome students, academia, industry, and the public at large to participate in our programs to help us contribute to mutual flourishing.

Swapan Chattopadhyay
Head, Center for Beam Physics
Facilities

Lambertson Beam Electrodymanics Laboratory

Nurtured, promoted, and continually updated over the years by Glen Lambertson of LBL, this laboratory houses, in an environment of controlled temperature, various instruments, equipment, and apparatus for low-power, high-precision RF measurements of beam-handling structures. Inventory includes a sophisticated bead-pulling apparatus, a time-domain reflectometry setup, high-frequency network and spectrum analyzers, microwave parts and absorbing materials, etc. The lab also includes a small shop and facilities for performing sophisticated electrodynamic computations of properties of dynamic RF devices.

CBP Laser-Optics Laboratory

This laboratory houses lasers, optical components, plasma devices, and computers for data acquisition and control for the experimental study of optical cavities, optical spectrometers, scaled FEL optics configurations, plasmas, etc.
Beam Test Facility

This facility provides access to a 50-MeV electron beam from the ALS injector linac as well as a terawatt CPA laser system. The electron beam is transferred via a magnetic transport line to a specially shielded experimental vault for various beam-plasma, laser-electron-beam scattering and beam-RF-structure interaction studies.

CBP Dedicated Workstations

Solbourne 502
Hewlett-Packard 375
IBM RS/6000 (two)
VAXstation II
SPARC-20

CBP Mini-Library

This library contains selected reference and textbooks on beams, plasmas, lasers, accelerator physics, dynamics, etc., as well as a few technical journals, recent preprints, and conference proceedings. It is also used as a mini-conference room.

APIARY Conference Room and Microwave Link

This is a large conference room for seminars and meetings. It is equipped with the special feature of a microwave link to SLAC, allowing joint conferences and meetings with the scientists and engineers from SLAC and Stanford University. At present, the room is routinely used for joint LBL-SLAC-LLNL meetings on the PEP-II asymmetric B-factory (elegantly acronyomed APIARY by LBL physicist A. A. Garren before the present project title was adopted). It is also used regularly for the biweekly Center for Beam Physics seminars.
CENTER FOR BEAM PHYSICS
Organization

Administration and Budget
 J. KONO

CBP
 S. CHATTOPADHYAY
 DEPUTY: K.-J. KIM

Sensitive Equipment Records
 J. KONO

EH&S and QA Coordinator
 J. CORLETT

Radiation Sources, FELS, and Theory
 K.-J. KIM

Beam Electrodynamics
 J. CORLETT

High Energy Collider Physics
 A.M. SESSLER

RK-TBA Project
 S. YU
 (G. WESTENSKOW, LLNL)

Beam Physics - Special Projects
 S. CHATTOPADHYAY

Experimental Beam Physics
 W. LEEMANS

Lambertson Beam Electrodynamics Laboratory

Beam Test Facility

Laser-Optics Laboratory
Roster

Scientific and Technical Staff
ARCHAMBAULT, Leon
BARRY, Walter
BENGSTSSON, Johan
BYRD, John
CHATTOPADHYAY, Swapan
CHIN, Yong Ho
CONDE, Manoel
CORLETT, John
EDIGHOFER, John
FAWLEY, William
FOREST, Etienne
FURMAN, Miguel
GOLDBERG, David
JOHNSON, Jimmie
KIM, Kwang-Je
LEEMANS, Wim
LOZANO, David
RIMMER, Robert
SESSLER, Andrew
XIE, Ming
YU, Simon
ZHOLENTS, Alexander
ZISMAN, Michael

KELLER, Roderich
KIM, Charles
KRUPNICK, James
LUHMANN, Neville
NISHIMURA, Hiroshi
ROBIN, David
SCHACHINGER, Lindsay
SCHOENLEIN, Robert
SHANK, Charles
TAJIMA, Toshiki
TAUSCHWITZ, Andreas
WESTENSKOW, Glen
ZOLOTOREV, Max

Administrative Support
CONDON, Martha
KONO, Joy
VANECEK, Sam
WONG, Olivia

Students
CHIN, Alan
DE LOOS, Marieke
DIERON, Roel
DRAESEKE, Andrew
GIORDANO, Guido
GOFFENY, Nicholas
GOVIL, Richa
IRWIN, Michael
LA MON, Ken
VAKARCHUK, Victoria
VAN DER GEER, Bas
VOLFBYLN, Pavel
YEH, Chih-Hung
YU, Johnathan
ZEGE, Andrew

UCB Faculty Associates
FALCONE, Roger
WURTELE, Jonathan

International Visitors
GARDENT, Dominique
GIORDANO, Guido
HAHN, Sang June

Post Docs
GARDENT, Dominique
LI, Hai

Center Affiliates
BARLETTA, William
GOUGH, Richard
GLOVER, T. Ernest
HOUCK, Tim
JACKSON, Alan

Participating Guests (Emeriti)
GARREN, Alper
GHIORSO, Albert
LAMBERTSON, Glen
PETESEN, Jack
SELPH, Frank
VOELKER, Ferdinand
Scientific and Technical Staff
Leon Archambault
Senior Mechanical Engineering Associate
MS 71-259
(510) 486-7750
Joined LBL in 1959
Research interests: Particle beam, vacuum, mechanical system design, engineering drawing, nuclear physics facilities, new acceleration methods.
Technical accomplishments: Nuclear physics research at LBL's OASIS, IsoSpin Laboratory systems studies, target physics and engineering.

Walter C. Barry
Staff Scientist
MS 71-259
(510) 486-6705
Walter_Barry@macmail.lbl.gov
Joined LBL in 1992
M.S., Electrical Engineering, Georgia Institute of Technology, 1982.
Research interests: Accelerator instrumentation, theory and applications of electromagnetic and microwave devices in accelerators, coherent transition and diffraction radiation, superconducting RF cavity studies, feedback systems for controlling coupled bunch instabilities in electron storage rings.
Johan A. Bengtsson

Staff Scientist
MS 71-259
(510) 486-6529
jbenetsson@csa.lbl.gov
Joined LBL in 1989

Ph.D., Physics, MAX-lab, University of Lund, Sweden, 1988.

Research interests: Computer modeling, nonlinear dynamics, control theory, circular accelerators, beam measurements, signal processing, computer science.

“Global Matching of the Normalized Ring” (with E. Forest), Advanced Beam Dynamics Workshop on Effects of Errors in Accelerators, Their Diagnosis and Corrections, Corpus Christi, Texas (October 1991).

John M. Byrd

Staff Scientist
MS 71-259
(510) 486-6329
jbyrd@lbl.gov
Joined LBL in 1991

Ph.D., Physics, Cornell University, 1992.

Research interests: RF aspects of accelerators, single and coupled-bunch instabilities and feedback systems.

“Spectral Characterization of Longitudinal Coupled-Bunch Instabilities at the Advanced Light Source” (with J. N. Corlett), to be published in Particle Accelerators.

Swapan Chattopadhyay

Senior Scientist
Head, Center for Beam Physics
MS 71-259
(510) 486-7217
chap@lbl.gov
Joined LBL in 1984

Affiliations: Editor-in-chief, Particle Accelerators (Western Hemisphere); Member: American Physical Society (APS), American Association for the Advancement of Science (AAAS), Optical Society of America (OSA), International Committee on Future Accelerators (ICFA), Advisory Board to International Linac and Particle Accelerator Conferences, Advisory Committee to PEP-II Project. National Scholar (1967) and National Science Talent Scholar (1967-72), Govt. of India.

Research interests: Particle and photon beam physics, synchrotron radiation, free electron lasers, beam-plasma physics, nonlinear dynamics, collider physics, novel accelerators.

Yong Ho Chin

Staff Scientist
MS B71H
(510) 486-5614
yongho@lbl.gov
Joined LBL in 1988

Ph.D., University of Tokyo, 1984.

Major awards: Japan Accelerators Society Annual Award.

Research interests: Free electron laser, calculation of wake fields.

Manuel E. Conde

Staff Scientist
MS B71H
(510) 486-5076
conde@lbl.gov
Joined LBL in 1992

Ph.D., Physics, Massachusetts Institute of Technology, 1992.

Research interests: Free electron lasers, particle accelerators and plasma physics, photocathode RF guns and plasma lenses.

John N. Corlett

Staff Scientist
Group Leader, Beam Dynamics Group
MS 71-259
(510) 486-5228
jnc@bc1.lbl.gov
Joined LBL in 1991

Research interests: Monochromatic RF structures, beam-coupling impedance, feedback systems, bunched beam instabilities.

John A. Edighoffer

Staff Scientist
MS 871H
(510) 486-5107
jedig@lbl.gov
Joined LBL in 1991

Ph.D., Applied Physics, Stanford University, 1981. Ten years at TRW doing FEL research.

Research interests: Free electron lasers, optical diagnostics, photocathodes, superconducting RF, accelerator physics and modeling, accelerator diagnostics; CDRL FEL conceptual design, Stanford/LBL/BNL superconducting RF collaboration; Stanford/LBL FEL diagnostics collaboration; LBL/CEBAF FEL/RF photocathode collaboration; hole out-coupling scaled FEL benchtop experiments.

William M. Fawley

Staff Scientist
MS 871H
(510) 486-6229
fawley@lbl.gov
Joined LBL in 1990

Research interests: Intense charged-particle beam physics, free electron lasers, heavy-ion fusion, novel accelerators, numerical simulation techniques.

Etienne Forest

Staff Scientist
MS 71-259
(510) 486-7215
etienne@lbl.gov
joined LBL in 1985
Ph.D., University of Maryland, 1984.

Research interests: Nonlinear dynamics in accelerators, perturbation theory and
other approximate methods for accelerator maps.

Selected publications: “The Absolute Bare Minimum for Tracking in Small Rings”

“Freedom in Minimal Normal Forms” (with D. Murray), accepted in Physica D
(1994).

“Construction of Symplectic Maps for Non-linear Motion of Particles in Accelerators”

“Symplectic Methods in Circular Accelerators,” Workshop on Integration Algo-
rithms for Classical Mechanics, The Fields Institute, Waterloo, Ontario, Canada
(October 1993).

“The Modern Approach to Single-Particle Dynamics for Circular Rings” (with L. Michelotti, A. J.
Dragt, and J. S. Berg), with a foreword by J. Bentgsson, Proc. Workshop on Stability in Storage

“Dynamic Aperture Study for the Duke FEL Storage Ring” (with Y. Wu, V. N. Litvinenko and J.

Miguel A. Furman

Staff Scientist
MS 71-259
(510) 486-6443
miguela@lbl.gov
Joined LBL in 1984
Ph. D., Theoretical Particle Physics, University of California, Santa Cruz, 1977.
Joined LBL in August 1984. Worked “on loan” for the SSC Central Design Group
(1984–89), and then for the SSC Laboratory (1989–90). Since 1990, working full-
time at the CBP on the PEP-II project.

Research interests: Beam-beam interaction, impedances and beam instabilities,
longitudinal phase space management and matching in chains of proton accelerators,
space-charge effects.

Selected publications: “Compact Complex Expressions for the Electric Field of 2-

“Beam-Beam Tune Shift and Dynamical Beta Function in PEP-II,” Proc. European

“Closed Orbit Distortion from Parasitic Collisions in PEP-II,” Proc. European Particle

“Beam Instabilities” (with J. Byrd and S. Chattopadhyay), in Synchrotron Radiation
Sources—A Primer (H. Winick, ed.), World Scientific Publishing Company (July
1994), Chapter 12, p. 306. Senior Scientist
David A. Goldberg

Staff Scientist
MS 71-259
(510) 486-7222
dag@lbl.gov
Joined LBL in 1980

Ph.D., Nuclear Physics, Johns Hopkins University, 1967.

Research interests: Beam instrumentation and feedback, beam impedance measurements, stochastic cooling.

“Measurements of Higher-Order Mode Damping in the PEP-II Low-Power Test Cavity” (with R. A. Rimmer), contribution to the Particle Accelerator Conference (1993).

“Successful Observation of Schottky Signals at the Tevatron Collider” (with G. R. Lamberton), Particle Accelerators 30 (1990).

“Beam Impedance Measurements on the ALS Curved Sector Tank” (with R. A. Rimmer et al.), contribution to 1990 European Particle Accelerator Conference.

Jimmie K. Johnson

Staff Scientist
MS 71-259
(510) 486-6464
kaz@lbl.gov
Joined LBL in 1981

B.S., Electronics Engineering, University of California, Davis, 1981.

Research interests: Accelerator technology, microwave devices, computer-aided modeling, multibunch feedback systems.

“An Array of 1 to 2 GHz Electrodes for Stochastic Cooling” (with F. Voelker and T. Henderson), 1983 Particle Accelerator Conference, Santa Fe, New Mexico (March 1983).
Kwang-Je Kim

Senior Scientist
Deputy Head, Center for Beam Physics
MS 71-259
(510) 486-7224
kwangje@lbl.gov
Joined LBL in 1978

Research interests: Novel x-ray generation, free electron lasers, synchrotron radiation optics, high-brightness electron beams.

Selected publications: “Generation of Sub-Picosecond X-rays by 90° Thomson Scattering” (with S. Chattopadhyay and C.V. Shank), to be published in Nucl. Instrum. Methods.

Wim Leemans

Staff Scientist
Group Leader, Experimental Beam Physics
MS 71-259
(510) 486-7788
Joined LBL in 1991

Major awards: Simon Ramo Award 1992, American Physical Society.

David Lozano

Senior Assistant Tech Coordinator
MS 71-259
(510) 486-5027
Joined LBL in 1970

Research interests: Technical and mechanical design, fabrication, installation and testing. Microwave systems mechanical and electrical design and fabrication.

Technical accomplishments: More than 25 years of service to the LBL Bevatron/Bevalac program; presently at the Center in the Beam Electrodynamics Group.

Robert A. Rimmer

Staff Scientist
MS 71-259
(510) 486-6243
rimmer@lbl.gov
Joined LBL in 1988

Ph.D., Lancaster University, U.K., Engineering Department, 1988; subject: High Power Microwave Window Failures.

Research interests: Computer simulation of high-frequency electromagnetic problems, Higher-Order-Mode suppression in RF cavities and structures, microwave windows, beam impedance of accelerator components.

“Beam Impedance Measurements on the ALS Curved Sector Tank” (R. A. Rimmer et al.), Proc. 1990 European Particle Accelerator Conference, Nice, France (June 1990); LBL-28192.

Andrew M. Sessler

Senior Scientist
Group Leader, Collider Physics Group
MS B71H
(510) 486-4992
amsessler@LBL
Joined LBL 1961
Director 1973–1980
Ph.D., Theoretical Physics, Columbia University, 1953.

Research interests: Beams in plasmas, conventional and novel high-energy accelerators, free electron lasers.

Ming Xie

Staff Scientist
MS B71H
(510) 486-5616
mingxie@lbl.gov
Joined LBL in 1988
Ph.D., Physics, Stanford University, 1988.

Simon Yu

Staff Scientist
MS 47-112
(510)486-5477
Simon_Yu@macmail.lbl.gov
Joined LBL in 1992

Ph.D., University of Washington, 1970.

Research interests: Induction accelerators, accelerator physics, linear colliders, heavy ion fusion, beams in plasmas, conventional and novel high-energy accelerators.

Affiliations and honors: Fellow of American Physical Society.

“Phase Space Distortions of a Heavy Ion Beam Propagating Through a Vacuum Reactor Vessel” (with E. P. Lee and W. A. Barletta), Nucl. Fusion 21, 961 (1981).

Alexander Zholents

Staff Scientist
MS 71-259
(510) 486-7533
zholents@lbl.gov
Joined LBL in 1992

Research interest: Dynamics of charged particle beams, high-luminosity electron-positron colliders, optical stochastic cooling.

Michael S. Zisman

Senior Scientist
Head, B-Factory Project
MS B71H
(510) 486-5765
zisman@lbl.gov
Joined LBL in 1966

Ph.D., University of California, Berkeley, 1972.

Research interests: Design of electron storage rings and high-luminosity electron-positron colliders, beam instabilities, collective effects, design of PEP-II asymmetric B factory, study of high-luminosity collider design.

"PEP-II Asymmetric B Factory: R&D Results" (with J. Dorfan, A. Hutton, and W. Barletta for the PEP-II Design Group), Proc. European Particle Accelerator Conference, Berlin, Germany (March 1992).

UCB Faculty Associates
Roger W. Falcone

Professor and Chairman
Physics Department
University of California, Berkeley
Berkeley, CA 94720
(510) 642-3316
rwf@physics.berkeley.edu
Joined LBL/UCB in 1983

Major awards: Fellow of the American Physical Society; Fellow of the Optical Society of America; Distinguished Traveling Lecturer, APS Laser Science Topical Group (1992–93); Presidential Young Investigator Award of the NSF (1984–89).

Research interests: Interactions of intense light with matter; applications of lasers in plasma, atomic, and condensed-matter physics; ultrashort pulse lasers.

Jonathan S. Wurtele

Faculty Physicist
MS 71-259
(510) 486-5792
wurtele@lbl.gov
Joined LBL in 1995

Ph.D., Physics, University of California, Berkeley, 1985.

Research interests: Generation of coherent radiation from charged particle beams, advanced accelerator concepts, intense laser-plasma interactions, nonneutral plasma physics.

International Visitors
Guido F. Giordano

Visiting Researcher
Collider Physics Group
MS 718-295
(510) 486-4347
G_Giordano@lbl.gov
Joined LBL in 1995

Degree at Università degli Studi di Milano, Italy, 1994.

Research interests: Beam physics in detuned TW extraction cavities (Relativistic-Klystron Two-Beam Accelerator project).

Sang June Hahn

Visiting Researcher
Pohang Institute of Science and Technology
Pohang, Korea
MS B71H
(510) 486-6465
sjhahn@lbl.gov
Joined LBL in 1993

Ph.D., Physics, Pohang Institute of Science and Technology (POSTECH), Pohang, Korea, 1993. Research Scientist, Pohang Light Source (PLS), Pohang, Korea, 1988–89; Research Associate, POSTECH, Pohang, Korea, 1993.

Research interests: Coherent radiation sources, free-electron lasers, nonlinear dynamics and chaos, beam-plasma physics.

Post Docs
Dominique Gardent

Participating Guest
MS 71-259
(510) 486-6529
gardent@lbl.gov
Joined LBL in 1995

Research interests: Dynamics of charged particle beams, beams in plasmas, free electron lasers, two-beam accelerators, gamma-gamma colliders.

Hai Li

Staff Scientist
MS 71-259
(510) 486-6572
hai@csa.lbl.gov
Joined LBL in 1993

Ph.D., Physics, University of Maryland at College Park, 1993.

Research interests: Analytical and numerical studies of beam dynamics and RF properties that are related to the conceptual designs of RF linear colliders, especially the two-beam accelerators, both the relativistic klystron version and the standing-wave free electron laser version.

"I still say to myself when I am depressed and find myself forced to listen to pompous and tiresome people, 'Well, I have done one thing you could never have done, and that is to have collaborated with Littlewood and Ramanujan on something like equal terms.'"

— G.H. Hardy in
A Mathematician’s Apology
William A. Barletta

Senior Scientist
Director, Accelerator and Fusion Research Division
MS 50-149
(510) 486-5501
barletta@lbl.gov
Joined LBL in March 1993

Ph.D., Experimental High-Energy Physics, University of Chicago, 1972. 1989–92: Visiting Professor, Department of Physics, UCLA. 1990–93: Assistant Laboratory Associate Director for Programs at Lawrence Livermore National Laboratory.

Affiliations and honors: Sigma Xi (Yale); Woodrow Wilson Fellow (University of Chicago); Member, American Physical Society.

Richard A. Gough

Senior Scientist
Program Head, Ion Beam Technologies, AFRD
MS 50-149
(510) 486-4573
RAGough@LBL
Joined LBL in 1970

Ph.D., Nuclear Physics, McMaster University, 1970.

Research interests: Design, construction, and management of accelerator facilities, conceptualization and development of accelerator facilities with applications to the scientific community.

T. Ernest Glover

Materials Sciences Division
MS 70-193A
(510) 486-6556
teg@physics.berkeley.edu
Joined LBL in 1994

Research interests: Short-pulse x-ray generation, measurement, and applications; high-intensity laser-matter interactions; ultrafast phenomena.

"Electron Energies in Field-Ionized Laser Plasmas" (with T. D. Donnelly et al.), oral presentation and publication in Proc. OSA Conference on Ultrafast Phenomena, Dana Point, California (May 1994).

"Electron Energy Distributions in Optically Ionized Helium Plasmas" (with R. W. Falcone), invited lecture at OSA conference on High Field Interactions and Short Wavelength Generation, St.-Malo, France (August 1994).

Timothy L. Houck

Post Doctoral Research Staff Member
Laser Programs, LLNL
MS L-441
(510) 423-7905
houck1@llnl.gov
Participating Guest
Center for Beam Physics
MS 47-112
tim_houck@mail.llnl.gov
Ph.D., Physics, University of California, Davis, 1994.

Affiliations: Member, American Physical Society.

Research interests: Induction accelerators, beam dynamics, high-power microwave generation, novel accelerators.

Alan Jackson

Staff Scientist
Group Leader, ALS Accelerator Group
MS 80-101
(510) 486-6752
ajackson@lbl
lbl:ajackson

Joined LBL in 1984
B.A. (Hons), Physics, Lancaster University, 1968. 1968–84: Scientific Officer at Daresbury Nuclear Physics Laboratory, U.K. 1984–present: At LBL, member of the team that designed and commissioned the third-generation Advanced Light Source.

Affiliations: Member, APS and AAAS

Research interests: Design, construction, and operation of synchrotron radiation sources; fourth-generation synchrotron radiation source.

Roderich Keller

Staff Scientist
Deputy Group Leader, ALS Accelerator Group
MS 80-101
(510) 486-5223
rkeller@lbl.gov

Joined LBL in 1988
Dr. rer. nat., Experimental Physics, University of Kiel, Germany, 1973.

Awards: Three patents on ion sources and components.

Research interests: Particle accelerators, ion sources for accelerators and industrial applications.

Current activities: Characterization of the Advanced Light Source electron storage ring and its development for operation with multiple insertion devices.

Charles H. Kim

Staff Scientist
MS 80-101
(510) 486-7218
ckim@csl3.lbl.gov
Joined LBL in 1978

Ph.D., Plasma Physics, University of California, Los Angeles, 1974.

Awards: Fannie and John Hertz Foundation Fellow.

Research interests: Accelerators, RF linac, synchrotron, storage ring, accelerator diagnostics instrumentation, linac simulations.

Jim Krupnick

Program Manager
Manager for Planning and Development
Advanced Light Source
MS 80-101
(510) 486-6480
JKrupnick@lbl.gov
Joined LBL in 1976

Affiliations: Member: DOE Review Committee, Advanced Photon Source Construction Project; Independent Accelerator Readiness Review 3 Committee, CEBAF.

“A Facility for Macromolecular Crystallography at the Advanced Light Source,” co-author (May 1994).
Hiroshi Nishimura

Staff Scientist
MS 80-101
(510) 486-5763
hiroshi@lbl.gov
Joined LBL in 1985
Ph.D., Physics, University of Tokyo, 1982.

Research interests: Accelerator physics for ALS; modeling and simulation code construction for real accelerator control using the novel programming methodologies like OOP.

David S. Robin

Staff Scientist
MS B71H
(510) 486-6028
robin@csa.lbl.gov
Joined LBL in 1991
Ph.D., Physics, University of California, Los Angeles, 1991.

Research interests: Studies of the linear and nonlinear dynamics of lepton storage ring colliders.

"Quasi-Isochronous Ring Flavor Factories" (with C. Pellegrini), Rare and Exclusive B and K Decays and Novel Flavor Factories (1992).

"Sources of Amplitude Dependent Tune Shift in the PEP-II Design and Their Compensation with Octupoles," (with E. Forest et al.), to be published in Proc. 1994 European Accelerator Conference.
Lindsay C. Schachinger

Staff Scientist
MS 80-101
(510) 486-5009
lindsay@sesame.lbl.gov
Joined LBL in 1990

Ph.D., Physics, Rutgers University, 1978.

Research interests: Accelerator simulation and modeling both for design and controls, nonlinear dynamics, controls and modeling for accelerator physics studies in circular accelerators.

Robert W. Schoenlein

Staff Scientist
Materials Sciences Division
MS 70-193A
rvschoen@ux5.lbl.gov
(510) 486-6557
Joined LBL in 1989

Affiliations and awards: Sigma Xi, Eta Kappa Nu, Optical Society of America, Institute of Electrical and Electronics Engineers, American Physical Society. American Association for the Advancement of Science, Optical Society of America Adolph Lomb Medal (1994); Newport Research Award (1988).

Research interests: Generation of femtosecond x-ray pulses via Thomson scattering, femtosecond structural dynamics of materials using x-ray pulses, studies of electron-hole dephasing and coherent vibrational dynamics in semiconductor nanocrystals, ultrafast carrier scattering and dephasing dynamics in metal films, femtosecond photochemical isomerization, and nonstationary states in rhodopsin pigments.

Charles V. Shank

Director
Lawrence Berkeley Laboratory
MS 50A-4119
(510) 486-5111
CVShank@lbl.gov
Joined LBL in 1989

Major awards and affiliations: The John Scott Award (1991); SPIE—The International Society for Optical Engineering 1990 Edgerston Award; Distinguished Engineering Alumnus Award (1990); IEEE David Sarnoff Award (1989); IEEE Morris E. Leeds Award (1983); Edward P. Longstreth Medal of the Franklin Society (1982); R. W. Wood Prize of the Optical Society of America (1981). Member: National Academy of Sciences (NAS), 1984; National Academy of Engineering (NAE), 1983; American Academy of Arts and Sciences; Fellow of the American Association for the Advancement of Science (AAAS); Fellow of the American Physical Society; Fellow of the Institute of Electrical and Electronics Engineers, Inc. (IEEE); Fellow of the Optical Society of America (OSA).

Toshiki Tajima

University of Texas, Austin
(512) 471-4574
ttt@dino.ph.utexas.edu
Sabbatical at LBL, first in 1989

Ph.D., Physics, University of California, Irvine, 1975. Staff Scientist at UCLA, 1976–80; Assistant, Associate, and Full Professor at University of Texas, Austin, 1980–present. Visiting Professor at Nagoya, 1972; Visiting Scientist at Los Alamos National Laboratory, 1983–85; University of California, Berkeley, 1989; Institute of Nuclear Physics (Novosibirsk), 1999. Member of SSC Lab, 1989-93.

Major awards and affiliations: Fellow, Japan Society for Promotion of Science; Fellow, American Physical Society. Member: National Research Council of National Academy of Science; Leadership, Japan Atomic Energy Research Institute.

Research interests: Laser acceleration, beam-beam interaction, beam (and laser) cooling, solid-state acceleration, x-ray and laser physics, plasma physics, computational techniques.

Andreas Tauschwitz

Visiting Researcher
from Gesellschaft für Schwerionenforschung (GSI)
Darmstadt, Germany
MS 47-112
(510) 486-5761
Andreas_Tauschwitz@mail.lbl.gov
Joined LBL in 1994

Dr. rer. nat. in Physics from the Technical University (TH) of Darmstadt, Germany, 1993. Visit at LBL supported by the German Alexander-von-Humboldt Stiftung with a Feodor-Lynen-Fellowship.

Research interests: Inertial confinement fusion, interaction of ion beams with ionized matter, plasma diagnostics, beam physics, pulsed power applications in accelerator technology.

Selected publications: “Improvement of the Active Cylindrical Plasma Lens Concept by a Tapered Discharge Geometry” (with M. de Magistris et al.), accepted for publication in IEEE Trans. on Plasma Sci.

Glen Westenskow

Physicist
MS 47-112 or L-441 (LLNL)
(510) 486-6372 or (510) 423-6936 (LLNL)
gw@lnl.gov (LLNL)
Joined LLNL in 1986; worked on collaborative experiments with LBL since 1986.

Ph.D., Physics, Stanford University, 1981.

Research interest: High-power RF sources, induction accelerators, electron sources, accelerator physics, conventional and novel high-energy accelerators.

Max Zolotorev

Physicist
SLAC
(415) 926-4670
maxz@slacvm.bitnet
Joined SLAC in 1990

Ph.D., Experimental High-Energy Physics, Institute of Nuclear Physics, Novosibirsk (Russia), 1974. Doctor of Science, Institute of Nuclear Physics, Novosibirsk (Russia), 1979; Leading Physicist, Novosibirsk, Russia, 1979–85; Professor of Novosibirsk State University, Russia, 1985–89; Staff Scientist, Lawrence Berkeley Laboratory, 1989–90.

Affiliations and honors: Special Award of the Academy of Sciences of the USSR for the best experimental work of the year (1979). Member: American Physical Society (APS).

Research interests: Particle and photon beam physics, sources of polarized electrons, collider physics, nonlinear optics, P- and T-violation in atomic physics.

“Observation of Parity Nonconservation in Atomic Transition” (with L. Barkov), Sov. JETP Pis’ma 28, 379 (1978).
Administrative Support
Martha Condon
Administrative Staff
Center for Beam Physics
MS 71-259
(510) 486-5792
CBP@lbl.gov

Joy Kono
Program Administrator
Center for Beam Physics
MS 71-259
(510) 486-6375
joy@lbl.gov

“Sam” Vaneccek
Administrative Staff
Center for Beam Physics
MS 71-259
(510) 486-4182
svaneccek@lbl.gov

Olivia Wong
Administrative Staff
Center for Beam Physics
MS 71-259
(510) 486-5792
CBP@lbl.gov
Alan Chin

Graduate Student
Physics Department
University of California, Berkeley
MS 70-193A
(510) 486-6558
china@physics.berkeley.edu
Joined LBL in 1993

B.S., Physics, Electrical Engineering, Oregon State University, 1990.

Research interests: Ultrafast dynamics in semiconductors, phase transitions, femtosecond mode-locked lasers, generation of ultrashort x-ray pulses.

Marieke de Loos

Visiting Student
RU, Utrecht
MS 71-259
(510) 486-4181
Marieke@lbl.gov
Joined LBL in 1993

Student at Rijksuniversiteit te Utrecht, now at Lawrence Berkeley Laboratory as a Visiting Scholar for one year.

Research interests: Optical transition radiation, beam-plasma interaction, and accelerator physics.

Roel Dieron

Graduate Student
University of California, Berkeley
MS 71-259
(510) 486-7632
Joined LBL in 1994

Andrew Draeseke
Undergraduate Student
University of California, Berkeley
MS 71-259
(510) 486-4841
Joined LBL in 1994
Research interests: Quantum electrodynamics, quantum cosmology, plasma physics.

Nicholas W. Goffeney
Research Associate
MS 71-H
(510) 486-4102
Joined LBL in 1993
Research interests: Relativistic klystron two-beam accelerators, beam-breakup instabilities, astrophysical plasmas, parametric plasma instabilities, numerical simulations.

Richa Govil
Graduate Student
University of California, Berkeley
MS 71-259
(510) 486-4973
R_Govil@LBL
Joined LBL in 1991
A.B., Physics, University of California, Berkeley.
Research interests: Plasma-electron beam interactions, advanced accelerator concepts, free-electron lasers.
Michael Irwin
Undergraduate Student
University of California, Berkeley
MS 71-259
(510) 486-5227
Joined LBL in 1994

Research interests: Engineering physics.

Kenneth LaMon
Graduate Student
University of California, Berkeley
MS 871H
(510) 486-5756
Joined LBL in 1988

Victoria Vakarchuk
Undergraduate Student
State University of New York (SUNY), New Paltz
MS 71-259
(510) 486-4143
Joined LBL 1995

Research interests: Life, the universe, and everything.
Bas van der Geer

Visiting Student Assistant
RIJ, Utrecht
MS 71-259
(510) 486-4181
Bas@lbl.gov
Joined LBL in 1993

Student at Rijksuniversiteit te Utrecht, now at Lawrence Berkeley Laboratory as a Visiting Scholar for one year.

Research interests: Computational physics, optical transition radiation, and beam-plasma interaction.

Pavel Volfbeyn

Graduate Student
Massachusetts Institute of Technology
MS 71-259
(510) 486-5107
Joined LBL in 1995

Research interests: Plasma acceleration, FELs, ultrashort laser sources and applications.

Chih-Hung Yeh

Undergraduate Student
University of California, Berkeley
MS 71-259
(510) 486-7632
Joined LBL in 1995

Research interests: Biology, computer science, artificial intelligence.
Jonathan Yu

Student Assistant
MS 71-259
(510) 486-6553
Joined LBL in 1994
Senior, University of California, Berkeley.

Research interests: Spatial and temporal plasma lens diagnostics, laser optics, beam-plasma interaction.

Andrew Zege

Graduate Student
University of California, Berkeley
MS 71-259
(510) 486-6716
zege@rose.lbl.gov
Joined LBL in 1992

Candidate of Sciences, Theoretical and Mathematical Physics, Byelorussian State University, Minsk, Byelorus, 1992.

Research interests: X-ray lasers on channeling radiation, free electron lasers, channeling, parametric and synchrotron radiation, multibeam x-ray diffraction.

Participating Guests (Emeriti)
Alper Garren

Senior Scientist
MS B71H
(510) 486-6574
garren@lbl.gov
Joined LBL in 1955
Ph.D., Carnegie Institute of Technology, 1955.
Accelerator theorist with contributions to design of many accelerators and their lattices—e.g., Bevatron, FNAL, PEP, BNL/CBA, ALS, PEP-II, SSC. Author of the lattice program SYNCH. Also contributed to heavy-ion fusion, magnetic fusion with mirror machines, spiral-ridge cyclotrons (e.g., 88-inch Cyclotron at LBL), and to the Electron Ring Accelerator Study.

“Orbit Dynamics in the Spiral-Ridged Cyclotron” (with Lloyd Smith), UCRL-8398 (1959).

Albert Ghiorso

MS 71-259
(510) 486-7771
Ghiorso@lbl.gov
Joined LBL in 1946

Major awards and affiliations: American Chemical Society Award: Nuclear Applications in Chemistry, 1973. Member: American Physical Society; American Association for the Advancement of Science (AAAS).

Glen R. Lambertson
Senior Scientist
MS 71-259
(510) 486-7205
lambertson@lbl.gov
Joined LBL in 1951

M.S., Physics, University of California, Berkeley, 1951.

Current research: Particle beam electrodes, stochastic beam cooling, feedback stabilization of beam instabilities.

“Techniques for Beam Impedance Measurements Above Cutoff” (with A. F. Jacob, R. A. Rimmer, and F. Voelker), 2nd European Particle Accelerator Conference, Nice, France (June 1990), p. 1049; LBL-28190.

Jack M. Peterson
Senior Scientist
MS 71-259
(510) 486-6570

Research interests: Methods of beam injection and extraction, beam emittance degradation due to various effects, storage-ring design, magnet design, effects of magnetic errors and their correction, collective beam effects, feedback systems, neutron cross-sections, neutron giant resonances.

Selected publications: “Photo-production of Mesons by X-rays” (with E. M. McMillan and R. S. White), Science 110, 579 (1949).

“Effects from Measured Ground Motions at the SSC” (with K.-Y. Ng), SSCL-277-Rev; Fermilab Pub-9119 (1990).

“Correction of Random Multipole Errors with Lumped Correctors” (with E. Forest), SSCL-N-383.
Frank Selph

Senior Scientist
MS B7TH
(510) 486-6902
fselphe@csa2.lbl.gov
Joined LBL in 1962

Current research: ALS linac improvement, design of a storage ring for improved ion stripping.

Ferdinand Voelker

Senior Scientist
MS 71-259
(510) 486-7237
ferd@lbl.gov
Joined LBL in 1952

M.S., University of California, Berkeley.

Research interests: Damping of HOM in RF cavities, study of multi-electrode kickers for particle beam, beam impedance measurements.

“Technique for Beam Impedance Measurements Above Cutoff” (with G. R. Lambertson, A. F. Jacob, and R. A. Rimmer), presented at the European Particle Accelerator Conference, Nice, France (1990); LBL-28190.
Principal Collaborators

"I still say to myself when I am depressed and find myself forced to listen to pompous and tiresome people, 'Well, I have done one thing you could never have done, and that is to have collaborated with Littlewood and Ramanujan on something like equal terms.'"

— G.H. Hardy in
A Mathematician’s Apology

CENTER FOR BEAM PHYSICS — Principal Collaborators

Femtosecond X-ray Source Collaboration: R. Schoenlein, LBL
C. V. Shank, LBL

PEP-II B-Factory Collaboration: J. Dorfan, SLAC
D. Hitlin, Caltech
P. Oddone, LBL

FEL Diagnostics Collaboration: A. Schwettman, Stanford
T. Smith, Stanford

SCRF/FEL Collaboration: F. Dylla, CEBAF
G. Neil, CEBAF

FEL for Chemical Processing Collaboration: J. Madey, Duke University

Photocathode/SCRF Collaboration: Chia-Erh Chen, Peking University

Two-Beam Accelerator Collaboration: J. P. Delahaye, CERN
J. Haimson, Haimson Research
G. Westenskow, LLNL

Heavy-Ion Beam Cooling in RHIC: M. Harrison, BNL
S. Ozaki, BNL

Advanced Accelerator Concepts: S. Amatuni (FSU)
A. Dzergach (FSU)
B. Ivanov (FSU)
Y. Kishimoto (JAERI, Japan)
E. Laziev (FSU)
A. Mikhailichenko (Cornell U.)
G. Mourou (UM, Ann Arbor)
A. Ostrovsky (FSU)
A. Sergeev (Nizni Novgorod, Russia)
T. Tajima (UT, Austin)
Summary of Activities

S. Chattopadhyay (Center Head)
K.J. Kim (Deputy)

Scientific and Technical Staff
L. Archambault
W. Bany*
J. Bengtsson
J. Byrd
Y. H. Chin
M. Conde
J. Corlett
J. Edgoffier
W. Fawley
E. Forest
M. Fornan
D. Goldberg
J. Johnson*
W. Leemans
D. Lozano
R. Rimmer
A. Sessler
M. Ke
S. Yu
A. Zholents
M. Zisman
UCB Faculty
Associates
R. Falcone
J. Wurtele
International Visitors
D. Gardent
G. Giordano
S. J. Hahn
Postdoctoral Fellows
D. Gardent
H. Li
Center Affiliates
W.A. Barletta
R. Cough
T. E. Glover
T. Houck
A. Jackson
R. Kellar
C. Kim
J. Krupnick
N. Luhmann
H. Nishihara
D. Robb
L. Schachinger
R. Schoenlein
C. V. Shank
T. Tajima
A. Tauschwitz
G. Westermak
M. Zolotorev
Administrative Support
M. Condon
J. Kono
S. Vaceck
O. Wang
Students
A. Chin
M. De Loos
R. Diron
A. Draeseke
G. Giordano
N. Coffin
R. Covil
M. Irwin
K. La Mon
V. Yakarchuk
B. Van Der Geer
P. Vollbehn
C. H. Yeh
J. Yu
A. Zege
Participating Guests (Emeriti)
A. Garren
A. Ghiono
G. Lambertson
J. Peterson
F. Selph
F. Voelker

*Engineering Division
Nineteen ninety-four and ninety-five witnessed significant expansion—in breadth, depth, and scope—of the Center’s research and development activities. Originally chartered as the Exploratory Studies Group in 1985, we were soon recognized and organized as a center, in accordance with our mission: to help meet the technical challenges of major facilities and initiatives and to generally enhance LBL’s capabilities in particle- and photon-beam research.

Our staff played a pivotal role in the design, construction, and commissioning of the Advanced Light Source. We were also one of the primary factors in the genesis of PEP-II, the energy-asymmetric B-meson factory at the Stanford Linear Accelerator Center that has since evolved into a major collaborative construction project. The project, when completed, will greatly facilitate the study of CP violation. Our scientists and engineers remain involved with the ALS and PEP-II, especially in beam dynamics studies and in rf and feedback systems. (The technical problems are similar; PEP-II benefits from ALS experience and, with care to avoid disrupting user operations, we can use the ALS as a testbed.) Meanwhile, with an eye toward the future of accelerators, we have spearheaded a collaboration on the preliminary design of the Next Linear Collider (NLC), a possible successor to the Stanford Linear Collider in high-energy physics with lepton collisions.

The NLC that we are envisioning would have a 500-GeV center-of-mass collision energy. The Center’s responsibilities in this collaboration with the Stanford Linear Accelerator Center include damping rings, an interaction point for gamma-gamma collision physics to leverage the investment, and scenarios and technologies for an eventual upgrade to 1 TeV. The energy-upgrade studies are intimately tied to the Two-Beam Accelerator (TBA) concept that we have been exploring for some years in collaboration with Lawrence Livermore National Laboratory. The collaboration is now planning to propose an LBL testbed for a relativistic-klystron TBA where we would prototype technology that could serve as the source of rf power for the NLC upgrade.

We continued expanding our experimental capabilities over the past year. The Beam Test Facility, which will increase the benefits of the ALS injector linac by using the beam during several hours of otherwise idle time between ALS injection cycles, was fully commissioned. Besides the two experiments on the immediate horizon—plasma focusing of beams and generation, detection, and use of femtosecond x-ray pulses—preparations are under way for research into laser acceleration, laser guiding, optical stochastic cooling, and the entropy of particle and photon beams. And short-pulse tabletop terawatt lasers are being added to our Laser Optics Laboratory, which has embarked on collaborations with the University of California, Berkeley, physics department.

Aside from the growth in these activities, we have also continued making progress in our traditional focus areas: accelerator theory, linear and nonlinear beam dynamics, the fundamental physics of free-electron lasers, and high-energy collider physics (including diagnostics and beam cooling for large facilities such as the Large Hadron Collider at CERN and the Relativistic Heavy Ion Collider at Brookhaven). And our diverse research and educational activities have enjoyed enhanced participation by students and international visitors.
Experimental Beam Physics

To put theory to the test of experiment (and hopefully to develop new accelerating mechanisms, high-performance beam-control techniques, radiation sources with novel and useful characteristics), the Experimental Beam Physics group has become an integral part of the Center’s activities. The group’s 1994 and 1995 achievements have centered on the Beam Test Facility at the Advanced Light Source, the plasma lens and femtosecond x-ray experiments being set up and performed there, and experiments related to the Center’s long-standing interest in free-electron lasers.

Beam Test Facility

The Beam Test Facility is based on the 50-MeV Advanced Light Source injector linac, multiplying the scientific productivity of the ALS by using the linac beam for physics experiments during the several hours of otherwise idle time between ALS injection cycles (Figure 5-1). The BTF also has a terawatt, femtosecond laser system (Figure 5-2). The two systems work together in one of the most interesting experiments: generation and detection of x-ray pulses as short as tens of femtoseconds (Figure 5-3). Another interesting initial experiment, with implications for inertial-confinement fusion, involves focusing of a beam by using a plasma lens. In collaboration with the Fusion Energy Research Program, we are studying UV-laser-initiated discharges for heavy-ion-beam focusing and transport. Experiments are under way to investigate the stability of such discharge channels.

By mid-1994, the beamline was complete up to TV5 and was being commissioned, but the laser system had not been installed. Since then, the beamline has been finished and commissioned, including two additional optical transition radiation (OTR) beam diagnostic systems; the terawatt Ti:Al₂O₃ CPA laser system and associated beam transport system have been commissioned; and a transport line between the B5 and Q9 magnets for the plasma lens experiment has been installed.

![Diagram of Beam Test Facility](image)

Figure 5-1. A diagram of the Beam Test Facility beamline shows bend magnets (B), quadrupole magnets (Q), beam position monitors (BPM), and fluorescent screens (TV). Optical Transition Radiation diagnostics are currently installed between Q5 and B3 and between Q8 and B5.
Figure 5-2. The femtosecond terawatt laser system that will be used in this experiment was developed by LBL’s Materials Sciences Division (Femtosecond Laser Spectroscopy Group).

Figure 5-3. One of the most intriguing experiments for the Beam Test Facility is production of subpicosecond x-ray pulses through 90° Thomson scattering of a near-infrared laser beam against a relativistic (<50-MeV) electron beam.

BTF Commissioning

The commissioning phase of the BTF has progressed well. The main goal has been to deliver an optimized and fully characterized electron beam to the various experiments. Three OTR-based electron beam diagnostic systems have been implemented. OTR has allowed us to simultaneously measure beam energy, size and divergence (i.e., emittance), and bunch length; see Figure 5-4. Two of the systems use time-integrating charge-coupled-device (CCD) cameras, giving time-averaged measurements within a macropulse. The third system is equipped with a streak camera with picosecond time resolution for time-resolved information. (The streak camera was obtained from the former Soviet Union with funding from the ILAB program in the State Department.) In addition to their usefulness in beamline and linac tuning, these systems have enabled specialized measurements that are useful to the plasma lens focusing and the femtosecond x-ray generation experiments.
Figure 5-4. A typical optical transition radiation image of the radiation cone, along with a horizontal line-out. A polarizer was used to minimize the contribution of the vertical divergence of the electron beam.

Plasma Lens Experiment

The plasma lens experiment will examine the way electromagnetic interactions focus the beam when a relativistic electron beam passes through a plasma. To date, most work with the plasma-focus concept has involved thin “lenses.” Continuous plasma focusing with thick lenses holds the promise of overcoming the so-called Oide limit—a fundamental limit of focusability arising from statistical emission of high-energy photons in a sharp focusing bend. A proof-of-principle test and a systematic exploration of plasma-focus ideas generated at our Center will be conducted.

One of the ideas is a long, continuous plasma focus in which the plasma density is tapered by either diaphragms and differential pumping or a focused laser beam. The density will be tapered from about 1×10^{10} to 5×10^{12} cm$^{-3}$ over a length of 0.5 m. We hypothesize that, at 50 MeV, such a device could focus a beam with a 3-mm cross section into a 400-μm spot. Our scaled proof-of-principle work will involve plasma lengths ranging from 10 to 50 cm, with density tapering from about 1×10^{11} to 5×10^{13} cm$^{-3}$ over that distance.

Two requirements must be satisfied for an effective plasma focus: the plasma response time must be short compared to the pulse length, and the plasma return currents within the beam must be small. We have calculated parameters for a number of experiments that can be performed using the 50-MeV injector; they will allow careful study of these requirements in both underdense and overdense plasmas. Furthermore, a study of how plasma return currents change the effectiveness of the focusing can provide insight into the usefulness of plasmas in reducing beam-beam interaction.

* The terms “overdense” and “underdense” indicate whether the plasma is denser than the particle beam or vice versa.
A detailed parameter study of relevant plasma lens experiments, in both the overdense and underdense plasma regimes, has been carried out using actual measured electron beam parameters. Also studied was the effect of thin foils (used for separating the plasma chamber from the ultrahigh vacuum section and as substrates for mirrors) on the beam properties.

For the overdense case, typical plasma lengths range from 3 to 10 cm and plasma densities range from 4×10^{12} to 5×10^{13} cm$^{-3}$. For the underdense (adiabatic and tapered) lens, the plasma lengths range from 3 to 5 cm with density profiles spatially varying longitudinally from 1×10^{12} to 5×10^{14} cm$^{-3}$. We have chosen to produce the plasmas through quasi-resonant two-photon ionization of tripropylamine, or TPA. The advantages of this technique are the ease of plasma profiling through the quadratic dependence on laser intensity, as well as the low laser power requirements. Longitudinally tapered plasmas will be produced using a UV laser beam, incident at 90° to the electron beam, brought to a line focus with a spatially tapered intensity profile.

Using 94.3-GHz interferometry we have shown that uniform plasma densities (1 cm2 cross-section) for the overdense case can easily be produced in TPA with a 15-MW peak power KrF laser ($\lambda = 248$ nm). For safety reasons, we are now switching to a frequency-quadrupled Nd:YAG laser ($\lambda = 266$ nm) for plasma production. We do not expect the slight change in wavelength to significantly reduce the ionization efficiency or increase the laser power requirements.

To improve the spatial resolution of the density measurement and increase the maximum density we can measure, a plasma diagnostic based on optical HeNe Fabry-Perot interferometry has been designed and built, and is currently being tested. This system should allow us to measure plasma densities in the range of 5×10^{13} to 1×10^{16} cm$^{-3}$ with 35 µm spatial resolution.

A vacuum chamber has been designed which meets the requirements for both experiments and can accommodate both microwave and optical interferometry. It allows for a complete scan of the electron beam profile using OTR before and after the plasma lens.

The CBP Laser-Optics Laboratory has been expanded into the adjacent room, doubling its floor space. We have obtained a Nd:YAG laser system from LLNL for plasma production tests and are currently installing it.

In the next few months, we expect to finish the following tasks:

- Construction of the vacuum chamber.
- Production of uniform and tapered plasmas using 266 nm in TPA
- Testing and calibration of the HeNe interferometer
- Installation of the vacuum chamber at the BTF

By the end of the summer 1995 we expect to have results on plasma focusing.

Femtosecond X-ray Experiment

Another experiment at the BTF will produce ultrashort x-ray pulses. Today, the shortness of photon pulses that are produced by either interaction with a magnetic field (synchrotron radiation) or interaction with visible photons (Thomson scattering) is limited by, and comparable with, the length of the electron beam bunch. For the ALS linac beam, the shortest photon pulses obtainable from a direct collinear interaction would be a few tens of picoseconds long. We have recently hypothesized that a third approach could break through this limit, producing subpicosecond x-ray pulses.
The new approach, being supported with Laboratory-Directed Research and Development funds, is based upon 90° Thomson scattering with a visible laser. In this configuration, the shortness of the x-ray pulse is limited not by the length of the electron pulse, but rather by the length of the laser pulse or the transit time of the laser pulse across the waist of the focused electron pulse. Therefore it is crucial to focus the electron beam to a narrow waist matching the laser pulse length. The output pulse is much higher in energy than the laser pulse: the upshift is given by $4\gamma^2$, where γ is the Lorentz factor of the electron beam.

A short-pulse, solid-state laser ($\tau_\ell = 200$ fs, $E = 100–200$ mJ) is nearing completion in the femtosecond laser laboratory of LBL's Materials Sciences Division. In cooperation with that division's Center for X-ray Optics, we are examining ways to direct the beam onto detectors and experimental apparatus. To detect the x-ray beam with femtosecond resolution, itself a challenging problem, this collaboration is developing an x-ray detector that uses part of the laser beam to melt a silicon wafer and then measures the change in diffraction pattern as a function of the known delay time before the arrival of the x-ray beam. (We are also exploring autocorrelation of the laser pulse with the visible pulse given off by a gas column that was photoionized by the x-ray pulse.) We are also designing the beamline components required to focus the electron beam to a 70–100 μm spot and then separate it from the x-rays after the interaction point. With the current design parameters, we should be able to produce a 100–300 fs x-ray pulse, containing about $10^5–10^6$ photons, with a wavelength that can be varied in the range of 1–10 Å by changing the electron-beam energy.

A variety of other experiments will also be made possible by the facility, including beam-structure interaction studies, investigations of beam-conditioning cavities for free-electron lasers, and the "chirping" of conveniently long (10-ps) electron-beam bunches to produce photon pulses much shorter than that.

Preparations for this experiment are well under way. The electron beam has been focused down in the x-ray interaction chamber to a spot size of less than 100 μm with a pointing accuracy of better than 50 μm. The electron bunch length has been measured, using the OTR diagnostics, to be 15 ps. Synchronization jitter between the electron and the laser pulses has been measured using OTR to be about 2 ps. Using a phosphor screen and a slow-scan CCD camera, the background x-ray flux has been estimated at 100 to 1000 photons per pulse.

During the next three months, we expect to have finished the following tasks:

- Retuning of the electron beamline after a scheduled ALS shutdown during which the linac cathode will be changed.
- Transport of the high-power laser beam into the x-ray interaction chamber.
- Measurement of the x-ray background spectrum using germanium, scintillator, and bismuth germanium oxide detectors.
- Time-integrated, spatially and spectrally resolved measurement of the x-ray beam profile.

By the end of summer 1995 we expect to have preliminary results on x-ray generation.

*A term for a small, rapid change in energy during a pulse, historically based in radio transmission of Morse code.
Free-Electron Lasers and Radiation Sources

Although the effort of past years to build a large infrared free-electron laser for chemical sciences here at LBL is on hold, the Free-Electron Laser and Radiation Source Group carries on the Center’s long-standing interest in FELs. This largely theoretical group studies such topics as characterizing the qualities of particle and photon beams via entropy; optical stochastic cooling; cooling of relativistic heavy ions beams with broadband lasers; and coherence and power characteristics of high-gain FELs. An underlying theme is supplementing and/or moving beyond today’s “third-generation” synchrotron-light sources by finding advantageous ways of generating radiation that has similar but improved qualities. Such advantages might include size, cost, access to a difficult spectral region, and taking advantage of otherwise idle beamtime at an accelerator facility.

A prime example has been the leadership in theoretical and numerical analysis that our group has provided to the SLAC Linear Collider Light Source (LCLS) project, which seeks to use the Stanford Linear Accelerator Center’s “two-mile linac” for an x-ray FEL. As a recognized international center in short-wavelength FEL research, we were asked to organize a special session devoted to discuss the physics and technology of short wavelength FELs during the 16th International FEL Conference at Stanford University.

A major new activity that has emerged recently is the incorporation of gammaray collision in the design of the Next Linear Collider. We are participating in the recently formed SLAC-LBL-LLNL collaboration that is preparing a preliminary NLC design.

Free Electron Laser R&D

We have been steadily expanding our theoretical/numerical capabilities for reliable predictions of high-gain FEL operation in the short wavelength (UV and beyond) region. We have developed a more-comprehensive theoretical framework for handling the startup and exponential gain behavior, taking into account the slippage between the electron and the photon pulses and the finite pulse duration. An interpolation formula for accurate prediction of the behavior in the exponential gain regime, including the growth rate, the transverse mode structure, coherence and degeneracy, etc., has been worked out.

In the process, we have created various simulation codes to study different aspects of FEL behavior. In particular, the simulation code Ginger has been refined and upgraded to permit calculation of the harmonic generation, startup from noise, undulator interruptions, oscillator-type FELs, etc. These capabilities have enabled us to be a leading partner in the Linear Collider Light Source (LCLS) collaboration, as discussed below.

Linear Collider Light Source

Over the past year we have done extensive numerical modeling for several different FELs proposed conceptually at LBL and at other institutions. The most extensive effort has been in support of the LCLS, which is being studied by a consortium of institutions including SLAC, LBL, the University of California at Los Angeles, and Livermore. The LCLS would pass the electron beam from the SLAC linac through a long (25- to 50-m) wiggler to produce very bright, coherent x-rays in the 1-5 Angstrom range. This beam is high in both energy (1.5 GeV) and peak current (5 kA) and has a low transverse emittance (1–2 π mm-mrad normalized).

We have carried out the comprehensive multidimensional parameter optimization that is necessary to develop a strategy for a phased approach, starting with longer wavelength operation and progressing toward the ultimate goal of an x-ray FEL. We used the time-dependent, two-dimensional
(r-z) FEL simulation code Ginger to examine the startup of the LCLS FEL from shot noise (i.e., random bunching) naturally present on the input electron beam and the development of longitudinal coherence as the radiation grows exponentially with distance down the wiggler.

We have also investigated the usefulness of various modifications, such as making the first part of the wiggler resonant with the third subharmonic (4.5 Å, compared with the ultimately desired 1.5 Å) because its exponential gain length is shorter. The second half of the wiggler, which would remain resonant at 1.5 Å, would use the third-harmonic bunching produced by the first wiggler as an enhanced “seed” for continued exponential growth. And we investigated the advantages, if any, of inserting various drift spaces in the LCLS to make an optical klystron configuration and enhance the bunching. We found that the inclusion of time-dependent effects significantly reduces the gain from what would be found with a monochromatic signal.

Infrared FELS

Over the past several years, we had been working actively on designs for an infrared FEL whose characteristics were tailored to the needs of a user community in chemical dynamics. Construction of such a facility was strongly endorsed by the Committee on Free Electron Lasers and Other Advanced Coherent Radiation Sources, sponsored by the National Academy of Sciences. Encouraged by the report, we attempted one more time to propose an IRFEL producing hundred-microjoule, one-picosecond pulses in the wavelength region from 10 to 100 microns, to be constructed near the Advanced Light Source so that the two kinds of beams could be brought to bear on the same experiment. This is a wavelength region where tunable, high-power sources are not available with the conventional laser techniques, but which is important for fundamental studies in chemical dynamics, material sciences, biology, and physics via excitation of vibrational levels and nonlinear optical phenomena. Some hardware has been generously transferred to us, e.g., rf power equipment from Boeing and a gap-tunable undulator from the University of Wisconsin Synchrotron Radiation Center. We have, regrettably, had to put this aspect of our program on hold because the current funding climate would not support a construction program or even continuation of research at a significant level of effort.

Meanwhile, we are continuing the collaboration with CEBAF in their IRFEL design effort by providing detailed studies of the optical mode and the output coupling performance of a confocal FEL cavity.

Study of a High-Power FEL

We have studied an idea for a very high average power FEL based on a multiturn, recirculating microtron. Such an FEL could be important in certain industrial applications such as material processing, or in beaming power down to Earth from orbiting solar-energy satellites. A numerical simulation code was developed to study the energy loss instability of the accelerator system, which is crucial for these multiturn, recirculating accelerators. Following extensive modifications to Ginger to model oscillator FELs, we have used it and a one-dimensional time-dependent code to model the “electron output scheme” that has been proposed as a path to a high average power FEL at short infrared wavelengths.

The electron output scheme involves a relatively standard oscillator FEL whose major purpose is to bunch the electron micropulses, followed by a single-pass amplifier wiggler (the “radiator”) in which the bunched beam would radiate copious amounts of coherent power without the limitations that
are set by mirror damage in ordinary FELs. In a series of papers, we put forth the requirements for operating the oscillator in a stable mode, especially in an optical klystron configuration, as well as the expected extraction efficiency of the output radiator with and without tapering of the wiggler. Depending upon the exact beam parameters chosen, we found that relatively high cavity losses and careful detuning will probably be necessary to produce output bunching at a level of 0.3 to 0.5. Furthermore, extraction efficiencies much above a few percent will require relatively long (> 5 m) radiator wigglers.

Studies at the Stanford IRFEL

In 1995 we continued our experimental collaboration with the Stanford group that has built a 3–12 μm FEL. An image dissector system was used to measure sideband generation and transition to chaos in an infrared FEL operating at a wavelength λ of 4 mm with a low-loss optical cavity. The temporal evolution of the radiation spectrum through the complete macropulse has been measured on a micropulse-to-micropulse basis. Stable sidebands were observed for small cavity detuning with frequency offsets in good agreement with calculations. For even smaller cavity detuning, self-oscillations occur with the main laser wavelength varying by up to 2%. Using a wavelength stabilization system based on rf feedback, we have suppressed these wavelength fluctuations without loss of peak power.

The wavelength and power stability of the Stanford FEL, operating with the TRW wiggler, have also been measured using a high-resolution spectrometer and an image dissector system. The image dissector is capable of reading the spectrum of every micropulse at 12 MHz throughout a macropulse of up to 2 ms duration. The intrinsic wavelength and power stability of the FEL are found to be Δλ/λ = 0.035% and ΔP/P = 18%. The use of a feedback control system to stabilize the wavelength, and an acoustic-optic modulator for output power smoothing, improves the performance to Δλ/λ = 0.012% and ΔP/P = 7%.

Study of a Gamma-Gamma Collider

An e⁺-e⁻ collider can be made into an e⁻-γ or γ-γ collider by converting the electrons into gamma rays via Compton backscattering with terawatt optical beams, as shown schematically in Figure 5-5. This is desirable because gamma rays are energetic enough for the “particle” aspect of wave/particle duality to be significant. Gamma-gamma collisions provide unique access to

![Figure 5-5. Our concept for a gamma-gamma collider is based on Compton scattering between TeV electron beams and TW optical beams. Its physical context is a TeV upgrade of the Next Linear Collider based on non-superconducting rf systems (which we are also studying).](image-url)
some areas of fundamental physics, and the data also supply desirable
redundancy to the data from e^+e^- collisions. In March 1994, the Center
organized a Workshop on Gamma-Gamma Colliders to examine these issues.
The workshop confirmed community interest in these benefits and also
showed that adding a γ-γ facility to an e^+e^- collider would involve a relatively small incremental cost, and that the technology is sufficiently advanced
today to seriously consider a γ-γ collider.

The probable physical context of this work is the Next Linear Collider
(NLC). A SLAC-LBL-LLNL collaboration has recently been formed to complete a preliminary design of this facility. The NLC’s goal is a luminosity of 5×10^{33} s$^{-1}$ cm$^{-2}$ with 0.5 TeV center-of-mass energy in the first phase, upgradable to 1 TeV and beyond as well as higher luminosity (Figure 5-6). There are many challenging technical issues involved in a γ-γ collider; they include detectors and masks in the interaction region; special focusing components; high-power optical beam sources, including FELs; bright sources of polarized electrons; and high-power, low-loss optical components.

Many of these challenges overlap with the Center's expertise. The collaboratory collaboration agreed that parameter specification and project coordination for the γ-γ collider should be our responsibility. In addition, the Center will contribute in its areas of special competence: FELs, bright sources of polarized electron beams, and photon- and particle- beam transport in the interaction region. (A related damping-ring design study is described in the Beam Dynamics Group section of this report.)

The optical beams converting the electron beams to gamma rays need to satisfy very stringent requirements. To achieve 1:1 conversion, each micropulse must contain about a joule of 1-μm radiation and deliver it in about 1 ps. A sequence of 90 micropulses separated by 1.4 ns long makes up a macropulse. The macropulses are repeated at a rate of 120–180 Hz. Thus the peak power of the beam in the micropulse is 1 TW, while the time-averaged power is about 20 kW.

Figure 5-6. Several phenomena at the “energy frontier” of high-energy physics will be accessible to a machine with the energy and luminosity of the Next Linear Collider collaboration’s preliminary design. Also shown here is a specific example of technical progress toward gamma-gamma collisions at the NLC: a pulse-stretching, FEL-amplifying, and pulse-compressing system to produce an optical beam with the necessary characteristics.
Terawatt, picosecond lasers with the chirped-pulse amplification and compression technique have been built. However, the maximum average power of these lasers is at present about 10 W. Solid-state cw lasers pumped by diode arrays are currently being developed, with 1-kW systems demonstrated and a 10–20-kW system apparently feasible. The challenge is in combining the high peak power capability with the high average power via advances in dielectric gratings and phase-conjugation materials that can handle the power.

We have initiated a promising scheme for producing an optical beam of the required characteristics using pulse-stretching, FEL-amplifying, and pulse-compressing techniques. In this scheme, a low-power beam with the same time structure required for the final beam is passed through a grating pair to stretch and chirp the picosecond micropulses to 1.4 ns, so that each macropulse will be almost continuous through its 126-ns length. The optical beam is then amplified in an FEL, which is driven by an intense electron beam from an induction linac. The electron beam may need to be chirped to match the input optical beam. The amplified beam—now up to about 1 J per micropulse—is then passed through another grating pair to compress the micropulses and to recover the original time structure.

The requirements for the electron beam (current about 1 kA, energy about 100 MeV, energy spread about 10-3, and normalized rms emittance about 50 mm-mrad) are consistent with known induction linac performance. Preliminary study shows that possible degradation of pulse compression performance due to the phase/frequency fluctuation of the optical beam, which in turn is caused by electron-beam fluctuation from the induction linac, is small. The issue is whether gratings with the necessary high thermal damage threshold can be designed. This problem will be explored in close collaboration with the LLNL partners in the collaboration.

Additional Theoretical Topics

Entropy of Particle and Photon Beams. We have investigated the entropy of a particle beam, relating it to the more familiar concept of emittance as a measure of its disorder. Both concepts can be generalized to the case of photon beams, the entropy in this case being related to the density operator. In this work we are studying in detail the case where the photon beam is a stochastic superposition of coherent Gaussian beams. The goal of the study is to understand the qualities of particle and photon beams from a fundamental point of view.

Broadband Laser Cooling of Relativistic Ion Beams. In collaboration with a visiting scientist from the former Soviet Union, we are investigating the possibility of cooling relativistic ion beams in a storage ring by introducing a broadband laser beam into the straight sections. The process is similar to radiative cooling, except that the radiation is enhanced via resonance with the atomic energy level. Compared to the usual laser cooling schemes based on narrowband lasers, the proposed scheme has the advantage of operating in all three dimensions. The disadvantages are that the cooling rate is slower and the minimum achievable temperature is higher.

Optical Stochastic Cooling. During this past year, several of the Center’s staff have been involved in a study of Optical Stochastic Cooling (OSC) — a new technique that has the potential to make the cooling of relativistic protons and heavy ions in storage rings quicker by several orders of magnitude, compared to what has been achieved in microwave stochastic cooling.

A detailed theoretical analysis of OSC is being developed. The field of a particle as a function of the kinematic variable at the pickup is determined by
solving Maxwell’s equations, and is approximated by a simple Gaussian function. At the kicker, the particle sees an amplified superposition of fields from all particles of the beam. The change of the rms energy spread of the beam is evaluated using a distribution function of kinematic variables. We find that a sample in OSC is delineated not only by its length, as it is in microwave stochastic cooling, but also by its transverse size. The signal is picked up only from, and applied only to, particles belonging to a transverse sample in an area whose size is on the order of the product of the radiation wavelength and the length of the pickup. We are analyzing the dependence of cooling rate on the number of transverse samples and on the precision of the optical and particle beam transport between pickup and kicker.

We have also identified two problems that have to be resolved experimentally to verify the feasibility of OSC. The first is isochronicity of the lattice in the presence of a cooling insertion, along with preservation of fluctuations in the beam when it passes the insertion. The second is transportation and amplification of the pulse of undulator light while preserving fluctuations in the initial signal. Looking for an opportunity to do the experimental work at LBL, we settled on the electron beam from the ALS booster synchrotron at 150 MeV (which is far lower than the normal injection energy for the ALS storage ring, but is attainable). After extraction, the electrons would be directed to a special beamline that will include two undulators connected by a highly isochronous lattice, a setup that resembles a cooling insertion for a storage ring. Several variants of this beamline that would fit in the available space in the extraction area of the booster have been designed, as shown in Figure 5-7. The first experiment would consist of observation of the interference pattern of the radiation extracted from the undulator.

Figure 5-7. A schematic of the Optical Stochastic Cooling testbed that could make use of the beam from the Advanced Light Source booster synchrotron.
The increasing variety and difficulty of the rf manipulations needed by today's accelerators has opened new opportunities for what began as our beam-cooling group. Now called the Beam Electrodynamics Group, its activities during the year involved crucial work for the PEP-II B-factory, the ALS, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory, and the design of the Next Linear Collider (NLC) damping rings. Particular attention has been focused on rf and microwave components and systems for PEP-II.

Feedback Systems and Beam Electrodynamics for PEP-II

Control of the longitudinal and transverse coupled-bunch oscillations of the electron and positron beams in PEP-II is crucial to the success of the project. Feedback systems like the transverse system shown in Figure 5-8, together with impedance minimization, are required to achieve this goal. Beam Electrodynamics Group members are responsible for the design and fabrication of the transverse coupled-bunch feedback systems, and, in collaboration with SLAC, the longitudinal feedback system. Previous work on beam impedance calculations and measurements of a test cavity in the Lambertson Beam Electrodynamics Laboratory have determined the dominant driving impedances for the coupled-bunch instabilities.

The coupled-bunch instabilities encountered at the ALS have characteristics similar to those expected for the PEP-II rings; in particular, the growth rates of the coupled-bunch modes are of the order of milliseconds or less in both cases. Commissioning of the feedback systems at ALS has progressed well. We have demonstrated control of the transverse coupled-bunch motion of multibunch beams of up to 175 mA. Commissioning of the systems is in progress. Our experience in building and commissioning the ALS feedback systems has been of great value for PEP-II feedback systems design.

A design review held in October 1994 led to system specifications, and several components of the system are now in the detailed design stage. The receivers, which use signals from pickups in the accelerator vacuum chamber...
to determine the beam position, have been designed and components are on order. Pickups for the system have been specified and are on order, as are the high-power radio-frequency amplifiers that generate the deflecting kick to correct the beam oscillations. Digital electronics to provide a suitable delay between pickup signal and corrective kick, and also to allow particular bunches in the beam to be driven to large amplitude to scrape off some of the charge, are in the design stage. The stripline kickers, which create electromagnetic fields and provide the transverse kick to the beam, are being prototyped and will soon be measured in the laboratory.

Cataloging the impedance of components in the vacuum chamber is another ongoing task of the Beam Electrodynamics Group. These impedances cause beam instabilities as the wall currents induced by the beam excite electromagnetic fields that influence the trajectory of following particles. Impedance computations of components have been made with state-of-the-art three-dimensional electromagnetic design codes, and careful laboratory measurements of prototype components assure a low impedance. Figure 5-9 shows the measured beam impedance of a Beam Position Monitor (BPM) button in the LER arc vacuum chamber, which has an elliptical cross section. A sharp resonance at 7.16 GHz is observed, due to a TE-type mode generated in the gap around the circumference of the button. The button size has been adjusted to move the frequency of this mode further out of the beam power envelope. Any coupled-bunch motion driven by this impedance will be controlled by the longitudinal feedback system.

Figure 5-10 shows the measured transfer impedance for an LER BPM, which relates the signal voltage at the pickup to the beam current. At the BPM operating frequency of 952 MHz, a quite acceptable 0.7 Ω is obtained.

 Computations of instability thresholds and collective effects—including simulations of the operation of the feedback systems with realistic machine impedances and under realistic conditions of injection transients—have been made for PEP-II. For rigid-bunch motion the feedback systems are shown to control the beam motion. The feedback systems act on center-of-charge of each bunch, and are not designed to control modes involving motion within a bunch. Measurements of the low-power test cavity are being made to determine whether additional damping of some transverse cavity modes is required to avoid this kind of coupled-bunch motion.

Figure 5-9. The measured beam impedance of a beam position monitor pickup button in the LER arc vacuum chamber. A resonance at 7.16 GHz is observed. The longitudinal feedback system will control any coupled-bunch motion excited by this impedance.
The kickout of a single bunch in PEP-II (without causing too much disruption of the other bunches in the ring) has been studied using a particle tracking code that we developed. In this technique, bunches are removed that have been injected into the gap in the bunch train during injection setup procedures; the technique also deals with a bunch inadvertently overfilled during the injection process. Because of the nonlinear behavior of the beam as it moves off-axis in the machine, we find that the particles in a bunch smear into a large conglomeration before the feedback system can move the bunch over to strike a limiting aperture in the horizontal direction. However, in the vertical direction we find that the system can indeed kick out a single bunch rather rapidly—within about 300 turns. Figure 5-11 shows the evolution of a beam in transverse phase space as it is kicked to a large amplitude by the feedback system.

In addition to the transverse feedback systems, a multi-element longitudinal kicker is being designed for the longitudinal feedback system. This traveling-wave device consists of three coaxial electrodes connected by delay lines that provide voltages of opposite sign at the ends of the electrodes, increasing the efficiency of the structure. Such high-impedance kickers are necessary to provide the voltage kick of several kilovolts needed in the PEP-II rings, at a reasonable cost in high-power rf amplifiers.
High-Power RF Systems for PEP-II

The design of the rf systems for PEP-II has continued under our physics direction, initially as an offshoot of LER development and now directly as a top-level project subsystem. We have helped to determine the operating requirements of the system and have been involved in the ongoing R&D of the major components, particularly the high-power cavity, vacuum window, and higher-order-mode (HOM) absorbers.

The distinctive arrangement of three HOM damping waveguides opening into the body of the cavity was developed at LBL. This scheme was proved to be very effective by a series of measurements on a cold-test model in the Lamberton Beam Electrodynamics Laboratory. With the success of this model, the rf group, drawing upon resources from SLAC and LLNL as well as LBL, has gone on to design a full-power version with only minor changes to the geometry. The major challenges in the design of the high-power cavity were in the area of thermal management; i.e., to efficiently dispose of the power from wall losses and to minimize stresses in the cavity body. The cooling scheme was optimized with sophisticated three-dimensional finite-element, rf, thermal, and stress analyses.

Calculations of the power deposited in the cavity HOMs have been made in order to determine the absorber power rating. Figure 5-12 shows the power spectrum for the LER nominal fill pattern (alternate buckets filled), at 3 A with a 5% ion clearing gap. A total of 3.6 kW is deposited in the form of these HOMs in each cavity. Additional power is deposited in cavity modes above the cut-off frequency of the beam pipe. For different fill patterns the spectrum changes, and more or less power is deposited in particular HOMs.

The design of the HOM loads has been optimized to make best use of the absorbing material and to fit into the limited space available in the tunnel. The damping waveguides are now folded so that the loads are “tucked in” parallel to the beam pipe. The cavity, coupler, and load assembly will be prealigned and tested on a raft before installation in the tunnel (Figure 5-13).

![Figure 5-12. The power spectrum for cavity HOMs excited by the LER beam.](image-url)
The design of the cavity itself is mature, and a mechanically robust high-power test cavity is almost finished. In making the high-power cavity, fabrication technologies from the collaborating laboratories and high-technology industry, including multi-axis CNC machining, high-purity copper electroforming, hydrogen furnace brazing, and electron-beam welding, were used. Tuning of the high-power test cavity, which involves machining the inside surfaces to achieve the required resonant frequency, began in March.

Once the machining is complete, tests and measurements will evaluate the power-handling capabilities of the 476-MHz cavity. High-power testing of the first cavity will begin in late spring or early summer 1995, using the new 1.2-MW klystron built at SLAC. The power level in the cavity will be gradually increased to avoid rf-induced breakdown, which may be expected during conditioning. The cavity has been designed to dissipate up to 150 kW in its copper walls.

The project is planning to build eight cells in-house while issuing a request for proposals for fabricating the remaining cells by December 1995. By carrying out production of the initial set of rf cavities in-house, the project will be able to respond with maximum flexibility to any schedule issues involving this component.

Other high-power components in the rf system have been designed, and high-power tests are due to begin this spring. The rf vacuum window is a critical piece of the system that must allow propagation of 500 kW of rf power without being damaged or compromising the vacuum. We have designed a window that uses a single disk of high-purity alumina ceramic
braided into a water-cooled flange. The design is unusual in that the flange is made of stainless steel and is joined to the ceramic at high temperature using a substantial molybdenum keeper ring to ensure the correct brazing gap. On cooldown, the stainless steel ring tries to contract more than the ceramic, leaving a residual compressive stress in the alumina. This prestressed assembly should be able to withstand higher dielectric losses and should be generally more rugged in the face of arcing or multipactoring than an unconstrained ceramic (which is susceptible to failure due to tensile stresses from differential heating). The brazing process has been optimized using small-scale models and the first full-size windows have been built. High-power testing is under way and initial results are encouraging. Vacuum seals on certain ports are also undergoing tests.

Measurements of the low-power test cavity are continuing to accurately determine the impedance presented by the cavity HOMs. This information is necessary in determining the minimum power and gain requirements for the coupled-bunch feedback systems.

Stochastic Cooling and Beam Diagnostics

We have maintained our history of involvement in stochastic cooling by studying the beam cooling and diagnostics requirements for the Relativistic Heavy Ion Collider being built at Brookhaven National Laboratory. Stochastic cooling is the process by which the deviations from nominal energy or position of particles in a beam are measured and corrected. The control of gold ions in this machine is a particular problem, and microwave frequency stochastic cooling systems are likely to be required to provide sufficient integrated luminosity to effectively study the collisions of these heavy ions. Cooling in both transverse directions and the longitudinal dimension is under consideration. Diagnostics are necessary to determine the behavior of the beam and make necessary corrections. We are developing cavity-based detectors for measuring the noise signals of the beam—an important quantity in hadron and heavy-ion colliders.

Feedback Systems and Collective Effects Measurements for the ALS

We are continuing to apply our group’s capabilities to the improvement of the Advanced Light Source here at LBL. Besides the obvious benefit of enhancing this important user facility, the opportunity to use a state-of-the-art storage ring like the ALS in developing systems for PEP-II is not to be missed.

Installation of the hardware and cables for the transverse feedback systems at the ALS is now complete, and the longitudinal feedback kickers have been installed. Commissioning of these systems continues during the regular accelerator-physics shifts that are interspersed with user shifts. Figure 5-14 illustrates their performance. Spontaneous betatron oscillations have been successfully damped at the nominal ALS user conditions—400 mA in 328 bunches. The large-amplitude synchrotron oscillations provide some damping of the transverse beam motion.

A dedicated longitudinal feedback system is also being commissioned. At present a prototype capable of controlling up to 82 bunches is being used; the full complement of electronics will soon be available to control all 328 bunches. Power requirements are currently being evaluated for the system.

Measurements of the beam characteristics at the ALS have led to a greater understanding of the storage-ring beam impedance. Bunch length estimates and transverse beam dimension measurements have been made, and instability thresholds measured. Figure 5-15 shows the measured bunch
Figure 5.14. This ALS beam (175 mA in 40 bunches) is shown in three states of stabilization, as imaged on diagnostic beamline 3.1. At top it is stabilized by feedback systems in all three directions (horizontal, vertical, and longitudinal). In the center image, vertical feedback has been turned off. Large-amplitude coupled-bunch motion is evident (and is also indicated by coherent signals observed on a spectrum analyzer). The horizontal feedback system was controlling a significantly smaller amplitude of betatron motion. Finally, at bottom, longitudinal feedback is removed while horizontal and vertical feedback remain on. The bunch-to-bunch energy differences result in a horizontal beam size increase through the dispersion at the image point of the beamline. The large amplitude longitudinal motion results in an effective damping mechanism for the transverse motion. For resonant driving impedances, such as the cavity HOMs, the longitudinal oscillations cause dephasing of the transverse kicks due to differing arrival times of a bunch from turn to turn. Also, with nonzero chromaticity, the energy oscillations result in a bunch-to-bunch betatron tune variation, which weakens the coupled-bunch motion in the transverse directions.

lengthening data as a function of single bunch current, together with a fit to the $1^{1/3}$ scaling law expected due to a microwave instability. Measurements of energy spread as a function of beam current support the interpretation of a microwave instability causing this bunch lengthening. The broadband impedance derived from these measurements is estimated to be 0.2 Ω. This supports earlier estimates, and is consistent with the small impedances found in components measured in the laboratory.
NLC Damping Rings

A new venture for us this year has been the collaboration with SLAC on the Next Linear Collider, which involves several groups within the Center for Beam Physics. In particular, our group is involved in the rf systems design and studies of collective effects and feedback systems for the damping rings. The large beam current (1 A), divided into four trains of bunches, results in transient loading of the rf system, which must be compensated to maintain beam quality. Beam instabilities must be avoided by impedance minimization and feedback systems. We contributed an analysis of the damping rings’ coupled-bunch instabilities and an outline of the rf system design to the preliminary design.

The RK-TBA as a Power Source for NLC

As a power source for linear colliders, the two-beam accelerator or TBA (see Figure 5-16), a concept developed by Andrew Sessler of the Center for Beam Physics, has the inherent advantage of very high efficiency for power conversion from the drive beam to rf power. In addition, TBAs based on induction linacs would scale quite favorably to high frequencies (≥ 11.4 GHz) and high accelerating gradients (≥ 100 MV/m). Recent reacceleration experiments have successfully demonstrated bunched beam transport through two reacceleration induction cells and three traveling-wave extraction cavities for a total rf output of over 200 MW. The phase and amplitude were shown to be stable over a significant portion of the beam pulse.

The technical challenges for making TBAs into real-world power sources lie in the dynamics of the drive beam, which is quite high in current (hundreds of amperes) and must propagate over long distances. In particular, the beam breakup instability through the long multicavity relativistic klystron version of the TBA is known to be severe. While BBU suppression techniques have been successfully demonstrated for a few cavities, a scenario with acceptable BBU control over many traveling-wave cavities must be constructed. Similarly, the longitudinal stability of the rf bunches over a multicavity TBA must be demonstrated. In addition to technical feasibility, a case for economic attractiveness is no less essential for the viability of the TBA as a power source.
Figure 5-16. In the Two-Beam Accelerator, a high-current, low-energy drive beam is used for generating rf power that is applied to a high-gradient acceleration structure, where a low-current load beam is accelerated to high energy. Relativistic klystrons would generate the rf power in the example we are studying for possible NLC applications, although we have also done research on wiggler-based TBA. The point design for the RK-TBA of the NLC is also shown, as is the far shorter RK-TBA proof-of-concept prototype that we would like to build and operate at LBL.

With these general considerations in mind, we performed a conceptual study, including physics and engineering designs and "bottom-up" cost analysis, for a new version of the RK-TBA that has acceptable longitudinal and transverse beam stability, as well as low cost and high efficiency. This particular RK-TBA is designed as a power source for a linear collider with 1 TeV of center-of-mass collision energy, representing the upgrade phase of the NLC.

To generate an unloaded gradient of 100 MV/m in the high-gradient structures, the TBA must supply 360 MW of rf power at 11.4 GHz every 2 meters. The output rf field is specified to have a 100-ns linear risetime followed by a 200-ns flat top. The repetition rate is 120 Hz. To power a 15-km-long collider (two 7.5-km arms), we propose 50 RK-TBA units, each 300 m long, operating at an average drive beam energy of 10 MeV, with an average current of 600 A over the duration of the pulse, and a reacceleration gradient of 300 kV/m.
The front end of each RK-TBA unit consists of a 1.5-kA injector, followed by an rf chopper at 2.5 MeV, and an "adiabatic capture" unit in which the chopped beam (average current 600 A) is accelerated to 10 MeV and further bunched with idler cavities in preparation for injection into the main TBA. To enhance the efficiency of the TBA system, an "afterburner" at the end of the main TBA continues to extract rf power through 12 successive output cavities before depositing the spent beam (average beam energy < 3 MeV) at the beam dump. The overall efficiency (drive-beam to rf) of each RK-TBA unit is 90%.

The new RK-TBA design is based on the technology of the long-pulse (few microseconds) induction machines that have been studied over the last 18 years for heavy ion fusion applications. The magnetic material used in this design is Metglas, a metallic glass product that can accommodate a large flux swing—nearly 3 T—before saturation. The induction cores can therefore be made quite compact.

Nonaccelerator applications of this material over the last few years have led to dramatic reductions in the cost of Metglas. The small Metglas cores, when combined with low-field (800 gauss) permanent magnets for quadrupole focusing, and small beam pipes (5-cm diameter), have led to a compact induction cell design whose transverse diameter is about 34 cm — much smaller than any of the previously known induction cell designs.

The pulse power for the induction cells comes from a low-voltage system. The induction cores consist of small 20-kV units, powered by pulse forming networks (PFN) switched by ceramic thyratrons. Power is fed into the PFNs via dc power supplies and command–resonant-charging systems. The low-voltage design avoids the use of step-up transformers, which have high losses. The main losses in this system are associated with core currents in the induction cells. The overall efficiency of the pulse power system (from wall plug to drive-beam) is estimated to be 40%.

The rf extraction cavities are located every 2 m. Present designs center on traveling-wave structures with three inductively detuned rf cells, with an inner radius of 8 mm. Two iris waveguide structures in the last cell are matched for power extraction.

Longitudinally, beams will debunch because of space-charge and rf-induced energy spread. To counter these debunching effects, the rf output cavities are inductively detuned. This is accomplished by making the phase velocity of the three-cell traveling-wave structure faster than the velocity of the particles. The particle bunch lags behind the decelerating crest of the wave, and the energy loss becomes phase dependent, with the particles at the bunch tail losing the least energy. Kinematics cause the tail to catch up with head of the bunch, which is followed by synchrotron oscillation in stable rf buckets. One-dimensional PIC simulations with a coupled cavity circuit model show stable propagation through 150 cavities. For comparison, cavities with no inductive detuning are shown to result in particle debunching after a few cavities.

A key design feature of this particular TBA is that the betatron period is exactly equal to the spacing between adjacent output cavities. This "betatron-node" scheme leads to minimal beam offset at the rf cavities. Excitation of the HE11 mode at 14 GHz is drastically reduced as a result. Transverse dynamics have been modeled with a beam-breakup code that includes both cumulative and regenerative effects; it shows BBU growth is acceptable. The cavity parameters for these simulations were obtained from the codes URMEL.
and MAFIA. For an 8-mm radius cell, a natural de-Qing of the dipole mode occurs because of the coupling to the TE_{11} mode in the beampipe. The betatron-node scheme imposes constraints on the accuracy of the focusing fields and beam energy. Sensitivity studies to this point indicate that without feedback, the field errors must be less than ±1% and energy variation from head to tail must have comparable accuracy.

There is another low-frequency BBU mode, associated with the induction gaps, that must be controlled. The relatively low current of 600 A, combined with the Landau damping that occurs naturally because of the energy spread in the rf buckets, have led again to simulated BBU growth of about 4 e-folds. To achieve this low growth, the induction gaps were designed for maximal dipole de-Qing, using the induction-cavity design code Amos.

A first engineering and costing exercise for the full TBA system has been performed. The electrical design includes all components starting from the ac power distribution system, through the dc power supplies, the command resonant charging system, the pulse forming networks, and the induction cores. Racks and installation, as well as instrumentation and control, were included in this exercise. Costs were estimated with a “bottom-up” approach (that is, starting from individual components and adding them up to arrive at the entire system), assuming mass production procedures for fabrication and assembly. Our preliminary cost estimate for the TBA-based power source for a 1 TeV cm linear collider is less than $1 billion. This estimate does not include conventional facilities, or any institutional overhead. The overall efficiency of the system (wall plug to rf) is estimated to be 36%.

The preliminary design report for our systems study has also been completed. On the basis of this design, a joint proposal between LBL and LLNL has been submitted to DOE for a five-year RK-TBA project that would build and test a 30-m prototype. The project would use existing injector hardware from LLNL and would be sited at LBL. This facility could test many of the critical issues of cost, efficiency, and beam dynamics. Should the power extraction tests prove successful, the RTA could be mated to the NLC Test Accelerator at SLAC to power the high gradient structures to 100 MV/m. The proposed RTA work is a component of the collaborative effort by SLAC, LBL, and LLNL.

E. G. Bessonov, K.-J. Kim, “Gamma Ray Sources Based on Resonant Rayleigh Backscattering of Laser Beams with Relativistic Heavy Ion Beams,” abstract submitted to the 1995 Particle Accelerator Conference and International Conference on High-Energy Accelerators, Dallas, Texas (May 1–5, 1995) (CNP Note-121; LBL-36498).

S. Chattopadhyay, “Information Processing and Phase Space Control at 100 THz” abstract submitted to the 1995 Particle Accelerator Conference and International Conference on High-Energy Accelerators, Dallas, Texas (May 1–5, 1995) (CNP Note-109; LBL-36530a).

England (June 27–July 1, 1994) (CBP Note-064; LBL-34973a).

A. Zhelens, “Beam-Beam Effects,” invited paper presented at the Workshop on Non-Linear Dynamics in Particle Accelerators, Arcidosso, Italy (September 4–9, 1994) (CBP Note-131; LBL-36572).

Please send ______ copy(ies) of the CENTER FOR BEAM PHYSICS 1994–1995 directory and future updates. My mailing label is attached.

Please change my name/address. My mailing label is attached.
Name ________________________________
Address ________________________________

ATTACH MAILING LABEL
HERE

Please clip and mail this form to:

CENTER FOR BEAM PHYSICS
MS 71-259
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, CA 94720