Title
Dynamic Seigniorage Theory: An Exploration

Permalink
https://escholarship.org/uc/item/712610vg

Author
Obstfeld, Maurice

Publication Date
1997-03-01

Peer reviewed
Dynamic Seigniorage Theory: An Exploration

Maurice Obstfeld

University of California, Berkeley; National Bureau of Economic Research; and Centre for Economic Policy Research

March 1997

Key words: seigniorage, dynamic games, time consistency, Markov perfect equilibrium

JEL Classification: E31, E63, C73
Abstract

This paper develops a dynamic model of seigniorage in which economies' equilibrium paths reflect the ongoing strategic interaction between an optimizing government and a rational public. The model extends existing positive models of monetary policy and inflation by explicitly incorporating the intertemporal linkages among budget deficits, debt, and inflation. A central finding is that the public's rational responses to government policies may well create incentives for the government to reduce inflation and the public debt over time. A sufficiently myopic government may, however, provoke a rising equilibrium path of inflation and public debt.

Maurice Obstfeld
Correspondence: Dept of Economics
University of California, Berkeley
Berkeley, CA 94720-3880
e-mail: obstfeld@econ.berkeley.edu
Introduction

This paper develops a dynamic model of seigniorage whose equilibrium paths are generated by the ongoing strategic interaction of an optimizing government with a rational public. The model extends existing positive models of inflation by explicitly incorporating the intertemporal linkages among budget deficits, debt, and inflation. A central finding is that the public's rational responses to policies may lead the government to reduce inflation and the public debt over time, even in the absence of self-supporting "reputational" expectation mechanisms.

Recent research aiming to explain observed inflation patterns has proceeded along two main lines. The first of these focuses on the temptation to effect resource transfers from the private sector to the government through surprise inflation. The second stresses a dynamic aspect of the public-finance problem, the optimal distribution over time of inflation distortions. A brief review of the predictions and limitations of these two approaches – which may be called, respectively, the discretionary-policy approach and the inflation-smoothing approach – puts the goals of the present exploration into perspective.

Calvo (1978), Barro (1983), and others have observed that the temptation to tax cash balances through surprise inflation may lead to higher inflation and lower seigniorage revenue than would result if the government were deprived of its discretionary powers and bound instead to a prior choice of the price level's path. The incentive to violate such prior commitments in later periods is an example of the general problem of time inconsistency: optimal government plans that affect current household choices may
no longer seem optimal after households have made those choices.\footnote{1}

While the discretionary-policy approach suggests that inflation will be higher than is socially optimal, the inflation-smoothing approach suggests that inflation, whatever its level today, will be persistent. The inflation-smoothing approach builds on Ramsey’s principle of optimal taxation, which directs governments to adopt contingency plans for tax rates that equate the expected marginal losses from tax distortions in all future periods (Barro 1979). Mankiw (1987) and Grilli (1988, 1989) argue that because even unanticipated inflation inflicts economic costs on society, optimizing governments will base inflation plans on the Ramsey principle. These authors make the empirical prediction that the stochastic process for inflation will be a martingale, with expected future inflation equal to current inflation. A corollary of their results is that total government spending commitments – debt plus the present value of nondiscretionary expenditures – will also follow a martingale.\footnote{2}

Examples of high and seemingly chronic inflation certainly abound, but there are many notable episodes as well of successful inflation reduction, often coupled with government fiscal consolidation. Fischer (1986, p. 14) observes that it is clear that inflationary bias is only a sometime thing. At the ends of the Napoleonic and Civil Wars, and World War I, Britain and the United States deflated to get back to fixed gold parities. These episodes too deserve attention in the dynamic inconsistency literature.

Needless to say, there are numerous much more recent examples.\footnote{3}

Available models of both discretionary policy and inflation
smoothing suffer from theoretical limitations that leave them unable to throw light on such important episodes of government behavior. Most discretionary-policy models are intertemporal only in a superficial sense, since they lack any intrinsic sources of dynamic evolution. In particular, the models make no allowance for the dynamics of public debt or for the role that government budgets might play in the inflationary expectations of the public. Inflation-smoothing models, in contrast, place the determination of the public debt at center stage, but it is well known that the optimal plans that produce Ramsey tax rules are dynamically inconsistent except in very special cases. The behavior predicted by these models generally will not be observed when the government can set policy anew each period at its discretion.4

The model developed in this paper synthesizes elements of the discretionary-policy and inflation-smoothing approaches in a genuine dynamic setting that assumes rational private-sector expectations. Consonant with the first approach, the model predicts that at each point in time at which inflation is positive, it will be higher than it would be if the government could commit itself in advance to future tax policies.5 But, consonant with the second approach, the theory also predicts that for plausible parameters, government tax-smoothing behavior can generate an inflation rate with a tendency to fall over time toward the socially preferred long-run rate (zero in my model).6 The basic reason is that government budgetary conditions affect inflationary expectations, thus giving the authorities additional incentives to retire debt and thereby reduce future seigniorage needs. Equilibria with persistently high inflation cannot,
however, be ruled out in general.

In technical terms, the investigation is an application of dynamic game theory to interactions between the public and private sectors. The endogenous variable responsible for economic dynamics is the stock of government spending commitments, including the public debt. In the equilibria I construct, the government's monetary policy actions are always optimal, given household behavior and the economy's aggregate physical state; at the same time, private forecasts are always rational, given the government's strategy. Players' strategies are restricted, however, to be memoryless. While this restriction rules out many potential equilibria, it serves to highlight recursive, Markov perfect equilibria that can be characterized in terms of a minimal set of currently relevant economic state variables. Even under a Markov restriction, equilibrium may not be unique. One somewhat novel aspect of the equilibria I define is that government strategies prescribe choices of the money supply rather than of inflation itself, contrary to most of the literature.

Section I of the paper sets up a model monetary economy and describes the objectives of households and the government. Section II develops the definition of equilibrium. In section III, I characterize equilibrium in a perfect-foresight setting and describe the dynamics of government spending commitments. Section IV uses a linear example to calculate equilibria explicitly under stochastic as well as under deterministic assumptions. Section V contains concluding observations.
I. Setting up the Model

The analytical setting for the model is due to Brock (1974). This section and the next two simplify by assuming a deterministic environment, but a stochastic extension is studied in section IV.

An overview of the sequence of events within each discrete time period is as follows. Households and the government enter a period t holding net asset stocks dated $t-1$, along with the interest those assets pay out at the start of the new period. Goods and asset markets then meet simultaneously. The government finances its consumption purchases and net debt retirement by printing money; at the same time, households consume and decide what level of monetary balances (dated t) to carry over to the start of period $t+1$. The equilibrium interaction of government and private decisions in period t markets determines the overall money price level for date t and the t-dated stocks of government and household nonmoney assets that are carried over to the start of period $t+1$.

Households

The economy is populated by a large fixed number of identical households who take the economy’s aggregates and prices as given. A household’s satisfaction depends only on its own consumption of a single homogeneous good and on transactions services from holding real monetary balances. (Public consumption does not directly affect household utility.)

The notation uses lower-case letters for household choice variables and upper-case letters for the corresponding economy-wide per household totals, which are averages of
individual household choices. Thus, for example, m is a particular household's choice of real monetary balances while M is total real monetary balances per household. When there is no risk of confusion, I refer to economy-wide quantities per household simply as aggregate quantities.

At the start of period t households maximize

$$U_t = \sum_{\tau=t}^{\infty} (1+\rho)^{-(\tau-t)} \left[c_{\tau} + \phi(m_{\tau}) \right],$$

(1)

where $\rho \in (0,1)$. The period utility function for money, $\phi(m)$, is twice continuously differentiable, increasing, and strictly concave on $[0,\infty)$.

Let P_t denote the economy's money price level during period t. (Throughout the paper, boldface letters denote variables with values proportional to the monetary unit.) The inflation rate from period t to $t+1$, π_{t+1}, is the tax rate on currency, given by

$$\pi_{t+1} = (P_{t+1} - P_t)/P_{t+1}$$

Its maximum value, $\pi = 1$, is the confiscatory rate.

Linearity of utility in consumption fixes the equilibrium real interest rate ρ. By assumption all nonmoney assets offer the rate of return ρ ex post, that is, are indexed to the price level. The household thus maximizes U_t in (1) subject to a given level of real wealth at the end of period $t-1$, w_{t-1}, given its real monetary balances, m_{t-1}, and an intertemporal budget constraint. The intertemporal constraint comes from integrating a sequence of period-by-period finance constraints of the form
\[w_t = (1 + \rho)w_{t-1} - c_t - (\rho + \pi_t)m_{t-1} \]

and imposing the solvency condition \(\lim_{t \to \infty} (1 + \rho)^{-t} w_t \geq 0.7 \)

It is well known (see Brock 1974) that for a given expected inflation rate, the optimal household choice of period \(t \) real balances, \(m_t \), satisfies

\[\varphi'(m_t) = \frac{\rho + \pi_{t+1}}{1 + \rho}. \]

Thus, \(m_t \) is a decreasing function of expected inflation between \(t \) and \(t+1 \). Since utility is linear in consumption, moreover, the optimal \(m_t \) in (2) depends only on \(\pi_{t+1} \) (given \(\rho \)), a fact I use below to simplify the description of Markov perfect equilibria.

Government

The government's goal is to finance at minimum welfare cost an exogenous path of aggregate public consumption purchases per household, \(C_t \). A finance constraint links the change in government debt to the difference between government consumption and net revenue. To simplify I assume that money creation is the only form of taxation available to the government.

The government's social welfare criterion is

\[V_t = \sum_{\tau=t}^{\infty} (1+r)^{-(\tau-t)}[C_\tau + z(M_\tau)], \]

where \(z(M) \) is a nondecreasing, concave, twice continuously differentiable function of the representative household's real
balances. The government discount rate r may equal the market rate ρ, but it could exceed ρ if, for example, the current government’s rule is subject to termination on a random date. The literature on tax-smoothing generally assumes $r = \rho$ to obtain its martingale prediction for tax rates (including inflation). I assume $r \geq \rho$.

The function $z(M)$ in (3) describes the government’s welfare valuation of the services households derive from real money holdings; but it does not coincide with the household utility function $\theta(m)$. Most importantly, I assume that $z'(M) = 0$ for M exceeding the level of real balances households demand when the expected inflation rate is zero. As will become clear in section III, this assumption, together with the inflation-cost function I posit below, serves to pin down $\pi = 0$ unambiguously as the government’s long-run target inflation rate.9

Let D_t denote the aggregate per household stock of real government nonmoney debt at the end of period t. All debts (assets when negative) are consumption-indexed bonds paying the real interest rate, ρ. The government’s period finance constraint is

\[(4) \quad D_t = (1 + \rho)D_{t-1} + G_t - \left[\pi_t M_{t-1} + (M_t - M_{t-1})\right].\]

The term in square brackets above is government seigniorage revenue in period t, the sum of (i) the inflation tax on real monetary balances carried over from period $t-1$ and (ii) households’ desired increase in real balances in period t.10

The government’s intertemporal budget constraint comes from integrating (4) assuming no Ponzi finance, $\lim_{t \to \infty} (1+\rho)^{-t} D_t = 0$:

8
(5) \[\sum_{\tau=t}^{\infty} (1+\rho)^{-(\tau-t)} G_{\tau} + (1+\rho) D_{t-1} \]
\[\leq \sum_{\tau=t}^{\infty} (1+\rho)^{-(\tau-t)} \left[\pi_t M_{\tau-1} + (M_{\tau} - M_{\tau-1}) \right]. \]
\[= -(1+\rho) M_{t-1} + \sum_{\tau=t}^{\infty} (1+\rho)^{-(\tau-t)} (\rho + \pi_t) M_{\tau-1}. \]

Comparison of (5) with the household's period finance constraint,
\[w_t = (1 + \rho) w_{t-1} - c_t - (\rho + \pi_t) m_{t-1}, \]
shows that private expenditures on money services less initial real balance holdings,
\(M_{t-1} \) (a government liability and a corresponding household asset),
equals the resources government obtains from seigniorage. 11

Constraint (5) highlights a fact central to solving the model: the government's fiscal position at the start of a period \(t \) depends
entirely on the two liability stocks, \(D_{t-1} \) and \(M_{t-1} \), carried over
from the previous period, and on the present discounted value of
committed government purchases for period \(t \) and after.

Define real government commitments at the end of period \(t-1, \)
\(K_{t-1} \), by

(6) \[K_{t-1} = \frac{1}{(1+\rho)} \sum_{\tau=t}^{\infty} (1+\rho)^{-(\tau-t)} G_{\tau} + D_{t-1}. \]

When written in terms of this new variable, constraint (5) becomes

(7) \[(1+\rho)(K_{t-1} + M_{t-1}) \leq \sum_{\tau=t}^{\infty} (1+\rho)^{-(\tau-t)} (\rho + \pi_t) M_{\tau-1}. \]

Technology and the Output Cost of Inflation

The economy is endowed with an exogenously fixed "potential"
aggregate output level, \(Y \), but output is perishable and cannot be
transformed into capital for future use. Consumption need not equal potential output, however, because the amount of output available for consumption falls as the economy's inflation rate diverges from zero. Specifically, private consumption will be

\[(8) \quad C_t = Y - G_t - \kappa(\pi_t)\]

in equilibrium, where \(\kappa(0) = 0\), \(\kappa'(0) = 0\), \(\kappa''(\pi) > 0\) for all \(\pi\), and \(\kappa'(\pi)\) has the same sign as \(\pi\).

The inflation-cost function \(\kappa(\pi)\) in (8) is meant to capture costs distinct from the inflation-tax distortion of money demand, for example, the reduction in allocative efficiency often said to accompany a rise in inflation.\(^\text{12}\) In the stochastic version of the model, \(\kappa(\pi)\) comprises costs of unanticipated as well as of anticipated inflation. The "shoe-leather" welfare costs associated with inefficiently low money demand, in contrast, are entirely due to anticipated inflation.

The assumption that \(\kappa(\pi)\) has its minimum at \(\pi = 0\) is somewhat arbitrary, but it corresponds to the earlier assumption that the government's period objective for private real balances, \(z(M)\), reaches a maximum where \(\pi = 0\). Together, these two assumptions make \(\pi = 0\) the government's target inflation rate.

II. Equilibrium without Commitment: Definition

The government is assumed to be unable to precommit its future monetary policy actions. (It is committed only to paying its nonmonetary debts and to following the given expenditure path \(\{G_t\}\).) The government instead sets the nominal money supply \(M_t\) in every period \(t\) so as to maximize the objective function in (3).
Households observe the government's choice of M_t and then choose the levels of real balances they will carry into period $t + 1$.

Equilibrium paths for the economy are defined by government and household policy functions such that: (i) The government's policy function maximizes its objective (3) in any state of the economy, given the government budget constraint and the behavior of aggregate money demand induced by household decision rules. (ii) The representative household policy function maximizes private utility in any state of the economy, given the government's policy function.

Inflation Rate and State Transitions

Let M_{t-1} be the aggregate *nominal* money supply (per household) at the end of period $t-1$. When markets meet in period t, the government prints $M_t - M_{t-1}$ currency units with which it purchases goods and assets from the public. The government's policy moves are most conveniently formulated as choices of gross growth rates for the nominal money supply, $\gamma_t = M_t / M_{t-1}$.

The aggregate state of the economy when period t starts is observed by households and government and is given by the vector

$$S_t = (K_{t-1}, M_{t-1}).$$

I will assume a Markov perfect equilibrium, in which players' strategies are stationary functions of the state of the economy and depend on the past history of play only through that state. However, household strategies also are functions of con-
temporaneous money-supply growth, which households observe before making the period's money-demand decisions. Date t money-supply growth is informative about S_{t+1} and thus about the following period's inflation, which in turn influences date t money demand.

To make intertemporal decisions, the government and private sector alike must understand how alternative nominal money-supply growth rates affect inflation and the economy's state. This understanding, in turn, presupposes rational beliefs about how aggregate (per household) demand for real balances is determined. Without loss of generality, assume that households and the government take as given the aggregate real money-demand schedule

(9) \[M_t = L(y_t, S_t). \]

It will be shown later that a schedule of this form is consistent with household and government behavior.

The interaction between aggregate real money demand M_t and the government's choice of nominal money-supply growth determines the equilibrium period t price level $P_t = M_t/M_t$. Since P_{t-1} is given by history, money-supply growth also determines the realized inflation rate between periods $t-1$ and t, $\pi_t = (P_t - P_{t-1})/P_t$. Players' forecasts of inflation can be expressed in terms of nominal money growth and the current state through the equation

(10a) \[\pi_t = 1 - \left(P_{t-1}/P_t \right) = 1 - \left[L(y_t, S_t)/M_{t-1} \right] \times \left(1/y_t \right), \]

to be denoted by
(10b) $\pi_t = \Pi(\gamma_t, S_t)$.

Through definition (6) and equation (9), the government's perceived finance constraint (4), expressed in terms of commitments, is

$$K_t = (1 + \rho)K_{t-1} - \left\{ \pi_t M_{t-1} + \left[L(\gamma_t, S_t) - M_{t-1} \right] \right\}.$$

The preceding equation and (10a) together imply that

(11a) $K_t = (1 + \rho)K_{t-1} - \left(1 - \frac{1}{\gamma_t} \right) L(\gamma_t, S_t),$

to be denoted by

(11b) $K_t = \Delta(\gamma_t, S_t).$

Equations (9) and (11b) together yield the state transition equation that agents take as given,

(12a) $S_{t+1} = [\Delta(\gamma_t, S_t), L(\gamma_t, S_t)],$

which defines the function $\Psi: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ such that

(12b) $S_{t+1} = \Psi(\gamma_t, S_t).$

The Government's Policy Rule

Consider first the problem faced by the government when it
takes the money-demand schedule (9) as given. Let \(V(S_t) = V(K_{t-1}, M_{t-1}) \) be the government's value function evaluated at the start of period \(t \), that is, the result of maximizing \(V_t \) in (3) subject to (7) and (9). It is clear from equation (7) that both of the partial derivatives \(\partial V/\partial K_{t-1} \) and \(\partial V/\partial M_{t-1} \) are less than or equal to zero.

The government's optimal policy choice in period \(t \) can be characterized with the help of Bellman's equation. By equations (3), (4), (6), (8), and (9), \(V(S) \) satisfies the recursion

\[
V(S_t) = \max_{\gamma_t} \left\{ Y - G_t - \kappa(\pi_t) + z \left[L(\gamma_t, S_t) \right] + \frac{1}{(1+r)} V(S_{t+1}) \right\},
\]

subject to equations (10b) and (12b). By direct substitution of the constraints, the government's optimal choice of period \(t \) money growth \(\gamma_t \) maximizes

\[
Y - G_t - \kappa \left[\Pi(\gamma_t, S_t) \right] + z \left[L(\gamma_t, S_t) \right] + \frac{1}{(1+r)} V(\Delta(\gamma_t, S_t), L(\gamma_t, S_t)).
\]

The maximizing value of \(\gamma_t \), assumed to exist and be unique, defines the policy-choice function

\[
\gamma_t = \Gamma(S_t).
\]

The Household's Decision Rule

Each household observes the government's choice of \(\gamma_t \) and uses this information to decide on its own period \(t \) real balances \(m_t \). A household strategy is represented by the policy function
\[m_t = \ell(\gamma_t, S_t). \]

The intuitive motivation for this policy function comes from the money-demand equation (2), which makes individual money demand a negative function of expected inflation. A government's incentive to inflate on date \(t + 1 \) is higher when its real commitments at that period's start, \(K_t \), are higher, and when aggregate real money holdings, \(M_t \), are higher. Households thus will forecast the inflation rate \(\pi_{t+1} \) by calculating how the money-supply growth decision \(\gamma_t \) affects \(K_t \) and \(M_t \), given \(K_{t-1} \) and \(M_{t-1} \). Notice that household wealth does not enter the policy function for real balances because the marginal utility of consumption was assumed to be independent of wealth in (1). [In equilibrium, of course, \(\ell(\gamma_t, S_t) \) must equal the aggregate function \(L(\gamma_t, S_t) \) in (9).]

Equilibrium

Equilibrium may now be defined. By assuming that government and household choices are functions of the minimal sets of variables compatible with perfection, I have restricted the analysis to recursive, Markov perfect equilibria of the type studied by Fudenberg and Tirole (1986), Bernheim and Ray (1987), and Maskin and Tirole (1988), among others. The force of focusing on Markov perfect equilibria is to exclude other potential equilibria involving strategies with memory, as in the reputational models discussed in Rogoff's (1989) critical survey. 13
Definition. Let the state of the economy at the start of a period \(t \) be \(S_t = (K_{t-1}, M_{t-1}) \). An equilibrium consists of a government policy function \(\gamma = \Gamma(S) \), a household policy function \(m = \ell(\gamma, S) \), and a state transition equation \(S_{\tau+1} = \Psi(\gamma_{\tau}, S_{\tau}) \), such that for all dates \(\tau \) and any starting state \(S_{\tau} \), the following hold:

- **Government maximization.** The choice \(\gamma_t = \Gamma(S_t) \) maximizes

\[
V_t = Y - G_t - \kappa \left[\Pi(\gamma_t, S_t) \right] + z \left[L(\gamma_t, S_t) \right]
+ \sum_{\tau=t+1}^{\infty} (1+r)^{-(\tau-t)} \left\{ \gamma - G_{\tau} - \kappa \left[\Pi(\Gamma(S_{\tau}), S_{\tau}) \right] + z \left[L(\Gamma(S_{\tau}), S_{\tau}) \right] \right\}
\]

subject to the government intertemporal budget constraint

\[
(1+r)(K_{t-1} + M_{t-1}) \leq \left[\rho + \Pi(\gamma_t, S_t) \right] M_{t-1}
+ \sum_{\tau=t+1}^{\infty} (1+r)^{-(\tau-t)} \left[\rho + \Pi(\Gamma(S_{\tau}), S_{\tau}) \right] L(\Gamma(S_{\tau-1}), S_{\tau-1})
\]

and the transition equations

\[
S_{t+1} = \Psi(\gamma_t, S_t),
\]

\[
S_{\tau+1} = \Psi(\Gamma(S_{\tau}), S_{\tau}), \quad \tau > t.
\]

- **Household maximization.** The choice \(m_t = \ell(\gamma_t, S_t) \) satisfies equation (2) when each household takes the government's strategy \(\Gamma(S) \) and those of other households as given and forecasts inflation using (10b) and (12b).
\[
\theta'(\ell(y_t, S_t)) = \frac{\rho + \Pi \left[\Gamma(y_t, S_t) \right]}{1 + \rho}.
\]

- Rational expectations. \(\ell(y_t, S_t) = L(y_t, S_t) \).

An equilibrium government strategy thus prescribes an optimal action at each date and state given future implementation of the same strategy, and given the strategies of private actors. Equilibrium household strategies, similarly, prescribe optimal actions at each date and state given the government's strategy and those of the other households.

III. Equilibrium without Commitment: Characterization

This section presents a qualitative picture of the economy's equilibrium path. That picture turns out to be quite simple when public and private time-preference rates coincide. In that case, inflation declines to zero over time as the government builds up a large enough asset stock to finance public spending out of
interest receipts alone, without seigniorage. When the
government’s time-preference rate exceeds the private sector’s,
however, the economy may follow very different routes.

Some preliminary propositions are helpful in deriving these
results. I assume that in the economy’s initial position the
government is creating money at a nonnegative rate, so that \(\gamma \geq 1 \).

Preliminary Results

The first preliminary result shows that in any equilibrium,
higher rates of monetary growth are associated with higher
current inflation rates and lower growth rates for public
commitments.

Proposition 1. In an equilibrium with nonnegative money-supply
growth, \(\partial \Pi / \partial \gamma_t > 0 \) and \(\partial \Delta / \partial \gamma_t < 0 \). That is, higher money-supply
growth raises contemporaneous inflation and lowers the end-period
stock of public commitments.

Proof. Equations (10a) and (11a) show that for all \(t \),

\[
\partial \Pi / \partial \gamma_t = \left(M_t / \gamma_t^2 M_{t-1} \right) \times \left[1 - \left(\frac{\gamma_t}{M_t} \frac{\partial L}{\partial \gamma_t} \right) \right],
\]

\[
\partial \Delta / \partial \gamma_t = -\left(1 - \frac{1}{\gamma_t^2} \right) \frac{\partial L}{\partial \gamma_t} - \frac{M_t}{\gamma_t^2}.
\]

There are two cases to consider. (1) If \(\partial L / \partial \gamma_t \geq 0 \), then (18)
implies \(\partial \Delta / \partial \gamma_t < 0 \) (since \(\gamma_t \geq 1 \)). That conclusion shows, however,
that in equilibrium the government will always choose a
money-growth rate such that \(\partial \Pi / \partial \gamma_t > 0 \). If \(\partial \Pi / \partial \gamma_t > 0 \) didn’t hold,
the government would have an incentive to raise monetary growth, thereby lowering end-of-period commitments without raising inflation. So if $\delta L/\delta \gamma_t \geq 0$, then by (17), the government will always choose a point of the aggregate money-demand schedule where the elasticity of real money demand with respect to nominal money growth is below unity. (ii) What if instead $\delta L/\delta \gamma_t < 0$? This case automatically would entail $\delta \Pi/\delta \gamma_t > 0$ [by (17)], so at an optimum for the government $\delta \Delta/\delta \gamma_t$ is necessarily negative once again. If it were not, the government would wish to lower monetary growth, thereby lowering inflation without raising end-of-period commitments.

The next result simplifies the interpretation of equilibria by showing that any equilibrium aggregate real money demand schedule $L(\gamma_t, S_t)$ can be written as a function of a single variable, the end-of-period commitment stock, K_t.

Proposition 2. In equilibrium, $L(\gamma_t, S_t)$ is of the form

$$L(\gamma_t, S_t) = \hat{L}[\Delta(\gamma_t, S_t)] = \hat{L}(K_t).$$

Proof. Equation (16) shows that in equilibrium

$$L(\gamma_t, S_t) = (\phi')^{-1}\left(\frac{\rho + \Pi[\Gamma(S_{t+1}), S_{t+1}]}{1 + \rho}\right).$$

Along an equilibrium path, however, $S_{t+1} = (K_t, M_t) = (K_t, L(\gamma_t, S_t))$, so equation (20) gives $L(\gamma_t, S_t)$ implicitly as a function $L(K_t)$ of K_t alone.

The preceding finding allows us to think of the private sector's equilibrium forecast of inflation between periods t and
$t + 1$ as depending only on its forecast of the beginning date
$t + 1$ stock of public sector commitments. Intuitively one would
guess that $\hat{L}'(K_t) < 0$ in any equilibrium: people reduce their real
balances when they know the end-of-period stock of public
commitments is higher. That conjecture will be verified below by
considering the government's intertemporal Euler condition. In
analyzing that condition the next proposition will be helpful.

Proposition 3. In an equilibrium with nonnegative money-supply
growth,

\begin{equation}
1 + \left(1 - \frac{1}{\gamma_t}\right)\hat{L}'(K_t) > 0,
\end{equation}

\begin{equation}
\frac{-M_t/\gamma_t^2}{1 + \left(1 - \frac{1}{\gamma_t}\right)\hat{L}'(K_t)} < 0,
\end{equation}

\begin{equation}
\frac{(1 + \rho)}{1 + \left(1 - \frac{1}{\gamma_t}\right)\hat{L}'(K_t)} > 0.
\end{equation}

Furthermore, if $\partial L/\partial \gamma_t > 0$,

\begin{equation}
1 + \hat{L}'(K_t) > 0.
\end{equation}

Proof. To compute the derivatives in (22) and (23) use (11a) and
(11b), substituting $\hat{L}(K_t)$ for $L(\gamma_t, S_t)$ and applying the chain
rule. Inequality (21) then follows from (22) and Proposition 1
(which established that $\partial \Delta / \partial \gamma_t < 0$). To prove (24) when
\[\frac{\partial L}{\partial \gamma_t} > 0, \text{ apply the chain rule to (19) and use (11b) to derive} \]

\[(25) \quad \frac{\partial L}{\partial \gamma_t} = \hat{L}'(K_t) \frac{\partial \Delta}{\partial \gamma_t}. \]

Combination of (25) with (18) gives

\[\hat{L}'(K_t) = -\frac{1}{\left[\frac{\gamma_t}{M_t} \left(\frac{\partial L}{\partial \gamma_t} \right)^{-1} - 1 \right]}. \]

However, Proposition 1 implies [via equation (17)] that \((\gamma_t/M_t) \partial L/\partial \gamma_t < 1\) when the government is optimizing. Inequality (24) follows immediately if \(\partial L/\partial \gamma_t > 0\).

The strictly positive term in the denominator of (22) and (23) reflects a "multiplier" effect that influences commitment accumulation because period t money demand depends on \(K_t\) itself. A unit rise in \(K_{t-1}\), for example, has a direct positive effect of 1 + \(\rho\) on \(K_t\), but it has an additional indirect effect on \(K_t\) by changing \(L(K_t)\) as well. The total result is given by (23).

Government Optimality Conditions

To derive first-order necessary conditions for an optimal money-growth path, differentiate (14) with respect to \(\gamma_t\). At an interior maximum [recall equation (12a)],

\[(26) \quad \kappa'(n_t) \frac{\partial \Pi}{\partial \gamma_t} = z' \left[L(\gamma_t, S_t) \right] \frac{\partial L}{\partial \gamma_t} + \frac{1}{(1+r)} \left[\frac{\partial V}{\partial K_t} \frac{\partial \Delta}{\partial \gamma_t} + \frac{\partial V}{\partial M_t} \frac{\partial L}{\partial \gamma_t} \right]. \]

It is helpful to rewrite this condition in terms of the "reduced-form" money-demand schedule of equation (19), which depends on \(K_t\).
only. Substitution of (9) and (25) into (26) gives

\begin{equation}
\kappa'(\pi_t) \frac{\partial \Pi}{\partial \gamma_t} = \frac{\partial \Delta}{\partial \gamma_t} \left\{ z'(M_t) \hat{L}'(K_t) + \frac{1}{(1+r)} \left[\frac{\partial \hat{V}}{\partial K_t} + \frac{\partial \hat{V}}{\partial M_t} \hat{L}'(K_t) \right] \right\},
\end{equation}

which is the same Euler equation that would have resulted from substitution of \(\hat{L}(K_t) \) for \(L(\gamma_t, S_t) \) in (14) prior to maximization.

The interpretation of Euler equation (27) is standard. The left-hand side is the output cost of incrementally higher period \(t \) money growth – the product of the marginal cost of current inflation and the marginal inflation effect of money growth. The right-hand side is the marginal value of higher period \(t \) money growth – the product of the reduction in \(K_t \) due to a higher \(\gamma_t \) and the marginal value to the government of lower end-of-\(t \) commitments. A lower \(K_t \), in turn, affects social welfare both by raising real money demand, \(M_t \), and by changing discounted period \(t+1 \) value \(V_{t+1} \), which depends on the end-of-\(t \) stocks \(K_t \) and \(M_t \).

A further definition will help to clarify the economic implications of (27). Define the shadow price of public commitments at the start of period \(t \), \(\lambda_t \), by

\begin{equation}
\lambda_t = \frac{\left\{ z'(M_t) + \frac{\kappa'(\pi_t)}{\gamma_t M_{t-1}^{-1}} \hat{L}'(K_t) + \frac{1}{(1+r)} \left[\frac{\partial \hat{V}}{\partial K_t} + \frac{\partial \hat{V}}{\partial M_t} \hat{L}'(K_t) \right] \right\}}{1 + \left\{ 1 - \frac{1}{\gamma_t} \right\} \hat{L}'(K_t)}.
\end{equation}

The price \(\lambda_t \) is the cost to the government of having an additional unit of resources in private rather than public hands. Recall that the maximized value of (14) is the government's value function, \(V(S_t) = V(K_{t-1}, M_{t-1}) \). An envelope argument that uses (23)
establishes the equality:

\[(29) \quad \lambda_t = \frac{1}{(1 + \rho)} \frac{\partial V}{\partial K_{t-1}} \leq 0, \quad \forall t.\]

That is, \(\lambda_t \) is the effect on social welfare of a unit increase in government commitments at the start of period \(t \). [A unit rise in \(K_{t-1} \) raises beginning-of-\(t \) government commitments by \(1 + \rho \) units, not by 1 unit, which explains the discounting in equation (29)]. Another envelope argument leads to [recall equation (10a)]:

\[(30) \quad \frac{\partial V}{\partial M_{t-1}} = -\kappa'(\pi_t) \frac{\partial \Pi}{\partial M_{t-1}} = -\kappa'(\pi_t) M_t / \gamma_t M_{t-1}^2 \leq 0, \quad \forall t.\]

Now use (17), (19), (22), and (28)-(30) to express the first-order condition (27) in terms of \(\lambda_t \) and \(\lambda_{t+1} \). The result (after some algebra) is the pair of conditions:

\[(31) \quad \kappa'(\pi_t) = -\lambda_t M_{t-1}.\]

\[(32) \quad \lambda_t = \frac{z'(M_t) \hat{L}'(K_t)}{1 + \hat{L}'(K_t)} + \lambda_{t+1} \left[\frac{(1+\rho) + (1-\pi_{t+1}) \hat{L}'(K_t)}{1 + \hat{L}'(K_t)} \right].\]

The meanings of these two equations are most easily grasped by thinking of the government's move as a direct choice of the inflation rate, \(\pi_t \), rather than a choice of the contemporaneous money-supply growth rate, \(\gamma_t \). Condition (31) simply equates the marginal current benefit from a fall in inflation to the marginal value of the resources the government would thereby forgo.

Condition (32) rules out any welfare gain from a perturbation in the path of the public commitments that lowers \(K_t \).
incrementally (say) but leaves commitments unchanged on all other dates. To understand (32) let us assume provisionally that
\(\frac{\partial L}{\partial y_t} \geq 0 \), so that inequality (24) holds (see Proposition 3).
(The provisional assumption will be confirmed in a moment.) The intertemporal tradeoff involved in the choice of an inflation rate is embodied in (11a), which can be expressed as

\[
(33) \quad K_t + \hat{L}(K_t) = (1 + \rho)K_{t-1} + (1 - \pi_t)M_{t-1}.
\]

Since the commitment multiplier implied by (33) is \(1/[1 + \hat{L}'(K_t)] \) [a positive number, if inequality (24) holds], the period \(t \) inflation increase that changes \(K_t \) by the infinitesimal amount \(dK_t < 0 \) reduces social welfare by \(\lambda_t[1 + \hat{L}'(K_t)]dK_t = [-\kappa'(\pi_t)/M_{t-1}][1 + \hat{L}'(K_t)]dK_t \). At an optimum, however, this welfare cost just equals the benefits of a one-unit commitment reduction lasting one period: an immediate rise in household money demand—worth \(z'(M_t)\hat{L}'(K_t)dK_t \) in current welfare terms—plus the present marginal value of the period \(t+1 \) inflation reduction that returns commitments to their initial path—which is worth \((1 + r)^{-1}\lambda_{t+1}[(1 + \rho) + (1 - \pi_{t+1})\hat{L}'(K_t)]dK_t = (1 + r)^{-1}[-\kappa'(\pi_{t+1})/M_t][(1 + \rho) + (1 - \pi_{t+1})\hat{L}'(K_t)]dK_t \).

The Slope of the Reduced-Form Money Demand Schedule

The following result is central to a characterization of equilibrium dynamics.

Proposition 4. In an equilibrium such that (31) and (32) hold,
\[\hat{L}'(K) \leq 0. \]

Proof. Suppose instead that \(\hat{L}'(K) > 0. \) Since \(r \geq \rho \) by assumption, \(\lambda_t \), which is a negative number, must fall over time (i.e., become more negative) according to condition (32). Condition (31) therefore implies that inflation must rise over time, equation (2) that money demand must fall over time, and the assumption \(\hat{L}'(K) > 0 \) that commitments must also fall. But the government wouldn't find it optimal to play the strategy the private sector expects along the path just described. By slightly lowering inflation on any date and maintaining inflation at that level forever, the government could freeze its commitments, thereby reaching a higher welfare level on that date and on every future date while respecting intertemporal budget balance. Thus the paths (31) and (32) generate when \(\hat{L}'(K) > 0 \) are not equilibrium paths. \(\square \)

Corollary. In an equilibrium \(\partial L / \partial \gamma_t \geq 0 \) and \(\partial L / \partial \bar{K}_{t-1} \leq 0. \)

Proof. Apply the chain rule to (19) and use Proposition 1 and inequality (23). \(\square \)

Stationary States

Equations (31) and (32) together summarize the dynamics of the model. The first dynamic implication concerns stationary-state equilibria, equilibria in which public commitments, their shadow price, and inflation all remain constant over time.

One stationary state is described by \(\bar{K} = \bar{\lambda} = \bar{\pi} = 0. \) These
values satisfy (31) and (32) because $\kappa'(0) = 0$ and $z'(\bar{M}) = 0$ at the real-balance level \bar{M} that households demand when expected inflation is zero [that is, at $\bar{M} = \varphi^{-1}(\rho/(1+\rho))]$. To see that the government budget constraint (7) is satisfied in this stationary state, suppose that $M_{t-1} = \bar{M}$. By (6), $K_{t-1} = 0$ implies that the government holds a negative debt D_{t-1} given by

$$D_{t-1} = \frac{1}{(1+\rho)} \sum_{\tau=t}^{\infty} (1+\rho)^{-\tau-t} \bar{G}_\tau,$$

so that it can finance all current and future purchases out of asset income, without ever resorting to inflation. Thus, M_t will remain at \bar{M} and K_t at $\bar{K} = 0$. Since the government never needs to levy distorting inflation taxes, λ_t, the marginal inflation-tax distortion, remains steady at $\bar{\lambda} = 0$.

In this zero-inflation stationary state the budget need not be balanced on a period-by-period basis: deficits will be run when G_t is unusually high, surpluses when it is unusually low. What is true is that government assets always equal the present value of future public spending, so there is never a need to supplement the budget with seigniorage revenue.

Since λ cannot take positive values, the zero-inflation stationary state is the only one when $\hat{L}'(K) < 0$ and $r \leq \rho$ (the government discount rate is no greater than the market rate). When $r > \rho$ as allowed above, however, steady states with $\lambda < 0$ may arise. These are characterized by constant levels of π and K.

A very special case arises when $\hat{L}'(K) = 0$. In general, this condition can hold in a Markov-perfect equilibrium only when household money demand is completely insensitive to the nominal interest rate. Under this assumption, (32) reduces to
\[\lambda_t = \frac{(1 + \rho)}{(1 + r)} \lambda_{t+1}^{t+1} \]

a familiar condition for intertemporal optimization in dynamic fiscal-policy models where precommitment is possible or irrelevant. For \(r = \rho \) this condition becomes \(\lambda_t = \lambda_{t+1}^{t+1} \), in which case (31) delivers the prediction that inflation will be the same on all dates. This is the intertemporal tax-smoothing formula applied to inflation by Mankiw (1987) and Grilli (1988, 1989). Every level of \(K \) corresponds to a distinct stationary state when \(r = \rho \), and the associated constant inflation rate keeps \(K \) constant.

Inflation generally isn't constant when money demand is interest-sensitive because the government knows that its budgetary position affects inflation expectations and with them, private money demand. I assume below that \(\hat{L}'(K) < 0 \).

Equilibrium Dynamics

Consider first the case \(r = \rho \) (assumed in most of the tax-smoothing literature). Since \(\hat{L}'(K_t) < 0 \), equation (32) shows that the inequalities \(\lambda_t < \lambda_{t+1} \leq 0 \) must hold in this case. So \(\lambda_t \) converges over time to \(\lambda = 0 \), the unique stationary value, as \(K_t \) converges to \(\bar{K} = 0 \) and \(\pi_t \) converges to \(\bar{\pi} = 0 \) [see equation (31)].

The interaction of government policy and rational private expectations thus drives the economy to a non-inflationary long-run equilibrium when \(r = \rho \). That result hinges crucially on the equilibrium relationship between public commitments and private expectations of inflation. As noted above, when \(\hat{L}'(K) = 0 \) — in which case money demand is not responsive to the government's
incentives to inflate — the path of inflation is flat and K is constant. The government has no reason to change K because the gross return on asset accumulation, $1 + \rho$, is then exactly offset by the government's discount factor, $1/(1 + r) = 1/(1 + \rho)$. In the equilibrium constructed above, in contrast, additional government saving yields the gross return $1 + \rho$ plus the extra benefits from the induced increase in money demand [see (32)]. Since the government's discount factor is just $1/(1 + \rho)$, the government will reduce its spending commitments, K, over time, by always setting monetary growth and inflation higher than the level that would be consistent with unchanging commitments.

These conclusions about the economy's equilibrium path would be qualitatively unchanged if r were below ρ, or if r were greater than ρ, but not by enough to produce a second stationary state. Once a second stationary equilibrium appears, however, it becomes difficult to analyze stability without more detailed information on inflation costs and on government and household preferences. It is possible (for r sufficiently high relative to ρ) that there is a stable inflationary long-run equilibrium, and that the $\pi = 0$ equilibrium is unstable. A sudden rise in the government's discount rate (the result of increased political instability, say), could turn a stable zero-inflation equilibrium into an unstable one, thereby allowing small disturbances to propel the economy into high and persistent inflation. The linear examples in section IV illustrate some of these possibilities.\footnote{17}

As the examples also show, there is no general guarantee that equilibrium is unique. For given fundamentals, there can be several equilibrium paths for the economy, possibly converging to
different stationary states.

IV. Some Linear Examples

Closed-form linear-quadratic examples illustrate some characteristics of the equilibria defined and analyzed above. In the examples, I assume that \(z(N) = 0 \) in (3), so that inflation reduces welfare only through its negative current-output effect.

An advantage of the linear-quadratic setup is that it allows an easy analysis of the model's equilibrium when agents face specific types of uncertainty. I therefore allow for the possibility that government spending, \(G_t \), is a random variable generated by an exogenous first-order Markov process. (Additional assumptions on that process are introduced below.) The realization of \(G_t \) is revealed in period \(t \) before the government implements its period \(t \) policy action. As a result, households will generally make unsystematic forecast errors in a stochastic equilibrium. I assume that, despite the stochastic environment, government debt payments are not indexed to the realized state of nature.

The key strategist delivering linearity is a redefinition of the model in terms of aggregate inflation-tax payments, \(\mu_t \), where

\[
\mu_t = \pi_t M_{t-1}.
\]

In line with this approach, I assume that a household's demand for real balances is a linear decreasing function of the inflation-tax revenue it expects the government to collect next period,

\[
(34) \quad \delta_t = \bar{m} - \delta E_t \left(\mu_{t+1} \right),
\]
and that the output cost of inflation is given by the function \(\kappa(\mu_t) = \left(\frac{1}{2} \right) \mu_t^2 \). The government is thus assumed to maximize

\[
V_t = -\frac{1}{2} E_t \left[\sum_{\tau=t}^{\infty} (1+r)^{-(\tau-t)} \mu_{\tau}^2 \right].
\]

In (34) and (35), \(E_t[\cdot] \) denotes a rational expectation conditional on the vector of economic state variables known at the start of period \(t \), \((G_t, D_{t-1}, M_{t-1}) \). An optimal government policy rule will take the form of a deterministic linear function of this state vector. The resulting sequence of contingency plans must satisfy intertemporal budget constraint (5) with probability one.

The money-demand specification (34) is plausible (at least as an approximation) if the elasticity of household money demand with respect to expected inflation is low enough that inflation-tax proceeds and inflation move together. A further parameter restriction necessary for equilibrium is

\[
\delta < 1/\rho.
\]

Condition (35) requires the elasticity of aggregate money demand with respect to \([\rho + E_t(\pi_{t+1})]/(1 + \rho) \), the opportunity cost of holding money, to be less than unity.

The Deterministic Case

If government spending follows a known exogenous path, then in each period \(t \) the government maximizes

\[
-\left(\frac{1}{2} \right) \mu_t^2 + (1+r)^{-1} V(K_t, M_t)
\]

subject to equation (33), written as \(K_t + \hat{L}(K_t) = \)
\((1 + \rho)K_{t-1} - \mu_t + M_{t-1}\) with \(K_{t-1}\) and \(M_{t-1}\) given. Without loss of generality, the government's period \(t\) action can be viewed as a direct choice of \(\mu_t\). My working conjectures are that the aggregate reduced-form money demand relationship takes the form

\[
M_t = \hat{L}(K_t) = \tilde{M} - \beta K_t,
\]

and that the government's optimal policy function is of the form

\[
\mu_t = \varphi_0 + \varphi_1 K_{t-1} + \varphi_2 M_{t-1}.
\]

On an equilibrium path with \(K_t = 0\), it must be true that \(\mu_t = 0\) as well, so (37) and (38) together imply the restriction

\[
\varphi_0 + \varphi_2 \tilde{M} = 0.
\]

I will now show that the functions (37) and (38) characterize equilibria for appropriate coefficient values.

Suppose the government is choosing its period \(t\) action, \(\mu_t\). The government takes as given that aggregate money demand obeys (37) in all periods \(\tau \geq t\). Equation (33) then implies that

\[
K_t = \frac{(1 + \rho)K_{t-1} + M_{t-1} - \tilde{M} - \mu_t}{1 - \beta}.
\]

[Notice that \(M_{t-1}\) in (40) could be any arbitrary value, and is not necessarily related to \(K_{t-1}\) by (37).] If the government follows policy rule (38) from period \(t+1\) on, its end-of-period commitments starting in \(t+1\) are given by
\(K_t = \psi K_{t-1}, \quad \forall t \geq t+1, \)

where

\[
\psi = \frac{[1 + \rho - \phi_1 - (1 - \phi_2)\beta]}{1 - \beta}.
\]

(I will check later in specific cases that \(0 < \beta, \psi < 1 \) in equilibrium.) Equation (41) implies that under (37) and (38), the government's value function for period \(t+1 \) therefore is

\[
V(S_t) = V[K_t, L(K_t)] = -\left(\frac{1}{2}\right)\frac{(\phi_1 - \phi_2\beta)^2}{1 - \psi^2/(1+r)} K_t^2.
\]

Bellman's principle implies that the optimal period \(t \) policy \(\mu_t \) necessarily maximizes \(V_t = -\left(\frac{1}{2}\right)\mu_t^2 + (1+r)^{-1}V(K_t, M_t) \) subject to (37) and (40); that is, it satisfies

\[
\varphi_0 + \varphi_1 K_{t-1} + \varphi_2 M_{t-1} =
\arg\max_{\mu_t} \left\{ -\frac{1}{2}\mu_t^2 + \frac{(\phi_1 - \phi_2\beta)^2}{1 + r - \psi^2} \left[\frac{(1+\rho)K_{t-1} + M_{t-1} - M - \mu_t}{1 - \beta} \right]^2 \right\}.
\]

By differentiating the term in braces in (43) and equating coefficients with (38), one finds that

\[
\varphi_1 = \frac{(1+\rho)(\phi_1 - \phi_2\beta)^2}{(\phi_1 - \phi_2\beta)^2 + (1-\beta)^2(1+r-\psi)^2}, \quad \varphi_2 = \frac{\varphi_1}{1+\rho}, \quad \varphi_0 = -\varphi_2 M.
\]

[The last equality is (39).] Definition (42) now gives the optimal value of \(\varphi_1 \) as a function of the parameter \(\beta \) in (37):

32
\[(45) \quad \varphi_1 = (1 + \rho) \left[1 - \frac{(1 + r)(1 - \beta)^2}{(1 + \rho - \beta)^2} \right]. \]

The optimal policy coefficients \(\varphi_0 \) and \(\varphi_2 \) follow immediately.

The exercise is still incomplete, however: it remains to ensure that (37) is the result of optimal household behavior when households predict on the basis of (37) and (45). That equality holds only when \(\bar{M} \) and \(\bar{\beta} \) are related in a specific way to the parameters \(\bar{m} \) and \(\delta \) in the household money demand equation (34).

To find the necessary relationship, observe that, given (37), a household's rational period \(t \) forecast of \(\mu_{t+1} \) is

\[\mu_{t+1} = \varphi_0 + \varphi_1 K_t + \varphi_2 (\bar{M} - \beta K_t) = \varphi_1 \left(1 - \frac{\beta}{1+\rho} \right) K_t \]

[by (37) and (44)]. Thus, by (34), each household will demand real balances \(\bar{m} = \delta \varphi_1 \left(1 - \frac{\beta}{1+\rho} \right) K_t \). In an equilibrium this demand function must coincide with (37), which requires that \(\bar{m} = \bar{M} \) and

\[(46) \quad \beta = \delta \varphi_1 \left(1 - \frac{\beta}{1+\rho} \right) \Rightarrow \varphi_1 = \frac{(1 + \rho)\beta}{\delta(1 + \rho - \beta)}. \]

When combined, (45) and (46) lead to a quadratic equation that any equilibrium value of \(\beta \), \(\beta^* \), must satisfy:

\[(47) \quad (1-r\delta)\beta^2 + [2(r-p)\delta-(1+p)]\beta + \delta[\rho(1+p)+(\rho-r)] = 0. \]

Rather than presenting a general analysis of solutions to (47), I concentrate on two special cases of interest.

Case 1: \(r = \rho \). In this case the solutions to (47) are both
positive and real. They are:

\[(48) \quad \beta = \frac{(1 + \rho) \pm \sqrt{(1 + \rho)^2 - 4\rho \delta (1 + \rho) (1 - \rho \delta)}}{2(1 - \rho \delta)}.\]

An appendix proves that the larger of these two solutions exceeds 1, and thus cannot be the equilibrium value \(\beta^*\) [since \(\beta^* = \hat{L}'(K)\); see inequality (24) above]. The smaller solution in (43) is \(\beta^*\), and the appendix shows that \(\rho \delta < \beta^* < 1\).

The inequality \(\beta^* > \rho \delta\) implies that public commitments will decline over time to the stationary state \(\bar{K} = 0\). These dynamics follow from (41), because the equilibrium \(\psi^*\) can be expressed as

\[(49) \quad \psi^* = 1 - \frac{(\beta^* - \rho \delta)}{\delta (1 - \beta^*)}\]

with the help of (42), (44), and (46). (The appendix shows that \(\psi^* > 0\).) In the case \(r = \rho\), we therefore have a unique equilibrium with the features described in section III.

Case 2: \(r = \rho / (1 - \rho \delta)\). This is a case in which the government discount rate exceeds the private sector's. A direct check using (47) shows that \(\beta^* = \rho \delta < 1\) defines an equilibrium.

In this case, however, (49) implies that \(\psi^* = 1\), so that public commitments will follow \(K_t = K_{t-1}\) along the economy's equilibrium path. In other words, there is an equilibrium with perfect inflation smoothing despite the government's awareness that the level of government commitments influences household expectations. When \(r = \rho / (1 - \rho \delta)\), the gap between the government and household discount rates just offsets the additional government saving incentives due to market expectations. As a result, any initial value of government commitments will be
maintained indefinitely if the economy starts from a position on
the equilibrium path (that is, with initial real balances related
to initial commitments by \(M_{t-1} = \bar{m} - \beta^t K_{t-1} \)). The policy function
(38) is just \(\mu_t = \rho K_{t-1} \) along equilibrium paths.

When \(1 - 2\rho \delta > 0 \) the equilibrium solution \(\beta^* = \rho \delta \) is unique.
When \(1 - 2\rho \delta < 0 \), however, there may be a second equilibrium \(\beta^{**} \in
(\rho \delta, 1) \), where \(\beta^{**} = 1 - \rho[(1 - \rho \delta)/(2\rho \delta - 1)] \). (See the next
subsection for a numerical example). Even in a linear-quadratic
setting, therefore, multiple equilibria appear to be possible for
\(r > \rho \). A second equilibrium arises in the present case when
households' expectation that lower public commitments will lead to
lower inflation provides just the incentive the government needs
to induce a paring down of public commitments over time.

The Stochastic Case

Now assume that government spending is a random variable
that follows a first-order Markov process. Recall that the period
realization \(G_t \) is revealed at the start of period \(t \), before the
government chooses \(\mu_t \) but after the public has chosen the previous
period's real balances, \(M_{t-1} \).

It is convenient to redefine the stock of public commitments
at the end of period \(t-1 \) in terms of expected values as

\[
K_{t-1} = \frac{1}{(1+\rho)} E_{t-1} \left[\sum_{\tau=t}^{\infty} (1+\rho)^{-(\tau-t)} G_{\tau} \right] + D_{t-1}.
\]

We now need to distinguish, however, the end-of-(t-1) commitment
measure \(K_{t-1} \), on which households' choice of \(M_{t-1} \) is based, from
the start-of-t commitment measure on which the government bases
its choice of \(\mu_t \). The difference between the two depends on the unanticipated component of \(G_t \). Define the expectational revision at the start of period \(t \), \(\varepsilon_t \), by

\[
\varepsilon_t = \frac{1}{(1+\rho)} \left[\sum_{\tau=t}^{\infty} (1+\rho)^{-(\tau-t)} G_{\tau} \right] - E_{t-1} \left[\sum_{\tau=t}^{\infty} (1+\rho)^{-(\tau-t)} G_{\tau} \right].
\]

The commitment variable relevant for the government's period \(t \) decisions is then

\[
\tilde{K}_t = K_{t-1} + \varepsilon_t = \frac{1}{(1+\rho)} E_t \left[\sum_{\tau=t}^{\infty} (1+\rho)^{-(\tau-t)} G_{\tau} \right] + D_{t-1},
\]

and the government finance constraint becomes

\[(50) \quad \tilde{K}_{t+1} = (1 + \rho)\tilde{K}_t - (M_t - M_{t-1}) - \mu_t + \varepsilon_{t+1}. \]

I assume that \(\varepsilon_t \), which has a mean of zero conditional on information known in period \(t-1 \), has a finite variance and is distributed independently of period \(t-1 \) information.

Because the realization of \(G_{t+1} \) is not known by households in period \(t \), the stochastic analogue of (37) has the form

\[(51) \quad M_t = \hat{L} \left[E_t \left(\tilde{K}_{t+1} \right) \right] = \tilde{M} - \beta E_t \left(\tilde{K}_{t+1} \right) = \tilde{M} - \beta K_t. \]

When combined, (50) and (51) give the two dynamic equations

\[(52) \quad \tilde{K}_{t+1} = \frac{(1 + \rho)\tilde{K}_t + M_{t-1} - \tilde{M} - \mu_t}{1 - \beta} + \varepsilon_{t+1}, \]

\[(53) \quad M_t = \tilde{M} - \beta \left[\frac{(1 + \rho)\tilde{K}_t + M_{t-1} - \tilde{M} - \mu_t}{1 - \beta} \right]. \]
The problem of maximizing (35) subject to (52) and (53) was solved in the last subsection with the stochastic shock ε suppressed and with \tilde{K}_t formally labeled as K_{t-1}. The optimal policy rule in the present stochastic case is, however, the same function of the state variables as in the deterministic case (Sargent 1987, p. 37). Thus, the optimal policy rule [given (51)] is of the form (38), with \tilde{K}_t in place of K_{t-1} and with coefficients again described by (44) and (45). Since
\[
E_t(\mu_{t+1}) = E_t\left\{\varphi_0 + \varphi_1 \tilde{K}_{t+1} + \varphi_2 \left[\bar{M} - \beta E_t(\tilde{K}_{t+1})\right]\right\} = \varphi_1 (1 - \frac{\beta}{1+\rho}) K_t,
\]
condition (46) remains necessary for equilibrium. An equilibrium value of β, β^*, is thus a root of the quadratic equation (47).

Some calculation shows that along the economy's equilibrium path, beginning-of-period (resp. end-of-period) public commitments follow an ARMA(1,1), [resp. AR(1)] process
\[
\tilde{K}_{t+1} = \psi^* \tilde{K}_t + \epsilon_{t+1} + \theta \epsilon_t \Rightarrow K_t = \psi^* K_{t-1} + (\psi^* + \theta) \epsilon_t,
\]
where ψ^* is given by the formula in (49) and $\theta = \beta^*(1-\varphi_2)/(1-\beta^*)$.

Inflation-tax revenue is generated by the AR(1) process
\[
\mu_t = \psi^* \mu_{t-1} + \varphi_1^* \epsilon_t.
\]

In the case $r = \rho$, $\psi^* \in (0,1)$, so both the stock of commitments and inflation-tax revenue follow stationary stochastic processes with long-run distributions centered on zero. As a numerical example, suppose that $\rho = r = 0.04$ and $\delta = 12$ (so that the elasticity of real money demand with respect to interest cost
is 0.48). Then $\beta^* = 0.798$ [by (48)] and $\psi^* = 0.869$ [by (49)]. Only in the constant-velocity case, $\delta = 0$, do (42), (45), and (48) lead to $\psi^* = 1$ and the martingale property for K_t and μ_t.

In the case $r = \rho/(1 - \rho \delta)$, both the K_t and μ_t processes may be martingales even for $\delta > 0$, since $\beta^* = \rho \delta$ is one equilibrium.\footnote{20} For the specific parameter assignments of the last paragraph, which imply $r = 0.077$, the martingale equilibrium is the only one.

Suppose, however, that $\rho = 0.04$ once again but that $\delta = 20$, giving $r = \rho/(1 - \rho \delta) = 0.04/(1 - 0.8) = 0.2$. There is still an equilibrium with $\beta^* = \rho \delta$, but there is also a second, convergent equilibrium in which $\beta^{**} = 0.987$ and $\psi^{**} = 0.3$. A higher interest elasticity of money demand makes possible an equilibrium in which money demand responds so strongly to public debt reduction that the government finds it optimal to accumulate wealth over time despite its high rate of time preference.

V. Conclusion

This paper has explored the intertemporal behavior of seigniorage and government spending commitments in a dynamic game-theoretic model that determines the path of a key endogenous state variable, the public debt. When government and private-sector discount rates are the same, as intertemporal tax-smoothing analyses typically assume, a Markov perfect equilibrium requires declining paths of inflation and government commitments. In long-run equilibrium, the government holds an asset stock sufficient to finance future government expenditures without the need for inflation (or, for that matter, other distorting taxes).

When the government's discount rate exceeds the market's,
however—perhaps as a result of finite political lifetimes—alternative Markov perfect paths for inflation and budgetary commitments are possible, including inflationary steady states. There is no general guarantee of a unique equilibrium.

Although the model yields predictions broadly consistent with the apparent long-term behavior of prices in many countries, it is less clear that it can capture the great disparities in budgetary and inflationary experiences across economies and epochs. Some government-caused inflation is not motivated by seigniorage needs, official preferences change over time, and measured inflation is subject to serially correlated shocks beyond government control. Income-distribution and employment goals, two factors absent from the paper's model, are particularly important. Political uncertainty has been introduced into the model in a rudimentary way, but it would plainly be desirable to build explicitly on the social and economic tensions underlying political theories of budget processes (see Alesina and Perotti 1995 for a survey.) Such an extension might explain why the zero-tax stationary equilibrium predicted by some versions of the model is literally never observed in reality. 21

Despite its strong simplifying assumptions, the model does capture forces that influence fiscal and monetary policy formulation even in countries where inflation seems most deeply rooted. The model helps explain, for example, why governments in budgetary crisis often sharply devalue their currencies at the outset of stabilization, thereby spurring domestic inflation temporarily but (hopefully) promoting increases in official exchange foreign reserves. A partial rationale for devaluation is
that it may lower future inflation by objectively improving the budgetary situation - just as in the account offered above. The model also throws light on the current European exercise in fiscal retrenchment in preparation for economic and monetary union.

Appendix

This appendix takes care of some unfinished details from section IV. Let \(\beta^* \) be the smaller of the roots given by (48), \(\beta^{**} \) the larger. Proof is given here that when \(r = \rho \): (i) \(\beta^* \in (\rho \delta, 1) \) and \(\beta^{**} \in (1, \omega) \). (ii) \(\psi^* > 0 \) [where \(\psi^* \) is defined by (49)].

Proof of (i). First notice that both \(\beta^* \) and \(\beta^{**} \) are real, because [see (48)] \(\rho \delta(1 - \rho \delta) \) has its maximum at \(\rho \delta = \frac{1}{2} \), and \(\rho > 0 \). The roots \(\beta^* \) and \(\beta^{**} \) are the zeroes of the polynomial

(A1) \[\zeta(\beta) = (1 - \rho \delta)\beta^2 - (1 + \rho)\beta + \rho \delta(1 + \rho) \]

[the left-hand side of (47) with \(r = \rho \)], which has the derivative

(A2) \[\zeta'(\beta) = 2(1 - \rho \delta)\beta - (1 + \rho) \].

Since \(1 > \rho \delta \) according to (36), \(\zeta(\rho \delta) > 0 \) and \(\zeta'(\rho \delta) < 0 \); moreover, \(\zeta'(\beta) < 0 \) for all \(\beta < \rho \delta \). So, necessarily, \(\beta^* > \rho \delta \).

However, \(\zeta(1) = \rho(\rho \delta - 1) < 0 \), so \(\beta^* < 1 \) and \(\beta^{**} > 1 \).

Proof of (ii). With the help of (48) and (49), \(\psi^* > 0 \) can be shown, after much tedious algebra, to be equivalent to \(\rho \delta(2 - \rho \delta) < 1 \). The function \(\rho \delta(2 - \rho \delta) \) reaches its maximum of 1 when \(\rho \delta = 1 \), however, so assumption (36) \(\Rightarrow \psi^* > 0 \).
References

Endnotes

1 In this paper, my focus is on the seigniorage motive for inflation. A number of authors, starting with Kydland and Prescott (1977), show how excessive inflation can result from the time-inconsistency problem of a government that wishes to raise employment above some "natural" rate. Without a more detailed account of why governments may want to do this, it is difficult to relate the literature on the employment motive for inflation to the budgetary issues that concern me below. Any such account is likely to involve budgetary incentives, however (for example, a government's desire to raise income-tax revenue while cutting public transfer payments to the unemployed).
Chari, Cristiano, and Kehoe (1996) show in a variety of models that even when all other conventional taxes distort, the optimal precommitment path for inflation follows Milton Friedman's "optimal quantity of money" rule (such that the nominal interest rate is zero). In the model of this paper inflation is the only tax. That assumption may be viewed as a reflection of political obstacles to setting conventional taxes at Ramsey-optimal levels.

In the absence of a government precommitment capability, Ramsey plans sometimes can be supported as equilibria through intricate government debt-management strategies (Lucas and Stokey 1983; Persson, Persson, and Svensson 1987) or in specific self-fulfilling trigger-strATEGY or reputational equilibria (Chari and Kehoe 1990; Rogoff 1989; Stokey 1991). Debt-management strategies are known to be effective only in very special circumstances, however. Calvo and Obstfeld (1990) show that Persson, Persson, and Svensson's (1987) prescriptions are not generally valid, suggesting that the problem of dynamic inconsistency underlying the present paper's analysis need not disappear when the government can hold nominal assets. And, as Rogoff's (1989) discussion indicates, the empirical relevance of reputational equilibria remains controversial. In my 1991 paper, I derive the Ramsey solution for a planning problem similar to section I's and discuss its dynamic inconsistency in detail.
According to the model, a multicountry cross-section study thus would find a stronger impact of government debt levels on inflation than a Ramsey tax-smoothing rule would predict. That some significant positive cross-sectional link between debt levels and inflation exists is confirmed by Campillo and Miron (1997).

Judd (1989) independently reaches this conclusion, based on simulations of a stochastic model of capital, labor, and money taxation. Bohn (1988) and Poterba and Rotemberg (1990) take approaches similar to mine in modeling optimal inflation. Their analyses, do not, however, consider equilibrium dynamics in any detail.

The preceding constraint reflects the household’s loss during period t of $[1 - (P_{t-1}/P_{t})]m_{t-1} = m_t m_{t-1}$ on real balances carried over from period $t-1$.

In equilibrium, households are indifferent between alternative intertemporal consumption allocations. I therefore assume that in each period, the representative household chooses to consume aggregate output (net of inflation costs) less government consumption [see equation (8)].

In Obstfeld (1991) I examine the case in which $z(m) = \theta(m)$ and $r = \rho$, so that the government maximizes the representative household's utility. In that case $\pi = -\rho$ is the economy's unique stationary point.
This sum equals \((M_t - M_{t-1})/P_t\), where \(M\) denotes nominal money holdings per household. Thus, when \(P_t\) is the equilibrium price level, seigniorage equals the real resources the government is able to purchase from each household in exchange for money. To work in terms of present values below, I assume a transversality condition on equilibrium household real money balances,
\[
\lim_{t \to \infty} (1+\rho)^{-t} m_t = 0.
\]

See Auernheimer (1974).

Driffill, Mizon, and Ulph (1990) survey the literature on the costs of inflation.

In related models, Chang (1996) and Phelan and Stachetti (1996) describe algorithmic methods for characterizing all equilibria, not just the Markovian equilibria.

In working with (27), I am assuming that it indeed characterizes the government's optimum. Section IV presents a linear approximation to the model in which equilibrium exists and a counterpart of (27) characterizes it.

There is no loss of generality in taking this approach. Equation (10a) and Proposition 1 imply that in equilibrium, \(\pi_t\) and \(\gamma_t\) are linked by an invertible relationship.

The proof is immediate from (32). Because \(\pi \leq 1\) by definition,

\[
\frac{(1+\rho) + (1-\pi_t)(\hat{L}'(K_t))}{1 + \hat{L}'(K_t)} > (1 + \rho)
\]

(provided \(\pi > -\rho\), which I am assuming). So no constant (negative) value of \(\lambda\) can satisfy (32).
See Obstfeld (1991) for a diagrammatic exposition.

For similar calculations in a deterministic model, see Cohen and Michel (1988).

Notice that there are limits on the maximal feasible value of \(\mu \) and on the minimal value consistent with equilibrium. The first-order conditions I work with below will not hold when one of these constraints on \(\mu \) binds. It may be pushing the linear specification too far to apply it in a stochastic setting, where constraints on \(\mu \) are likely to come into force at some point. In my view, the "interior" results obtained still provide a useful starting point for analyzing the model's empirical implications.

When \(\psi^* = 1 \) and when government spending follows the martingale process \(G_t = G_{t-1} + \eta_t \), government debt follows the martingale process \(D_t = D_{t-1} + \theta \varepsilon_t \) (where \(\varepsilon_t = \eta_t / \rho \)).

Governments might be reluctant, for example, to leave a possibly hostile successor with a large bequest of public assets.
Center for International and Development Economics Research

The Center for International and Development Economics Research is a research unit of the Institute of International Studies which works closely with the Department of Economics and the Institute of Business and Economic Research (IBER). Single copies are free to academics, corporate rate is $3.50 within USA and $7.00 international. All requests for papers in this series should be directed to IBER, F502 Haas Building, University of California at Berkeley, Berkeley CA 94720-1922; (510) 642-1922; email: bagdon@haas.berkeley.edu.

Updates to this list posted on the internet at http://haas.berkeley.edu/~iber

C96-083 "The United States, the ITO, and the WTO: Exit Options, Agent Slack, and Presidential Leadership." Barry Eichengreen and John Odell. October 1996.
C96-074 "ASEAN in a Regional Perspective." Jeffrey A. Frankel and Shang-Jin Wei. November 1996.