Lawrence Berkeley National Laboratory
Recent Work

Title
INDUSTRIAL WATER DISCHARGES AND STATIONARY SOURCE PARTICULATE EMISSIONS

Permalink
https://escholarship.org/uc/item/70h1p45q

Author
Mclaughlin, R.D.

Publication Date
1979-04-01
Industrial Water Discharges and Stationary Source Particulate Emissions

R. D. McLaughlin, M. S. Hunt and C. R. Chen

April 1979
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
INDUSTRIAL WATER DISCHARGES AND STATIONARY SOURCE PARTICULATE EMISSIONS

R. D. McLaughlin, M. S. Hunt and C. R. Chen

Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

April 1979

Introduction

Recent legislation designed to prevent the deterioration of our environment has led to a surge of interest in analytical chemistry. There has been a surge both in the development of analytical instrumentation and in the promulgation of guidelines that prescribe permissable levels of pollutant emission. This situation has resulted in the need for many people to make decisions about the purchase of analytical instruments.

A choice must be made first between the numerous techniques which may be used to make a certain measurement. After determining which technique is to be used, the analyst must decide which of the many commercially available instruments he will purchase. Manufacturers invariably have several models of similar instruments from which to choose and differences between these models and those of other manufacturers are often unclear. Even after this selection has been made, it is essential that the analyst understand the principles of operation of the instrument and the potential interferences caused by his particular sample type.

To aid laboratories in choosing among the techniques and instruments currently available for the determination of industrial discharges, a
survey of instrumentation used for analysis and monitoring of environmental pollutants was undertaken in 1971.

For the past eight years the Survey of Instrumentation for Environmental Monitoring has described instrumentation used to analyze air and water quality, radiation emissions and biomedical impacts. It has grown from four looseleaf binders to seven, including AIR (Gases, 2 binders and Particulates, 1 binder), WATER (2 binders), RADIATION (1 binder), and BIOMEDICAL (1 binder) with over 8000 pages and more than 5000 volumes in circulation.

This paper contains condensed excerpts from the Survey illustrating the variety of information which is included.

Water Discharges

The same increase in national productivity that has led to an increase in the standard of living is now threatening to lower that standard because of environmental pollution. With the goal of achieving water clean enough for recreation, and for the protection and propagation of wild life, legislation has been passed to eliminate, eventually, the discharge of pollutants into the national water system. The approach is to allow the discharge of various pollutants by specific industries and require control technologies to be used to maintain discharge of these pollutants below specific levels. These restrictions are enforced by the requirement that a permit be issued before discharges are permitted (National Pollutant Discharge Elimination System).

The effluent guidelines and standards for 42 industrial categories have been published in the Code of Federal Regulations. Each category is broken down into subcategories and guidelines are given for these
more than 400 specific operations (e.g. pharmaceutical manufacture is divided into fermentation products, extraction products, chemical synthetic products, mixing and formulation, and research). Table I lists the 42 major categories with the pollutants whose discharge is allowed.

Different effluent levels are allowable depending on the following:

1) the industrial subcategory

2) the control technology required (i.e., best conventional technology, best available technology economically achievable)

3) whether or not it is a new source (new sources are more severely regulated than existing sources)

4) where the effluents are discharged (effluent levels discharged into publicly owned treatment works may be different from direct discharges into navigable waters).

Because of the more than 400 subcategories and the many possible conditions of effluent emission for each, a table displaying the effluents associated with each condition would be too large for publication here. Pollutants which may be discharged by industries in the major categories are listed in Table I. In many cases, the associated pollutants are the same for all subcategories of the major categories. Exceptions to this are also indicated in the table. For details that pertain to a specific industry, the Code of Federal Regulations should be consulted. Because the promulgation of effluent guidelines is an ongoing process, the EPA should be contacted for the latest information.

The abbreviations used in the Table refer to methods of pollutant detection described in the Code of Federal Regulations. The following
less obvious symbols are defined as follows

- **BODS** - biochemical oxygen demand - 5 day test
- **Cl residual** - this test measures the chlorine remaining after a specified contact time
- **CN** - cyanide
- **COD** - chemical oxygen demand
- **Cr(VI)** - this test determines the concentration of chromium in the +6 state
- **fecal coliform** - this test is a measure of the number of bacteria of fecal origin
- **NH\(_3\)(N)** - nitrogen present as ammonia
- **NO\(_3\)(N)** - nitrogen present as nitrate
- **organic N** - nitrogen present as part of an organic species
- **PCB** - polychlorinated biphenyls
- **Ra226** - the isotope of radium whose atomic weight is 226 gm/mole
- **TKN** - total Kjehldal nitrogen (organic nitrogen plus ammonia nitrogen)
- **TSS** - total suspended solids.

All pollutants are classified as either conventional, toxic or non-conventional. Conventional pollutants include BOD, TSS, and pH (others could be proposed soon). There are 129 priority pollutants that appear on the toxics list in the Federal Register. They also appear in a recent issue of Pollution Engineering. Non-conventional pollutants are those that are neither toxic or conventional, (i.e., NO\(_2\), P, oil and grease). Best conventional pollutant control technology will be required for conventional pollutants by July 1, 1984. Best available technology economi-
cally achievable will be required for toxic and non-conventional pollutants by the same date. In the meantime different technologies and different levels have been promulgated depending on the industrial process.

There can be no question of the determination of Congress to improve the quality of the nation's waters within the next five years. This attitude of the government will without doubt encourage the development of new pollution control technologies and new monitoring instrumentation. Time will tell how successfully pollution engineers and instrument manufacturers will be in meeting the challenge.

Stationary Source Particulate Emissions

There are at least three reasons why it may be important to monitor stationary source particulate emissions: 1) to safeguard workers from occupational exposure 2) to assess performance of industrial operations and 3) to limit environmental pollution by adherence to the regulations of the Environmental Protection Agency. An excellent description of air sampling instrumentation with emphasis on protection of the worker has recently been published by the American Conference of Government Industrial Hygienists. Here, we will be primarily concerned with particulate monitoring carried out for the second and third reasons.

The Environmental Protection Agency has promulgated two methods for assessing the extent of particulate emissions from stationary sources. One method (gravimetric method) requires that a portion of the stationary source gases be passed through a filter and the mass of the particulate contained in a known volume of gas be determined gravimetrically. The other method (opacity method) is an estimate of the particulate loading
in a gas stream that is obtained by measuring the extent to which the intensity of a light beam is decreased. The gravimetric method is difficult and somewhat time consuming because:

1) Many samples must be taken because a single sample may not accurately represent the particulate content of the gas being sampled either because of lack of homogeneity, or because of non-isokinetic sampling.

2) Frequently small masses are involved, and much effort is required to obtain meaningful weights of the filter before and after sampling because of handling difficulties.

3) Errors caused because of the absorption of water vapor by the filter during sampling must be avoided.

4) Static charge must be removed from the filter before weighing.

The approved manner of carrying out the sampling and weighing procedure is described by the Environmental Protection Agency. (Method 5 "Determination of Particulate Emissions from Stationary Sources").

The opacity method derives from the simple idea that the smaller the fraction of light transmitted through the gas, the higher the quantity of particulate matter. The transmission (T) is the ratio of transmitted light intensity (I) to the incident intensity (I₀) that is T = I/I₀ and the opacity (0) is defined as 0 = I-T. Since light scattering depends on the size and composition of the scattering material, it is difficult to determine a direct relationship between opacity and particulate mass. However, opacity measurements are used as indicators of change in emission output and opacity standards have been established
for many industrial operations. Particulate and opacity standards for new stationary sources that have been taken from the Code of Federal Regulations10 are listed in Table II. This reference should be consulted in order to be sure of compliance with regulations of the Environmental Protection Agency.

In order to increase the probability of valid opacity measurements, the Environmental Protection Agency has published a list of performance specifications11 that should be met by opacity measuring instruments also known as transmissometers. These specifications are listed in Table III. The calibration error is determined by comparing the transmissometer reading with filters of known opacity. A total of five non-consecutive readings should be made for three different filters. Zero drift is determined by taking readings at 24 hour intervals during a 7 day test period. Calibration drift is obtained by an opacity reading of the same filter every 24 hours. Response time is determined by inserting the highest opacity filter and noting the time required for the reading to reach 95% of the final value. Also the time required for the reading to return 95% of the distance toward zero when the filter is removed is noted. Both of these time periods should be less than 10 seconds.

In addition to the above electronic stability requirements, transmissometers must be only sensitive to the wavelength region between 400 and 700 nm and must have a limited field of projection and field of vision (\textless 5 degrees). The wavelength restriction is necessary because the infrared absorption of water vapor and carbon dioxide will cause errors in all regions except 400-700 nm. The larger light scattering
effects in the ultraviolet region also indicate it should be avoided.
The restricted projection field and viewing field is to lessen the
effects of scatter in the visible spectral region and the effects of
ambient light. The EPA also requires frequent zero and span checks so
that an instrument malfunction will be quickly detected. This pro-
cedure will point out such problems as electronic drift due to line
voltage changes, phototube drift because of temperature changes, light
intensity drift with aging, and degradation of optical alignment caused
by deformation of the stack.

Manufacturers have come up with some ingenious approaches to
preserve optical alignment during stack distortion:

1) a probe is attached to one side of the stack. This probe con-
sists of a pipe with a light source mounted on the end that is inserted
into the stack and a photodetector on the other end -- the photodetector
remains outside the stack. Slots are cut into the probe such that
stack gases flow between the light source and detector.

2) a breech pipe extends through the stack and slots are cut
through the pipe.

3) a breech rod extends through the stack and rigidly holds the
detector and light source; the gases below the rod are monitored.

4) collimated optics with a retro-reflector are arranged to mini-
mize light losses due to stack distortion. This avoids the use of
breech rods or pipes. A double-pass approach continuously corrects for
variations caused by temperature, line voltage lamp aging and electronic
aging. This approach depends upon having both the light source and
photodetector on the same side of the stack and is illustrated in Fig. 1.
With this configuration, beam splitting devices and choppers can be used to monitor changes in intensity of the light source and drift in photodetector response. Auxiliary light sources and mirrors have been incorporated into some of these configurations so that zero and span calibration can be carried out easily or, in some cases, automatically. Air blowers are used to keep windows clean, and separate photodetectors are sometimes used to monitor light transmission through the windows and thus indicate the presence of dirt on the window surface. Pulsed light sources are sometimes used to prevent error caused by ambient light in the stack. Although these seem to be good solutions to the most serious of the opacity measurement problems, the potential buyer should talk to users of these instruments to evaluate their actual performance. The various manufacturers of transmissometers are listed in Table IV along with special instrumental features that allow a preliminary comparison to be made. The cost that appears in this table is the base cost and does not necessarily include all of the options listed in the read out column.

Since the relationship between opacity and mass concentration is so dubious, one might wonder why measure opacity at all? The rationale for requiring most stationary sources to adhere to opacity standards is set forth by the EPA. Opacity monitoring is intended not to measure mass but to verify on a day-to-day basis that control equipment is operating properly. As such, opacity standards (in %) for each source category are set so they are less restrictive than the applicable mass standard. The EPA argues that a full source test for mass emissions is
too expensive for routine monitoring for compliance, and the necessity to schedule such a test 2 weeks or longer in advance provides ample opportunity for those inclined to cheat by reducing the power to their control equipment until the test begins or leaving repairs to the last minute. Opacity standards are therefore established at a level requiring proper operation and maintenance of the control equipment, as a kind of warning or alarm level indicating non-compliance.

However, it must be pointed out that the opacity provisions are independently enforceable standards, just like the mass standards, and that it is not necessary to show that the mass standard has been violated to support enforcement of the opacity standard.13

Recent efforts to improve particulate monitoring techniques have been reported at a symposium sponsored by the EPA/IERL process measurement branch.14 The goal is to produce a more accurate, less expensive, easier to use instrument that puts out time resolved data. It was verified that transmissometers produce reliable mass data if the particulate matter has constant physical and chemical properties. It may be possible to combine particle size data with opacity data to obtain a reliable mass measurement. An instrument has been described that provides particle size data in hot stack environments. This instrument measures the near forward scattering of a laser beam by the stack emissions.14 Other new techniques (i.e., charge transfer, light backscatter and beta ray attenuation) were also discussed at this symposium. Given time, it is certain that ongoing work in this field will improve the monitoring process.
ACKNOWLEDGMENT

This work was supported by the Energy and Environment Division of the Department of Energy.
REFERENCES

2. See, for example Fed. Reg. 43(164) 37570-37607 (Aug. 1978) (see Ref. 1 for procurement.
4. 40 CFR 136 (see Ref. 1 for procurement information).
6. Fed. Ref. 43(164) 4108 (Feb. 1978) (see Ref. 1 for procurement.)
8. American Conference of Government Industrial Hygienists, "Air Sampling Instruments for Evaluation of Atmospheric Contaminants" Fifth edition. Published by the American Conference of Government Industrial Hygienists, P.O. Box 1937, Cincinnati, OH 45201
10. Reference 9, Section 60.40 through Section 60.275.

Dynatron Inc., 1978 available from Dynatron Inc., Barnes Industrial
Park, Box 745, Wallingford, CT 06492

20402

881 (1978).
Table 1. Pollutants Associated with Various Industries

<table>
<thead>
<tr>
<th>Point source category</th>
<th>Number of subcategories</th>
<th>Allowed discharges or parameters which may be changed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy Products processing</td>
<td>12</td>
<td>All subcategories - BOD5, TSS, pH</td>
</tr>
<tr>
<td>Grain Mills</td>
<td>10</td>
<td>All subcategories - BOD5, TSS, pH</td>
</tr>
<tr>
<td>Canned and Preserved fruits and vegetables</td>
<td>8</td>
<td>All subcategories - BOD5, TSS, pH</td>
</tr>
<tr>
<td>Canned and Preserved seafood</td>
<td>33</td>
<td>All subcategories - TSS, pH, oil and grease; 7 subcategories - BOD5 and 3 - debris larger than 0.5 inches</td>
</tr>
<tr>
<td>Sugar Processing</td>
<td>8</td>
<td>Two subcategories may not discharge pollutants into navigable waters; all others BOD5, TSS and pH; one subcategory - coliform and high temperature</td>
</tr>
<tr>
<td>Textile Industry</td>
<td>7</td>
<td>All subcategories - BOD5, COD, fecal coliform, and pH; six subcategories - phenol, color, S, and Cr.</td>
</tr>
<tr>
<td>Cement Manufacture</td>
<td>3</td>
<td>All subcategories - TSS and pH; two subcategories - temperature</td>
</tr>
<tr>
<td>Feedlots</td>
<td>16</td>
<td>15 subcategories may not discharge pollutants into navigable waters; one subcategory may discharge BOD5 and fecal coliform</td>
</tr>
<tr>
<td>Electroplating</td>
<td>6</td>
<td>24 separate pollutants are listed; consult 40 CFR 413 to relate subcategory to pollutant</td>
</tr>
<tr>
<td>Organic chemicals Manufacture</td>
<td>2</td>
<td>BOD5, TSS, pH, COD</td>
</tr>
</tbody>
</table>

(continued)
Table 1. (continued)

<table>
<thead>
<tr>
<th>Point Source Category</th>
<th>Number of subcategories</th>
<th>Allowed discharges or parameters which may be changed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inorganic Chemicals Manufacture</td>
<td>63</td>
<td>The information on this large number of subcategories is too varied to itemize in this table; consult 40 CFR 415.</td>
</tr>
<tr>
<td>Plastics and synthetics</td>
<td>21</td>
<td>pH</td>
</tr>
<tr>
<td>Soap and Detergent Manufacture</td>
<td>19</td>
<td>All subcategories - BOD5, TSS, pH, COD, oil and grease; 11 subcategories - surfactants</td>
</tr>
<tr>
<td>Fertilizer Manufacture</td>
<td>9</td>
<td>The following pollutants may be discharged by industries in the various subcategories: TSS, pH, P, F, NH₃(N), org. N, NO₃(N) consult 40 CFR 418 for details</td>
</tr>
<tr>
<td>Petroleum Refining</td>
<td>5</td>
<td>BOD5, TSS, pH, COD, oil and grease, phenols, NH₃(N), S, Cr, Cr(VI)</td>
</tr>
<tr>
<td>Iron and Steel Manufacture</td>
<td>26</td>
<td>The information on these subcategories is too varied to itemize in this table; consult 40 CFR 420</td>
</tr>
<tr>
<td>Nonferrous Metals Manufacture</td>
<td>8</td>
<td>The information on these subcategories is too varied to itemize in this table; consult 40 CFR 421</td>
</tr>
<tr>
<td>Phosphate Manufacture</td>
<td>6</td>
<td>All subcategories - TSS, pH, and total P; 4 cubcategories - F; one subcategory - with As and elemental P</td>
</tr>
<tr>
<td>Steam Electric Power Generating</td>
<td>4</td>
<td>One subcategory - TSS and pH; all others - TSS, pH, PCB, oil and grease, Cu, Fe, Cl, Zn, Cr and P</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Point Source Category</th>
<th>Number of subcategories</th>
<th>Allowed discharges or parameters which may be changed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferroalloy Manufacture</td>
<td>7</td>
<td>The most common pollutants are TSS, pH, Mn, and Cr; consult 40 CFR 424 for details</td>
</tr>
<tr>
<td>Leather, Tanning Industry</td>
<td>6</td>
<td>All subcategories - BOD5, TSS, pH, Cr, oil and grease, TKN, fecal coliform, and S</td>
</tr>
<tr>
<td>Glass Manufacture</td>
<td>13</td>
<td>All subcategories - TSS and pH; many may discharge oil, consult 40 CFR 426</td>
</tr>
<tr>
<td>Asbestos Manufacture</td>
<td>11</td>
<td>Two subcategories may not discharge pollutants into navigable waters; all others TSS and pH; two - COD</td>
</tr>
<tr>
<td>Rubber Manufacture</td>
<td>11</td>
<td>All subcategories - TSS, pH, and oil and grease. Other pollutants which may be discharged are COD, Pb, Cr, and Zn, in some subcategories</td>
</tr>
<tr>
<td>Lumber Products Processing</td>
<td>19</td>
<td>Eight subcategories may not discharge pollutants into navigable waters; BOD5, TSS, pH, COD, oil and grease, phenols, settleable solids and debris, some subcategories</td>
</tr>
<tr>
<td>Pulp, Paper and Paperboard</td>
<td>23</td>
<td>All subcategories - BOD5, TSS, and pH</td>
</tr>
<tr>
<td>Builders' Paper and Roofing</td>
<td>1</td>
<td>BOD5, TSS, pH, settleable solids</td>
</tr>
<tr>
<td>Meat Products</td>
<td>10</td>
<td>All subcategories - BOD5, TSS, pH, oil and grease, and fecal coliform; most subcategories - NH₃</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Point Source Category</th>
<th>Number of subcategories</th>
<th>Allowed discharges or parameters which may be changed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal Mining</td>
<td>3</td>
<td>All subcategories - TSS, pH and Fe; two subcategories - Mn</td>
</tr>
<tr>
<td>Offshore Oil and Gas Extraction</td>
<td>5</td>
<td>One subcategory may not discharge pollutants into navigable waters; all others - oil and grease, three - Cl residual</td>
</tr>
<tr>
<td>Mineral Mining and Processing</td>
<td>38</td>
<td>Guidelines for 17 of these subcategories have not yet been promulgated; 16 may not discharge pollutants into navigable waters; 5 - TSS and pH; one - Fe</td>
</tr>
<tr>
<td>Pharmaceutical Manufacture</td>
<td>5</td>
<td>All subcategories - BOD5, pH and COD; three - TSS</td>
</tr>
<tr>
<td>Ore Mining and Dressing</td>
<td>7</td>
<td>All subcategories - TSS and pH; COD, Fe, Cu, Zn, Pb, Hg, Cd, CN, Al, As, Ra226, U, and Ni may be discharged by industries in various subcategories</td>
</tr>
<tr>
<td>Paving and Roofing (Tars and Asphalts)</td>
<td>4</td>
<td>One subcategory may not discharge pollutants into navigable waters, all others - TSS and pH, one - oil and grease</td>
</tr>
<tr>
<td>Paint Formulating</td>
<td>1</td>
<td>This subcategory may not discharge pollutants into navigable waters</td>
</tr>
<tr>
<td>Ink Formulating</td>
<td>1</td>
<td>This subcategory may not discharge pollutants into navigable waters</td>
</tr>
<tr>
<td>Gum and Wood Chemicals Manufacture</td>
<td>6</td>
<td>One subcategory may not discharge pollutants into navigable waters; all others - BOD5, TSS and pH</td>
</tr>
</tbody>
</table>

(continued)
Table 1. (continued)

<table>
<thead>
<tr>
<th>Point Source Category</th>
<th>Number of subcategories</th>
<th>Allowed discharges or parameters which may be changed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesticide Chemicals Manufacture</td>
<td>5</td>
<td>Two subcategories may not discharge pollutants into navigable waters; all others - BOD5, TSS, pH, COD and total pesticides; NH$_3$(N) and phenol - some subcategories</td>
</tr>
<tr>
<td>Explosives Manufacturer</td>
<td>2</td>
<td>Both subcategories - with TSS and pH; BOD5, COD, oil and grease - one subcategory</td>
</tr>
<tr>
<td>Carbon Black Manufacture</td>
<td>4</td>
<td>None of the subcategories may discharge pollutants into navigable waters</td>
</tr>
<tr>
<td>Photographic</td>
<td>1</td>
<td>pH, Ag, CN</td>
</tr>
<tr>
<td>Hospital</td>
<td>1</td>
<td>BOD5, TSS, pH</td>
</tr>
</tbody>
</table>
TABLE II.10 PARTICULATE STANDARDS+

<table>
<thead>
<tr>
<th>Point Source Categories</th>
<th>Regulation Governing Mass</th>
<th>Regulation Governing Opacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fossil-Fuel Fired Steam Generator</td>
<td>0.18 g/million cal 0.10 lb/million Btu</td>
<td>20% opacity except 40% opacity for 2 min. in any hour</td>
</tr>
<tr>
<td>Incinerators</td>
<td>0.18 g/dscm { corrected to 0.08 gr/dscf } 12% CO\textsubscript{2}</td>
<td></td>
</tr>
<tr>
<td>Cement plants</td>
<td>0.15 kg/metric ton { feed to 0.30 lb/ton } the kiln</td>
<td>20% opacity</td>
</tr>
<tr>
<td>clinker cooler</td>
<td>0.050 kg/metric ton { feed to 0.10 lb/ton } the kiln</td>
<td>10% opacity</td>
</tr>
<tr>
<td>all other facilities</td>
<td></td>
<td>10% opacity</td>
</tr>
<tr>
<td>Sulfuric acid plants</td>
<td></td>
<td>10% opacity</td>
</tr>
<tr>
<td>Asphalt concrete plants</td>
<td>90 mg/dscm 0.04 gr/dscf</td>
<td>20% opacity</td>
</tr>
<tr>
<td>Petroleum refineries</td>
<td>1.0 kg/1000 kg { off in the catalyst regenerator } 0.18 g/106 cal 0.10 lb/106 Btu { when auxiliary liquid or solid fossil fuels are burned }</td>
<td>30% opacity except for 3 minutes in any 1 hour</td>
</tr>
<tr>
<td>Secondary lead Smelters</td>
<td>50 mg/dscm { blast } 0.022 gr/dscf { furnace }</td>
<td>20% opacity (blast furnace) 10% opacity (pot furnace)</td>
</tr>
</tbody>
</table>

(continued)
Secondary Brass and Bronze	50 mg/dscm	0.022 gr/dscf	reverberatory furnace	20% opacity (reverberatory furnace)
Iron and Steel	50 mg/dscm	0.022 gr/dscf		
Sewage Treatment plant	0.65 g/kg	1.30 lb/ton	sludge input	20% opacity
Primary Copper Smelters	50 mg/dscm	0.022 gr/dscf	20% opacity	
Primary Zinc Smelters	50 mg/dscm	0.022 gm/dscf	20% opacity	
Primary Lead Smelters	50 mg/dscm	0.022 gr/dscf	20% opacity	
Primary Aluminum Reduction Plants				10% opacity (potroon gases)
Coal Preparation Plants	\{ 0.070 g/dscm	0.031 gr/dscf	20% opacity	
	\{ 0.040 g/dscm	0.018 gr/dscf	10% opacity	
	other processing and conveying equipment	20% opacity		

(continued)
TABLE II: PARTICULATE STANDARDS (continued)

Ferroalloy Production Facilities (Ref. 3 for details)

while producing silicon metal, ferrosilicon, calcium silicon, or silicomanganese zirconium

\[
\begin{align*}
\text{while producing high-carbon ferrochrome, charge chrome, standard ferromanganese,} & \quad 0.23 \text{ kg/MW-hr} \\
\text{silicomanganese, calcium} & \quad 0.51 \text{ lb/MW-hr} \\
\text{carbide, ferrochrome silicon, ferromanganese silicon, or silvery iron} & \\
dust handling equipment & 0.45 \text{ kg/MW-hr} \\
& 0.99 \text{ lb/MW-hr} \\
& 15\% \text{ opacity}
\end{align*}
\]

atmospheric emission control devices

Steel Plants: Electric Arc Furnaces (Ref. 3 for details)

gases from electric arc furnace control device

\[
\begin{align*}
gases \text{ from electric arc furnace control device} & \quad 12 \text{ mg/dscm} \\
& 0.0052 \text{ gr/dscf} \\
shop \text{ during charging periods} & 3\% \text{ opacity} \\
shop \text{ during tapping periods} & 20\% \text{ opacity} \\
shop \text{ during other times} & 40\% \text{ opacity} \\
dust \text{ handling equipment} & 0\% \text{ opacity} \\
& 10\% \text{ opacity}
\end{align*}
\]

(continued)
Footnote to TABLE II.

Abbreviations used in Table: Btu - British thermal unit, cal - calorie, dscm - dry cubic meter (s) at standard conditions, dscf - dry cubic feet at standard conditions, g - gram, gr - grain, kg - kilogram, lb - pound, mg - milligram
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration error</td>
<td>< 3% opacity</td>
</tr>
<tr>
<td>Zero drift (24h)</td>
<td>< 2% opacity</td>
</tr>
<tr>
<td>Calibration drift (24h)</td>
<td>< 2% opacity</td>
</tr>
<tr>
<td>Response time</td>
<td>10s max.</td>
</tr>
<tr>
<td>Operational test period</td>
<td>168 hours</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Model</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Environmental Data Corp.</td>
<td>DIGA Series</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Fireye Division Electronic Corp.</td>
<td>FE-4 system</td>
</tr>
<tr>
<td>of America</td>
<td>27 RL1</td>
</tr>
<tr>
<td></td>
<td>transceiver</td>
</tr>
<tr>
<td></td>
<td>P/N 61-4183</td>
</tr>
<tr>
<td></td>
<td>reflector</td>
</tr>
<tr>
<td></td>
<td>FE-5 system</td>
</tr>
<tr>
<td></td>
<td>44DU2 light</td>
</tr>
<tr>
<td></td>
<td>source 47 EM4</td>
</tr>
<tr>
<td></td>
<td>receiver</td>
</tr>
<tr>
<td></td>
<td>27 PH7 control/ indicator</td>
</tr>
<tr>
<td>Jacoby-Tarbox Corp.</td>
<td>S/0D</td>
</tr>
<tr>
<td>Lear Siegler Inc.</td>
<td>RM41</td>
</tr>
<tr>
<td>Lear Siegler Inc.</td>
<td>RM7A</td>
</tr>
<tr>
<td>Photobell Company Inc.</td>
<td>SMXL/AL</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Number of passes</th>
<th>Attachment to stack</th>
<th>Type of readout</th>
<th>E.P.A. Specifications</th>
<th>Cost (kilo $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airflow Development Ltd.</td>
<td>SEROP</td>
<td>single</td>
<td>probe one side of stack</td>
<td>0-100% obscur-ation, meter, recorder, data logger, alarm</td>
<td>NA*</td>
<td>5.9</td>
</tr>
<tr>
<td>Andersen Samplers Inc.</td>
<td>10-43</td>
<td>double</td>
<td>both sides of stack, probe optional</td>
<td>opacity 0-100% optical dens. 0 - ∞, analog, digital, alarm, recorder, data logger, status indicators control relays</td>
<td>Yes</td>
<td>5.0</td>
</tr>
<tr>
<td>Bailey Meter Co.</td>
<td>E66-45 type UJ</td>
<td>single</td>
<td>breech pipe both sides of stack</td>
<td>0-100%, opacity range switch (2), meter, recorder, alarm</td>
<td>Yes; except calib. drift and calib. error</td>
<td>1.7</td>
</tr>
<tr>
<td>Controls Inc.</td>
<td>Series 8000</td>
<td>single</td>
<td>breech pipe both sides of stack</td>
<td>opacity 0-100% Ringelmann 0-5 analog, alarm, recorder</td>
<td>No</td>
<td>0.9</td>
</tr>
<tr>
<td>Contraves Goerz Corp.</td>
<td>400</td>
<td>double</td>
<td>both sides of stack</td>
<td>opacity 0-100%, optical density, 6 min integrated opacity and optical density, recorder alarm, status indicators, auto. calib.</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Contraves Goerz Corp.</td>
<td>401 P</td>
<td>double</td>
<td>probe, one side of stack</td>
<td>0-100% opacity, digital</td>
<td>Yes</td>
<td>5.5</td>
</tr>
<tr>
<td>Datatut Inc.</td>
<td>90AS</td>
<td>single</td>
<td>Breach pipe both sides of stack</td>
<td>Opacity 0-100%, analog, alarm relay contacts recorder, auto. calib.</td>
<td>Yes</td>
<td>3.5</td>
</tr>
<tr>
<td>De-tic-tronic Corp.</td>
<td>345 P 285</td>
<td>single</td>
<td>both sides of stack</td>
<td>Ringlemann 0-5, indicator light, relay, recorder, alarm</td>
<td>NA</td>
<td>0.4</td>
</tr>
<tr>
<td>Dynatron Inc.</td>
<td>1100</td>
<td>double</td>
<td>both sides of stack, probe optical</td>
<td>opacity 0-100% optical dens. 0 - ∞, analog, digital, alarm, recorder 6 min. average counter timer, auto. calib.</td>
<td>Yes</td>
<td>6.0</td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Number of passes</th>
<th>Attachment to stack</th>
<th>Type of readout</th>
<th>E.P.A. Specifications</th>
<th>Cost (kilo $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynatron Inc.</td>
<td>301</td>
<td>single</td>
<td>both sides of stack</td>
<td>opacity 0-100%, analog, digital alarm, counter timer*</td>
<td>Yes</td>
<td>1.5 inc. digital</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>display, recorder</td>
</tr>
<tr>
<td>Photomation</td>
<td>DSM-1PP</td>
<td>single</td>
<td>both sides of stack</td>
<td>opacity 0-100%, Ringlemann units, analog, digital recorder alarm, control relay</td>
<td>Yes</td>
<td>2.8</td>
</tr>
<tr>
<td>Preferred Instruments</td>
<td>JC30F4C</td>
<td>single</td>
<td>breech rod both sides of stack</td>
<td>transmission, Ringlemann, indicator light, recorder, alarm</td>
<td>Yes; except response</td>
<td>7.2</td>
</tr>
<tr>
<td>Reliance Instrument Corp.</td>
<td>Rincor PIX 101</td>
<td>single</td>
<td>breech rod both sides of stack</td>
<td>opacity 0-100%, Ringlemann units, analog, recorder, alarm control relays</td>
<td>Yes; except zero drift, calib. drift</td>
<td>NA</td>
</tr>
<tr>
<td>Research Appliance Co.</td>
<td>RAC</td>
<td>double</td>
<td>both sides of stack</td>
<td>opacity 0-100%, analog, recorder, alarm, relay contacts, auto. calib.</td>
<td>Yes</td>
<td>1.3</td>
</tr>
<tr>
<td>Robert H. Wager Co. Inc.</td>
<td>P-6 Series</td>
<td>single</td>
<td>both sides of stack</td>
<td>opacity 0-100% range (2), analog</td>
<td>NA, intended for marine application</td>
<td>NA</td>
</tr>
</tbody>
</table>

*Cost is base cost and does not necessarily include all the options listed in the read out column.

*NA = not available

* The counter timer totalizes the number of occurrences and total duration time that measured opacity level has been exceeded.

† Status indicators warn of malfunction of air purge system; shutters and on stack electronics. They also indicate dirty optical surfaces, and over-range operation.
Fig. 1a. Single pass transmissometer.
(Courtesy of Dynatron Inc.
Wallingford, CT.)
Fig. 1b. Double pass transmissometer.
(Courtesy of Dynatron Inc. Wallingford, CT.)
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.