Title
Plasmonic Colloidal Nanoantennas for Tip-Enhanced Raman Spectroscopy

Permalink
https://escholarship.org/uc/item/7186m6bp

Author
Dill, Tyler J.

Publication Date
2017

Peer reviewed|Thesis/dissertation
Plasmonic Colloidal Nanoantennas for Tip-Enhanced Raman Spectroscopy

A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy

in

NanoEngineering

by

Tyler J. Dill

Committee in charge:

Professor Andrea Tao, Chair
Professor Donald Sirbuly, Co-Chair
Professor Prabhakar Bandaru
Professor Eric Fullerton
Professor Michael Tauber

2017
Copyright

Tyler J. Dill, 2017

All rights reserved.
The dissertation of Tyler J. Dill is approved, and it is acceptable in quality and form for publication on microfilm and electronically:

Co-Chair

Chair

University of California, San Diego

2017
DEDICATION

This dissertation is dedicated to my family. They have always pushed me to think rationally and be curious about the natural world. The guidance of my parents and their own curiosity about the world has led me down my path in science, and to a career I am proud of.
“If I have seen further, it is by standing on the shoulders of giants.”
-Sir Isaac Newton
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signature Page</td>
<td>iii</td>
</tr>
<tr>
<td>Dedication</td>
<td>iv</td>
</tr>
<tr>
<td>Epigraph</td>
<td>v</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>vi</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>ix</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xi</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xiv</td>
</tr>
<tr>
<td>Vita</td>
<td>xvi</td>
</tr>
<tr>
<td>Abstract of the Dissertation</td>
<td>xviii</td>
</tr>
<tr>
<td>Chapter 1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Overview</td>
<td>2</td>
</tr>
<tr>
<td>1.2. Background</td>
<td>4</td>
</tr>
<tr>
<td>1.2.1. Raman Spectroscopy</td>
<td>4</td>
</tr>
<tr>
<td>1.2.2. Localized Surface Plasmon Resonance (LSPR)</td>
<td>6</td>
</tr>
<tr>
<td>1.2.4. Tip-Enhanced Raman Spectroscopy (TERS)</td>
<td>7</td>
</tr>
<tr>
<td>1.3. TERS Applications</td>
<td>10</td>
</tr>
<tr>
<td>1.3.1. Carbon Nanomaterials</td>
<td>10</td>
</tr>
<tr>
<td>1.3.2. Single Molecule TERS</td>
<td>12</td>
</tr>
<tr>
<td>1.3.3. TERS in Catalysis</td>
<td>15</td>
</tr>
<tr>
<td>1.3.4. TERS in Biology</td>
<td>16</td>
</tr>
</tbody>
</table>
Chapter 2 Fabrication and Characterization of Highly reproducible Colloidal Nanoantennas

2.1. Introduction

2.2. Results and Discussion

2.2.1. Nanoantenna Characterization and Validation

2.2.2. Experimental Determination of Enhancement Factor

2.2.3. Electrodynami a Modeli ng of Nanoantenna

2.2.4. Performance and Comparison of Colloidal Nanoantennas to Other Probes

2.2.5. Colloidal Nanoantenna Demonstrate Sub-Diffraction Chemical imaging

2.3. Experimental and Computational Methods

2.4. Conclusions

2.5. References
Chapter 3 The Broadband Optical Response of Colloidal Nanoantenna

Results From Interparticle Coupling ... 76

3.1. Introduction ... 77

3.2. Results and Discussion .. 81

 3.2.1. Plasmon Response of a Single AgNC Based Nanoantenna 81

 3.2.2. Experimental Dependence of Raman EF on AgNC Size......... 84

 3.2.3. Contribution of Interparticle Coupling to the Plasmon Response of
 a Multi-AgNC Based Nanoantenna .. 84

 3.2.4. AgNC Arrangement ... 93

3.3. Experimental and Computational Methods 95

3.4. Conclusions .. 95

3.5. References .. 97

Chapter 4 Self-Assembled Ag Nanocubes for meta Surface-Enhanced Raman
 Spectroscopy ... 103

4.1. Introduction .. 104

4.2. Results and Discussion .. 106

 4.2.1. mSERS Fabrication and Characterization 106

 4.2.2. The effects of AgNC Surface Density on EF 109

 4.2.3. Effects of Near-Field Polarization on EF 111

 4.2.4. mSERS Substrates Fabricated on PDMS for Increased
 Functionality .. 113

4.3. Experimental and Computational Methods 114
Chapter 5 Contributions of Polydispersity and Defect Particles to the Raman EF

5.1. Introduction.. 124
5.2. Experimental Raman EFs for Various Nanocube Size Distributions….. 127
5.3. Simulated Raman EFs of Nanocubes... 130
 5.3.1. Simulated Single Nanocube EFs.. 130
 5.3.2. Simulated Ensemble Nanocube EFs... 131
5.4. Discussion... 134
5.5. Experimental and Computational Methods.. 138
5.6. Conclusions... 140
5.7. References... 142

Chapter 6 Quantum Effects Observed in mSERS Substrates with Small Gaps

6.1. Introduction... 148
6.2. Results and Discussion... 151
 6.2.1. Tunable Gap-Height Metasurfaces... 151
 6.2.2. Quantum Tunneling in Ag Nanocube Metasurfaces.................... 153
 6.2.3. The Effect of Surface Chemistry on Tunneling............................ 157
 6.2.4. Quantum Tunneling is Only Observed for Ag Nanocubes............ 158
 6.2.5. Tunneling Effects on Near-Field Enhancement............................ 161
6.3. Experimental and Computational Methods .. 162

6.4. Conclusion ... 164

6.5. References ... 165

Appendix A Colloidal Nanoantenna Data ... 170
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFM</td>
<td>Atomic Force Microscope</td>
</tr>
<tr>
<td>AgNCs</td>
<td>Silver nanocubes</td>
</tr>
<tr>
<td>AgNSs</td>
<td>Silver nanospheres</td>
</tr>
<tr>
<td>BCB</td>
<td>Brilliant cresyl blue</td>
</tr>
<tr>
<td>CNT</td>
<td>Carbon nanotube</td>
</tr>
<tr>
<td>dHDT</td>
<td>deuterated 1-hexadecanethiol</td>
</tr>
<tr>
<td>DI</td>
<td>deionized</td>
</tr>
<tr>
<td>DMAB</td>
<td>p,p’-dimercaptoazobisbenzene</td>
</tr>
<tr>
<td>EF</td>
<td>Enhancement factor</td>
</tr>
<tr>
<td>HDT</td>
<td>1-hexadecanethiol</td>
</tr>
<tr>
<td>H₂TBPP</td>
<td>meso-tetrakis(3,5-di-tertiarybutylphenyl)-porphyrin</td>
</tr>
<tr>
<td>IR</td>
<td>Infrared</td>
</tr>
<tr>
<td>LB</td>
<td>Langmuir-Blodgett</td>
</tr>
<tr>
<td>LSPR</td>
<td>Localized surface plasmon resonance</td>
</tr>
<tr>
<td>PhSH</td>
<td>Thiophenol</td>
</tr>
<tr>
<td>pNTP</td>
<td>p-nitrothiophenol</td>
</tr>
<tr>
<td>PVP</td>
<td>Polyvinylpyrrolidone</td>
</tr>
<tr>
<td>R6G</td>
<td>Rhodamine 6G</td>
</tr>
<tr>
<td>RA</td>
<td>Raman analyte</td>
</tr>
<tr>
<td>RBM</td>
<td>Radial breathing mode</td>
</tr>
<tr>
<td>SAM</td>
<td>Self-assembled monolayer</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning electron microscope</td>
</tr>
<tr>
<td>SERS</td>
<td>Surface-enhanced Raman spectroscopy</td>
</tr>
<tr>
<td>SFG</td>
<td>Sum frequency generation</td>
</tr>
<tr>
<td>SM</td>
<td>Single molecule</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-noise ratio</td>
</tr>
<tr>
<td>STM</td>
<td>Scanning tunneling microscopy</td>
</tr>
<tr>
<td>TEF</td>
<td>Tip-enhanced fluorescence</td>
</tr>
<tr>
<td>TERS</td>
<td>Tip-enhanced Raman spectroscopy</td>
</tr>
<tr>
<td>TPT</td>
<td>Terphenyl thiol</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Schematic and example spectra of the TERS process</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Schematic and example spectra of the topography and TERS maps of a carbon nanotube</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Schematic, STM topography, and TERS maps of single molecules.</td>
<td>14</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Schematic and SEM image of an etched Au wire TERS probe</td>
<td>19</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>Grating coupled and Campanile optical probe tips</td>
<td>22</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>Examples of plasmonic colloidal nanoparticles</td>
<td>24</td>
</tr>
<tr>
<td>Figure 1.7</td>
<td>Self-assembled TERS probes</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Fabrication process of colloidal nanoantenna</td>
<td>45</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Modifying the radius of curvature of an AFM probe before AgNC deposition</td>
<td>46</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Experimental setup and TERS collection</td>
<td>48</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>TERS near-field effect as a function of tip-sample distance</td>
<td>51</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Additional tips showing the TERS near-field effect</td>
<td>52</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>The effect of AgNC rotation on Raman EF</td>
<td>53</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>TERS engaged and disengaged spectra</td>
<td>54</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>TERS wavelength-dependent field-enhancement</td>
<td>55</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>FDTD EF control simulations of a single 115 nm cube</td>
<td>56</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>TERS EF determination</td>
<td>57</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>TERS reproducibility</td>
<td>60</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>TERS map of patterned heterogeneous SAM</td>
<td>62</td>
</tr>
</tbody>
</table>
Figure 5.3. Average SERS spectra from five different SERS substrates fabricated from different sized nanoparticles................................. 129

Figure 5.4. Computed field enhancement profiles and single nanocube Raman enhancement factors... 131

Figure 5.5. Calculation of ensemble EFs for different NP size distributions... 133

Figure 5.6. EF values versus nanoparticle size distribution....................... 135

Figure 5.7. Effect of shape heterogeneity on enhancement factor.............. 136

Figure 5.8. Orientational dependence of silver nanocubes....................... 137

Figure 5.9. FDTD simulations and interpolated data for nanocube resonance when considering both nanocube size and ROC......................... 138

Figure 6.1. Schematic for the design and characterization of the mSERS substrate. .. 150

Figure 6.2. FDTD simulations for a AgNC separated by a dielectric gap (n=1.4) from an Au substrate by h.. 152

Figure 6.3. Intensity plots of reflectance for experimental and simulated metasurfaces... 154

Figure 6.4. Reflectance spectra for metasurfaces fabricated from alkanethiol and PVP capped AgNCs.. 156

Figure 6.5. Experimentally determined gap-mode resonance (circles) for metasurfaces fabricated from alkanethiol and PVP capped AgNC... 157

Figure 6.6. FDTD Simulations and reflectance data of a metasurface fabricated from AgNS.. 159
Figure 6.7. Experimentally determined gap-mode resonance (circles) for metasurfaces fabricated from alkanethiol and PVP capped AgNS... 160

Figure 6.8. Raman intensity for metasurfaces fabricated from alkanethiol capped AgNCs on an Au thin-film with a PhSH Raman analyte laye......... 162
LIST OF TABLES

Table 2.1. Vibrational Mode Assignments of PhSH, HDT, and silicon 49
Table 5.1. Nanocube Sample Size Distributions 128
Table 5.2. Experimental and Simulated Raman Intensities and Enhancement
Factors for Each SERS Substrate ... 134
ACKNOWLEDGEMENTS

I would like to thank my advisor and mentor Professor Andrea Tao. Through her tireless efforts to produce the best science possible, she has made me into the scientist I am today. She always pushed me to do my best work both in the lab as well as in my writing and presentations. I have become a much stronger writer and presenter because of her. Professor Tao also gave me the freedom I needed to explore projects that interested me, while forcing me to think about why I was doing them and what my end goal was. All of her work has sculpted me into an independent researcher who can comfortably present my work in front of large audiences.

I would also like to thank Matt Rozin and Whitney Bryks for enduring alongside me the long and arduous road that is a Ph.D. Both in research and our own lives, the three of us helped push each other to always strive for better. I will never forget our years living together, sharing an office, and commuting daily. I think that we may have actually spent too much time together… I wish you guys the best in your own defenses and future careers, and sincerely hope we remain good friends.

Finally I would like to thank Stephen Palani, Darwin Zwissler, and Sam Spraker. You guys were my team, you were always interested in your work and that helped keep me excited about our progress. I wish you all the best in continuing our research and in your own futures.

Chapter 2 is a reformatted reprint in full, of the material from: Dill, T. J., Rozin, M. J.; Palani, S.; Tao, A. R., Colloidal Nanoantennas for Hyperspectral
Chemical Mapping.” *ACS Nano* 2016, 10 (8), 7523-7531. The dissertation author was the principal researcher and author of this paper.

Chapter 3, in full, is currently being prepared for submission for publication of the material. **Dill, T. J.,** Tao, A. R. The dissertation author was the principal researcher and author of this material.

Chapter 4, in full, is currently being prepared for submission for publication of the material. **Dill, T. J.,** Rozin, M. J., Rodarte, A. L., Brown, E. R., Palani, S., Tao, A. R. The dissertation author was the principal researcher and author of this material.

Chapter 6, in full, is currently being prepared for submission for publication of the material. Dill, T. J., Rodarte, A. L., Tao, A. R. The dissertation author was the principal researcher and author of this material.
VITA

2010 Bachelor of Science, University of California, San Diego
2011 Master of Science, University of Illinois at Urbana-Champaign
2017 Doctor of Philosophy, University of California, San Diego

PUBLICATIONS

FIELDS OF STUDY

Major Field: NanoEngineering

Studies in colloidal synthesis, plasmonics, self-assembly, and spectroscopy

Professor Andrea Tao
ABSTRACT OF THE DISSERTATION

Plasmonic Colloidal Nanoantennas for Tip-Enhanced Raman Spectroscopy

by

Tyler J. Dill

Doctor of Philosophy in NanoEngineering

University of California, San Diego, 2017

Professor Andrea Tao, Chair

Professor Donald Sirbuly, Co-Chair

Plasmonic nanoantennas that support localized surface plasmon resonance (LSPR) are capable of confining visible light to subwavelength dimensions due to strong electromagnetic field enhancement at the probe tip. Nanoantenna enable optical methods such as tip-enhanced Raman spectroscopy (TERS), a technique that uses
scanning probe microscopy tips to provide chemical information with nanoscale spatial resolution and single-molecule sensitivities. The LSPR supported by the probe tip is extremely sensitive to the nanoscale morphology of the nanoantenna. Control of nanoscale morphology is notoriously difficult to achieve, resulting in TERS probes with poor reproducibility. In my thesis, I demonstrate high-performance, predictable, and broadband nanospectroscopy probes that are fabricated by self-assembly. Shaped metal nanoparticles are organized into dense layers and deposited onto scanning probe tips. When coupled to a metal substrate, these probes support a strong optical resonance in the gap between the substrate and the probe, producing dramatic field enhancements. I show through experiment and electromagnetic modeling that close-packed but electrically isolated nanoparticles are electromagnetically coupled. Hybridized LSPRs supported by self-assembled nanoparticles with a broadband optical response, giving colloidal nanoantenna a high tolerance for geometric variation resulting from fabrication. I find that coupled nanoparticles act as a waveguide, transferring energy from many neighboring nanoparticles towards the active TERS apex. I also use surface-enhanced Raman spectroscopy (SERS) to characterize the effects of nanoparticle polydispersity and gap height on the Raman enhancement. These colloidal probes have consistently achieved dramatic Raman enhancements in the range of 10^8–10^9 with sub-50 nm spatial resolution. Furthermore, in contrast to other nanospectroscopy probes, these colloidal probes can be fabricated in a scalable fashion with a batch-to-batch reproducibility of ~80%. This body of work serves as an important demonstration that bottom-up engineering can be used for batch
fabrication of high-performance and high-reliability devices using inexpensive equipment and materials.
Chapter 1

Introduction
1.1. Overview

In my thesis, I have developed new ways to assemble and utilize a class of nanoparticles for applications in optical spectroscopy, with the end goal of developing new platforms that are capable of probing the surface chemistry with single-molecule sensitivity and nanometer precision. Nanomaterials, in general, are a major impetus for technological growth; in the field of optical materials, the power to control nanostructure can lead to new ways of manipulating electromagnetic radiation.1-7 A particularly important opportunity for nanotechnology is to enhance the spectroscopic techniques currently being used to study the properties of bulk matter and at material surfaces. Unlike microscopy, which allows for the visualization of diffraction limited physical features, spectroscopy gives additional information, about the chemical and material properties of those features. There is a long history of using spectroscopy to identify molecules and elemental composition, and to determine material structure. It is more difficult, however to apply spectroscopy to features on the nanoscale, in thin-films, wherever the numbers of molecules is small, or limited by physical dimensions. Optical spectroscopy in particular is limited by the resolution to which you can focus light. Similarly, thin-films or trace amounts of molecules or material can be difficult to detect.

I began my Ph. D. thesis work with the goal of enabling nanospectroscopy, a type of optical spectroscopy in which the spatial resolution is less than its traditional optical limit. Specifically, I focused on tip-enhanced Raman spectroscopy (TERS). TERS is a technique that has demonstrated chemical spectroscopy with < 1 nm
resolution and single-molecule detection abilities.8-11 My goal was to develop and characterize a new type of robust optical probe, or \textit{nanoantenna}, that would be simple to fabricate reproducibly in batches. Prior to our work, probes that could be easily fabricated had low reproducibility, 12-14 while high-performance probes required expensive vacuum equipment and could only be produced in low numbers.15-17 Achieving this would help make TERS into a routine analytical technique that would be accessible to research groups spanning all aspects of science, engineering, and technology.

We fabricated TERS probes using chemically synthesized nanoparticle solutions. Our design eliminates the need for costly vacuum and cleanroom equipment in the fabrication process. With inexpensive equipment and chemicals, our methods allow us to fabricate batches of nanoantennas that are highly reproducible, an important goal on the way to commercialization of any technology. With these probes, we have demonstrated extraordinary enhancements of Raman signals, in addition to achieving spatial resolutions better than 40 nm. We have thoroughly studied their optical properties and understand the mechanisms for this performance, which will allow us to intelligently engineer the next generation of nanoantennas as well as nanoantennas for specific applications.

During the course of my research on TERS, we also explored surface-enhanced Raman spectroscopy (SERS). SERS operates on similar physical principles as TERS, but sacrifices spatial resolution for higher spectroscopic signals due to larger probing areas. We studied SERS because there were some analytes for which TERS
enhancements were insufficient to provide signal. But the higher spectroscopic signals originating from SERS measurements were able to provide a signal. The SERS platforms developed through my research served as a model system to explore the effects of optical resonance mode structure as well as quantum effects. We found these differences by investigating changes in nanoparticle arrangement between the TERS and SERS systems as well as between spherical and cubic nanoparticles. Although this work has not been directly translated back to TERS, we find it likely that this research has implications for the design rules of TERS probes.

Below, I provide a detailed background of TERS applications and current TERS probe fabrication methods. I also provide supporting background theory. This serves as the foundation for the bulk of my thesis research leading to the development of novel nanocrystals TERS probes.

1.2. Background

1.2.1. Raman Spectroscopy

Raman spectroscopy is a vibrational spectroscopy technique that gives information about the structures of chemicals, their orientations, and their interactions with each other and with their surroundings. Raman spectroscopy is a commonly utilized analytical technique in chemistry, biology and materials science because it provides chemistry-specific vibrational signatures of analytes,\(^{18}\) is capable of operating over a large illumination wavelength range,\(^{18}\) can be implemented using portable instrumentation,\(^{19}\) and is well-suited to detection in aqueous environments.\(^{20}\)

Raman spectroscopy examines changes in vibrational structure within an
electronic state, so-called a *virtual state*. Raman scattering occurs as a result of an induced dipole within a molecule. An incident electromagnetic field will slightly shift the position of atomic charges from equilibrium, changing the polarizability. The deformation of the charge distribution leads to an induced dipole, which resonates at the frequency of the vibrational mode, scattering Raman-shifted light. Raman scattering can be broken down into Stokes and anti-Stokes scattering processes. The Stokes process is when a photon is scattered with less energy than the exciting photon, while the anti-Stokes process produces a scattered photon with a higher energy than the exciting photon. The anti-Stokes process requires an already excited molecule, which exist in populations defined by the Boltzmann distribution. As there are generally fewer molecules in this excited state, Anti-stokes scattering is significantly weaker. A comparison of the two scattering processes can be used to provide thermodynamic information about a sample.

Raman spectroscopy can identify particular molecules through the molecular fingerprint, the set of vibrational modes unique to that particular molecule. In the vast majority of molecules and materials, there are multiple vibrational modes that are simultaneously excited. These modes represent atomic motions such as stretching, bending, rocking, twisting, and wagging, and can be symmetric or anti-symmetric. Vibrational modes can incorporate multiple atoms or entire functional groups, making them powerful tools for unique identification. As a result, Raman is used to detect analyte molecules with high specificity, and often can be implemented to do so in real-time. Raman has been important in fields as diverse as art,
archaeology, biosciences, analytical chemistry, gemology, crystallography, nanomaterials, pharmaceuticals, high-pressure science, and forensic analysis. Raman spectroscopy suffers from the inability to easily detect small numbers of molecules due to low scattering efficiencies, a key goal in analytical chemistry and materials science. Typical values for Raman scattering cross-sections are low compared to other optical processes, ranging between $10^{-31} - 10^{-29}$ cm2/molecule. In comparison, fluorescence cross-sections can reach as high as 10^{-16} cm2/molecule. Methods such as surface- and tip-enhanced Raman spectroscopy have been developed to increase Raman scattering by orders of magnitude.

1.2.2. Localized Surface Plasmon Resonance (LSPR)

Many TERS and SERS platforms are enabled by structures that support localized surface plasmon resonances (LSPRs). LSPR excitation occurs when incident light hitting the surface of a nanostructure, made of certain plasmonic materials, excites the nanostructure’s conduction electrons into a collective oscillation. As a result, optical and electronic properties of a nanoamaterial can be coupled. The coherence of electron motion leads to strong electric fields both inside and around the surface of the nanostructure. Nanostructures supporting LSPR modes have been used for refractive index sensing, angstrom rulers, enhanced spectroscopy, and nanoscale heat sources. The high-energy electrons resulting from LSPR decay have also been used as sources for catalyzing chemical reactions.

LSPR modes are strongly dependent on many parameters including the size, shape, material, and surrounding environment of the plasmonic nanostructure. Only a
few metals can support a LSPR in the visible spectrum. Au, Ag, and Cu are the most commonly used in real applications, but certain other metals such as Al, Pt, and Pd can support a LSPR in the UV. LSPR modes are also strongly dependent on the size, shape, dielectric environment of the nanostructure. An important consequence of the LSPR is an increased electric-field strength near the surface, decaying exponentially from the surface of the nanostructure. The increased electric-field strength is called the near-field enhancement, and the nanoscale volumes where the near-field is highest are often referred to as hotspots. When the near-field associated with multiple LSPR modes overlap, they have the potential to become coupled. The overlapping near-fields can either red-shift or blue-shift the coupled LSPR depending on the interactions of their respective near-fields. In many cases, these interacting near-fields can interact constructively and result in near-field strengths greater than those of individual nanoparticles. In surface- and tip-enhanced Raman spectroscopy, this is referred to as gap-mode sensing. As the distance between these particles decreases, the interaction strength increases. These coupled nanostructures are instrumental in high-enhancements for many LSPR-based nanoparticle applications.

1.2.3. Tip-Enhanced Raman Spectroscopy (TERS)

Tip-enhanced Raman spectroscopy (TERS), is a powerful optical technique for chemical mapping that has the potential to achieve quantitative spectroscopic analysis of arbitrary surfaces with nanoscale resolution. TERS combines Raman spectroscopy with scanning probe methods by using a nanoscale metal tip (supporting an LSPR) to raster a surface. Upon irradiation, the metal tip behaves like an optical
antenna to facilitate near-field amplification of both the incident and Raman-scattered light. Figure 1.1. shows a schematic of the TERS process. By scanning this tip laterally across a surface, TERS enables the point-by-point acquisition of chemical information-rich Raman spectra with spatial resolutions of a few tens of nanometers down to < 1 nm.11, 29, 30 Unlike other optical methods that yield super-resolution images31 or electron32 and x-ray mapping33 techniques, TERS is inherently label-free, non-destructive, and can be performed in ambient conditions. As such, TERS is well-suited for probing highly sensitive samples, such as single molecules,29 nanostructures,11, 34 and biological surfaces.35

TERS is generally carried out using either AFM or scanning tunneling microscopy (STM), and the TERS probes used for each are unique. In STM TERS a constant height over a surface is maintained through monitoring a tunneling current between a sharp probe tip and a conductive surface. Because the tip supports an LSPR, optical excitation can provide enhanced Raman signals originating at the tip apex.

Figure 1.1. Schematic and example spectra of the TERS process. A LSPR supported by a plasmonic metal tip generates an enhanced electric near-field (red shading). The Raman analyte (black triangle) within the near-field generates enhanced Raman scattering that can then be detected. Moving the tip allows control over the origin of the TERS signal.
STM TERS offers the advantage of higher resolution, all single molecule TERS (SMTERS) studies are carried out using STM. STM TERS probes tend to have a long operating lifetime as the feedback mechanism does not require physical contact with the substrate. STM TERS however requires a conductive substrate, which limits the range of samples that experiments can be carried out on.

In AFM TERS, a Au or Ag coated Si tip at the end of a cantilever is brought into contact with a surface. Mechanical deflection of the cantilever provides topographic information as the tip scans, in a similar manner to STM TERS, optical excitation provides enhanced Raman data originating from the probe apex. AFM TERS can be carried out in ambient conditions, but resolution limited to the radius of the tip. AFM TERS probes often have a radius of curvature > 10 nm in order to support a plasmonic nanostructure at the apex. Because the feedback mechanism with AFM is mechanical, AFM TERS is also able to perform force spectroscopy (i.e. correlating forces applied to an analyte to their corresponding chemical spectra). AFM TERS tips tend to have reduced lifetimes as plasmonic metals are often soft and wear down on extended contact. Mechanical wear can be addressed with hard oxide coatings over the plasmonic layer at the expense of a fraction of the Raman enhancement.

In order to acquire chemical images of small numbers of molecules, TERS probes must greatly enhance the amount of Raman scattering from each molecule. The Raman enhancement factor (EF) is defined as the increase in Raman scattering from the plasmonic near-field as well as any chemical enhancements compared to the
Raman scattering from a neat sample. Both the exciting and Raman scattered light are enhanced in the plasmonic near-field resulting in an EF that is dependent on the enhanced near-field to the fourth power. The EF is an important metric in TERS and defines the performance of the probe tip. The signal-to-noise ratio (SNR) is another important performance metric that represents the quality of the observable spectra. The SNR accounts for both the performance of the TERS tip as well as the optical system itself. TERS systems have many different configurations and can have top-, bottom-, or side-illumination. Parabolic mirror illumination systems have also been explored. Fiber coupled TERS probes have shown promise for increased optical coupling. Each system has advantages and disadvantages. For example, bottom-illumination TERS systems can use objectives with a high numerical aperture but require transparent samples. Side-illumination TERS systems can work with arbitrary samples, but require longer focal distances and smaller optical efficiencies. In order to maximize TERS performance, a TERS probe with a high EF, and the correct optical system are required.

1.3. TERS Applications

1.3.1. Carbon Nanomaterials

Carbon nanomaterials such as carbon nanotubes (CNTs) and graphene display unique electrical, thermal, and mechanical properties. They have shown promise in field-effect transistors, optoelectronic devices, composite materials, transparent electrodes, and water purification. The properties of carbon nanomaterials are highly dependent on their atomic structure, which cannot be studied
by traditional optical spectroscopy methods, limited to the diffraction limit of light.

TERS has identified many properties of carbon nanotubes (CNTs) at the individual CNT level. A study in 2014 unambiguously showed the ability to not only identify but to spectroscopically map a single CNT with 1.7 nm spatial resolution.11 In 2016 this resolution was increased to 0.7 nm.10 This high resolution allowed TERS images of the defect induced D-band to identify individual defects within a CNT (Figure 1.2.). The relaxation length of electron-hole pairs around single defects was experimentally determined to be 2.2 nm.

By applying controlled amounts of pressure during TERS measurements, the electronic properties of individual CNTs can be probed. A study confirmed the difference between metallic and semiconducting CNTs by measuring the difference in peak shifts.36 Metallic CNTs are achiral and thus vibrational modes are purely axial
and circumferential, while semiconducting CNTs have chiral properties. By examining the shape of the G-band, the chirality of the CNT can be determined. Mechanical deformation induces different changes to the vibrational structure to each type of CNT, which can easily be identified via TERS.

By correlating topography with TERS, properties and locations of individual CNTs within a bundle were identified. The radial breathing mode (RBM) is a vibrational mode unique to a specific chirality and diameter of a CNT. TERS from the RBMs of different nanotubes along with topography was used to determine the chiral index, CNT diameter, and precise location within the bundle.

TERS has also been used to map graphene. By using a Ag coated AFM tip, graphene monolayers on glass were imaged with a resolution of 20 nm. The presence and shape of the 2D vibrational mode identified the regions of monolayer and bilayer graphene. Additionally the relative strength of the D-band identifies high defect regions along the graphene edge as well as point and line defects. The 2D vibrational mode has also been used to identify regions of local strain in graphene. When monolayer graphene was placed over a 5 nm particle, changes in the TER spectra were used to quantify the local strain of the graphene. Local contamination and hydrogen termination of graphene have also been reported via TERS.

1.3.2. Single Molecule TERS

TERS can provide both the field-enhancement and field-localization to generate Raman spectra from single molecules. The ability to study single molecules via TERS has enabled basic studies into molecular kinetics, bonding properties,
and orientations on surfaces. Raman enhancements must be high to achieve SMTERS. Dye molecules are often used in SMTERS studies as they have molecular resonances that provide additional enhancement. High field-enhancements and local temperature increases can induce molecular diffusion or photobleaching, preventing accurate measurements. SMTERS experiments account for this by using combinations of molecules fixed to a surface, low temperatures, and short collection times. SMTERS experiments are also often performed in ultra-high vacuum (UHV) conditions to control surface quality, prevent contamination, and reduce photodegradation.

SMTERS was first achieved by using the resonant Raman dye molecule brilliant cresyl blue (BCB) excited at 633 nm in a gap-mode configuration. The detection of a single BCB molecule was assumed by using low molecular surface coverage. The observation of spectral fluctuations, also known as blinking, supports this hypothesis. When only a single molecule accounts for the entire visible Raman spectra, blinking can result from molecules diffusing through, rotating within the hotspot, or small variations in excited-state lifetimes. In 2012 more conclusive evidence was provided for SMTERS using the isotopologue method. Two isotopes of Rhodamine 6G (R6G) were both placed in the presence of a TERS probe at low concentrations. When the Raman spectra for only a single isotope are observed, the likely origin is a single molecule. With time dependent TERS measurements, spectra of each isotope were observed individually as well as spectra showing both components. The study concludes that when both isotopes are observed there are
multiple molecules in the hotspot. Due to molecular diffusion there are also times when only a single molecule of either isotope is present.

In a 2013 groundbreaking study, TERS demonstrated the ability to map a single molecule. A sub-monolayer of a porphyrin molecule, meso-tetrakis(3,5-di-tertiarybutylphenyl)-porphyrin (H₂TBPP), was carefully placed on an single-crystal Ag surface under low-temperature UHV conditions. A TERS probe with a plasmon resonance that overlapped with a molecular electronic resonance was chosen to maximize Raman enhancements. Chemical images of the porphyrin structure were obtained with 0.7 nm resolution (Figure 1.3.). The relative Raman intensities of different vibrational peaks were compared with calculated Raman spectra of the same molecule and used to determine the angular orientation of the molecule relative to the surface. A follow up study combined TERS with tip-enhanced fluorescence (TEF) to

Figure 1.3. Schematic, STM topography, and TERS maps of single molecules. (A) Schematic of a Ag TERS tip positioned over a single molecule. (B) Topography of a cluster of porphyrin molecules as well as several isolated molecules. (C) Example TERS spectra from different positions within a single molecule and TERS maps representing the spatial intensity of various vibrational modes showing a 0.7 nm TERS resolution. [Adapted with permission from Reference 8]
probe the molecule-surface interaction, and suggested that the H2TBPP was weakly coupled to the metallic substrate supporting it. TERS has also been used to map and identify two distinct types of molecules positioned within van der Waals contact of each other, demonstrating 0.5 nm resolution.

1.3.3. TERS in Catalysis

Understanding how catalysts operate is essential for many industrial processes. Spectroscopic methods such as infrared (IR), sum frequency generation (SFG), and surface-enhanced Raman spectroscopy (SERS) have all been used to study catalytic reactions. These techniques offer valuable insight into the chemistry of the catalytic reactions. The main advantage of using SERS to study catalysis is the surface sensitivity. The Raman spectra originate from a sample near a plasmonic nanostructure, which can coincide with the catalytic surface, enabling reaction sensitivity down to a single nanostructure. Only TERS however has been able to provide the spatial resolution to identify catalytic hotspots within a nanostructure, or identify the reaction of a single molecule on a catalytic surface. For example, the photoisomerization of a single azobenzene molecule has been reported.

In a demonstration of catalytic activity mapping via TERS, the photocatalytic reaction of p-nitrothiophenol (pNTP) to p,p’-dimercaptoazobisbenzene (DMAB) on a crystalline Au surface was reported. To monitor the reaction in situ, a 633 nm excitation was used to continuously monitor the TERS spectra (does not result in photocatalysis). A separate 532 nm excitation was pulsed to drive the photocatalytic reaction at specific time intervals. Due to the small hotspot generated by a TERS
probe, the observation in the few molecule regime of the photocatalytic reaction was achieved. In order to identify catalytic hotspots, a roughened Ag substrate was used as the photocatalyst. The Ag TERS tip was protected with an alumina layer to prevent the tip from interfering with the reaction. TERS maps were generated by rastering the tip over the photocatalyst under 532 nm excitation. It was found that DMAB only formed in certain areas. When the catalytic hotspots were compared to topographic maps, it was hypothesized that photocatalytic activity is prominent in locations corresponding to plasmonic hotspots.

1.3.4. TERS in Biology

The high sensitivity of TERS makes it a promising tool for studying biological samples. The chemical information of Raman allows insights into samples unavailable with topography alone. The low Raman cross-section of water allows TERS to be performed in liquids, a requirement for studying many biological molecules or cells. The label free nature of TERS allows systems to be studied without further modification.

TERS has been employed in investigations of many types of biological surfaces. Understanding how amyloid fibrils fold has important consequences for understanding Alzheimer’s and Parkinson’s disease. TERS has been used to provide insight into the secondary structure of fibrils by chemically identifying hydrophobic and hydrophilic regions. The high spatial resolution of TERS has been able to identify streptavidin molecules embedded into a supported lipid bilayer, unachievable with topographic information alone. Statistical methods have been employed to
identify proteins and lipid rich regions on the surface of human colon cancer cells. In another study, the surface of a *Bacillus subtilis* spore was investigated and distinct regions were identified. The spectral information in biological systems is rich and complex, research into understanding the full implications of TERS data is ongoing.

In genomics, researchers are always searching for new ways to sequence and investigate DNA. TERS has been used on immobilized single stranded DNA to chemically identify individual nucleobases. Vibrational modes unique to adenine, guanine, cytosine, and thymine have been identified. By acquiring TERS spectra along a DNA strand, the DNA can be sequenced one nucleobase at a time. Investigations of double stranded DNA have shown vibrational modes of the phosphate backbone only existent for hybridized DNA. These studies suggest that investigation of hybridization reactions *in situ* is possible via TERS. TERS has also shown its ability to investigate double strand breaks, an important phenomenon which can lead to cell apoptosis. Unlike electron microscopy and AFM characterization of double strand breaks, TERS can provide chemical information to understanding how and why DNA breaks.

1.4. TERS Probes

The design and fabrication of TERS probes with sufficient optical quality remains a major obstacle in the implementation of TERS. The sensitivity of TERS readouts is highly dependent on the near-field enhancement provided by the nanoscale metal feature at the tip apex. To achieve large near-field enhancements, TERS probes must possess a sharp radius of curvature, on the order of a few tens of
nanometers or less. The metal tip must possess the appropriate size and shape such that it exhibits maximum field confinement of light near the incident wavelength. In addition, tips must be resilient to both mechanical damage incurred by contact with the sample surface and thermal damage incurred by laser irradiation. While combining a TERS probe with a supporting metal surface can dramatically increase the Raman enhancement through the so-called gap-mode, the variability in performance of TERS remains heavily dependent on the probe geometry. There has been much recent work to develop TERS probes. The most common probes are etched Au and Ag wires and metal-clad AFM tips. These probes are simple to fabricate, however they suffer from reproducibility issues. The nanoscale morphology of the metal at the probe apex is hard to control and small changes can affect the plasmon resonance significantly. Engineered probes can have a tunable plasmon response and give better reproducibility. These probes are often difficult to fabricate and require expensive cleanroom equipment. Other methods have been developed with a focus on batch fabrication. Despite extensive efforts, high variability between tips remains a problem. The ultimate success of TERS as a routine analytical technique depends on a better understanding of the plasmon resonances in TERS probes and on developing inexpensive and dependable fabrication methods.

1.4.1. Etched Metal Wire TERS Probes

The most commonly used TERS probes are electrochemically etched Au or Ag wires. A bulk wire is dipped into an etchant solution and surrounded by a ring
shaped counter electrode. An applied voltage dissolves the metal, leaving a sharpened metal point (Figure 1.4.). These tips can have a radius as sharp as 10 nm and lead to Raman enhancements high enough for SMTERS. These tips are most often used for STM or shear-force AFM modes. Sharpened metal wire probes were used for all of the SMTERS studies discussed previously. The nature of the electrochemical etching process results in a large variation in geometry between probes, leading to low reproducibility. The polycrystalline nature of bulk wires also contributes to morphological differences as well as additional scattering boundaries which can reduce the quality of the plasmon resonance. By using carefully controlled AC voltages pulses, increased geometric regularity of the tips has been achieved in the fabrication of etched Au wire probes. Characterization of the regularity was performed only by SEM however, and no mention of reliable TERS performance was made. It is estimated that the most current etched wire TERS probes achieve good TERS contrast for 5-10% of the fabricated probes.

Figure 1.4. Schematic and SEM image of an etched Au wire TERS probe. (A-B) An Au wire is electrochemically etched using a ring counterelectrode in an acidic solution to a sharp point. (C) an SEM image shows the resulting TERS probe with a tip having a curvature of roughly 30 nm. [Adapted with permission from Reference 86]
1.4.2. TERS Probes via Physical Vapor Deposition

TERS probes operated in AFM contact or tapping modes are often fabricated by physical vapor deposition (PVD) methods such as evaporation or sputtering. These probes are fabricated by depositing a Ag or Au layer onto a commercially available AFM tip. The plasmon resonance of these TERS probes is determined by the structure of the metal film at the apex of the AFM tip which is determined by factors such as deposition rate, angle, and temperature. As is the case with electrochemical etching, PVD methods lead to randomness in the geometry of the metal at the apex and irreproducibility in the TERS enhancement. A decisive advantage of these types of probe tips is that they can be fabricated on a wafer scale. The metal deposition process can be followed by an immediate oxide coating which protects the probes against contamination and wear, at the expense of enhancement. PVD AFM TERS probes have been used for many of the biological TERS studies discussed previously.

It was shown that Ag islands on a TERS probe, rather than a continuous metal film, improved reproducibility. Closely spaced nanoparticle aggregates are able to broaden the plasmon resonance, allowing for larger amounts of geometric variation while maintaining consistent TERS performance. A direct experimental comparison of TERS probes fabricated with a smooth Ag film, connected Ag nanoparticles, and isolated Ag nanoparticles demonstrated an increased Raman enhancement for isolated Ag nanoparticle TERS probes. The increased performance was attributed to a larger absorption cross-section of separated nanoparticles, as well as waveguiding of the plasmon towards the apex, increasing the near-field enhancement.
A polarization scanning technique has been developed to help determine the near-field polarizations of PVD coated TERS probes. This method allows insight to the performance of a given probe. By examining defocused scattering of a TERS probe in contact with a substrate, a near-field polarization image could be reconstructed. The knowledge of the near-field polarization allows tips to be specifically selected for TERS experiments where the near-field polarization is critical.

1.4.3. Engineered TERS Probes

Many engineered TERS probes have been designed in order to improve the reliability of TERS enhancements. These probes are often fabricated using combinations of methods such as electron-beam lithography, focused-ion beam milling (FIB), and PVD. Engineered TERS probe fabrication is low-throughput as it can involve many steps. Despite the low-throughput fabrication, engineered probes offer unique advantages over the probes discussed in 1.4.2. and 1.4.3.

A grating coupled optical probe tip was developed to eliminate background Raman scattering during TERS measurements (Figure 1.5.A). Using FIB, a grating was cut into an electrochemically etched Au wire roughly 10 µm from the apex. The plasmon resonance with these TERS probes is determined by the angle of illumination and grating geometry, rather than the nanoscale morphology at the apex, increasing the reproducibility. TERS is performed by focusing the laser onto the grating, rather than at the apex. The grating acts as an optical coupler, creating a propagating plasmon. This plasmon travels to the probe tip and generates a highly
With grating TERS probes, background Raman scattering is eliminated. Background Raman scattering normally originates from the laser spot focused on the analyte surrounding the TERS probe.

The campanile tip was developed to generate background free TERS with a broadband plasmon resonance (Figure 1.5.B-D). The campanile tip is fabricated by cladding Au onto specific areas of a tapered optical fiber. A small nanogap is cut using FIB, resulting in a strong gap-plasmon within the tip itself. This geometry displays a plasmon resonance where light ranging from 600-1000 nm can be used for excitation, ensuring predictable performance of these probes. Because the gap-plasmon is

Figure 1.5. Grating coupled and Campanile optical probe tips. (A) An SEM showing an electrochemically etched Au wire with an optical grating etched into the base. Laser excitation is focused at the grating which creates an SPP travelling down the surface of the tip. At the apex a highly confined near-field is created. [Adapted with permission from Reference 79]. (B-D) A schematics (B) and SEM (C) of a campanile tip, showing (D) the near-field confinement at the nanogap created at the apex. [Adapted with permission from Reference 15]
polarized in the plane of the substrate, 2D materials can be probed where in-plane near-field polarization is required. A direct comparison of these probes to etched Au wires shows their outstanding optical performance. Subsequent work has allowed external plasmonic structures to extend the working range of the campanile tip up to 100 nm.

A template stripping method for TERS probe fabrication has also been explored. Microwells in Si are chemically etched into reproducible pyramidal templates. Au is evaporated into the microwells and stripped off with a droplet of epoxy that conforms to the Au. The side of the Au in contact with the Si is smooth and provides a highly reproducible TERS probe. This method allows simultaneous deposition of Au into millions of microwells. The disadvantage to this method is the microwell shapes are defined by the crystal structure of Si, which does not allow freedom to engineer the plasmonic nanostructure.

Other types of engineered TERS probes have been developed to achieve similar goals of background free, broadband, and high Raman enhancement. Photonic crystal structures have been etched into a Si probe which couple light into plasmonic waveguides. AFM tips have been ground down to triangular geometries, which were then coated with evaporated Ag and Au films. Bowtie nanoantenna have been grown on the flat face of a FIB milled AFM tip. While each of these TERS probes offers unique advantages, they require extensive fabrication processes, and thus are not scalable.

1.4.4. Self-Assembly for TERS Probes
An increasing amount of attention is being given to TERS probes that are fabricated with self-assembly or bottom-up methods. These methods include chemically growing101, 102 and self-assembling nanoparticles directly onto a scanning probe tip.81, 103 In comparison to other TERS probe fabrication methods, bottom-up TERS probes allow the selection of plasmonic geometries and materials to be performed separately from their positioning on a tip. All of these methods aim to position noble metal colloidal nanoparticles at the apex of a scanning probe tip.

Colloidal nanoparticles are intriguing because they can be synthesized in a multitude of shapes, including spheres, cubes, polyhedra, discs, rods, tubes, and wires. Figure 1.6. shows SEM images of four shapes of chemically synthesized Ag colloidal nanoparticles. The unique and diverse set of shapes noble metal nanoparticles can form arises from their crystalline structure. Single-crystal noble-metal nanoparticles

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{Figure1.6.png}
\caption{Examples of plasmonic colloidal nanoparticles. The scanning electron microscope (SEM) images show (A) Ag nanospheres, (B) Ag nanorods, (C) triangular Ag nanoprisms, (D) Ag nanocubes.}
\end{figure}
often appear as cubic, octahedral, tetrahedral, rod-like, or polyhedral discs, while multiply-twinned nanoparticles often display five-fold symmetry and appear commonly as decahedral, icosahedral, and wires with pentagonal cross-sections. The low energy families of crystal planes define the surfaces of noble metal nanoparticles. Intersections of crystalline facets often lead to sharp corners and edges, often with curvatures of < 10 nm. In the case of some highly anisotropic nanoparticles, higher-order planes can be stabilized, resulting in extraordinarily sharp features. The penta-twinned Au nanobipyramid can have a point as sharp as 2 or 3 nm as a result of high-order planes, estimated as 10^5. Combinations of high crystallinity and sharp features lead to unique optical properties often unattainable by other TERS probe fabrication methods.

Colloidal nanoparticles can be grown or attached directly at the apex of an AFM tip. One method for attaching colloidal nanoparticles to a probe tip is functionalization of an AFM tip with a thiolated ligand, which strongly bind to Au and Ag nanoparticles. When the probe is brought into contact with a nanoparticle, the particle will bind to the tip apex. Subsequent steps can then be taken to modify the particle size or grow a shell of a different material. Nanoparticles can also be grown directly on the tip apex. When a bias is applied between a conductive AFM tip and a counter electrode, the electric field lines concentrate highly around the sharp apex (Figure 1.7.A-B). This allows isolated nanoparticles to be electrochemically grown at the tip apex through the electrochemical reduction of Au with an electrical pulse. High electric field gradients at tips have also been leveraged to dielectrophoretically
attach colloidal nanoparticles. High aspect ratio nanoparticles such as Ag nanowires will align along the electric field lines and are likely to attach with predictable orientations.

We developed a new type of TERS probe where a film of colloidal nanoparticles is used to coat an AFM tip. A close-packed film of Ag nanocubes is assembled at an air water interface and transferred to an AFM tip uniformly (Figure 1.7.C). These TERS probes can be fabricated in large batches with > 80% reproducibility. They have also shown extraordinarily high Raman enhancements as a result of interparticle plasmon coupling. Self-assembled methods offer the advantage of selecting nanoparticle shapes and sizes independently of the fabrication process.

Nanoparticle based TERS probes offer many advantages over other fabrication methods such as electrochemical etching or top-down fabrication. The homogeneity of synthesized nanoparticles increases reproducibility of the plasmonic nanostructure placed at the probe apex, increasing the reliability of TERS performance. The shape control of these nanoparticles allows tunable plasmon resonances that are only
achievable with complex methods such as FIB. The high crystallinity and smooth faces of these particles results in higher Raman enhancements than can be achieved with bulk deposited or etched TERS probes. Isolated nanoparticles can also support higher field-enhancements than probes fabricated from larger continuous metal structures.

1.5. Organization of Chapters

The remainder of the dissertation is divided into chapters dedicated to scanning probe and substrate-supported plasmonic platforms fabricated from self-assembled colloidal nanoparticles. The application of these platforms is studied with respect to enhanced-Raman spectroscopy. Chapters 2 & 3 are focused on scanning-probe plasmonic tips and TERS, while chapters 4 – 6 are devoted to substrate-supported plasmonic systems and SERS.

Chapter 2 shows the development of a new type of TERS probe, which demonstrates high performance, reproducibility, and the ability to be fabricated in batches. We have named this probe the colloidal nanoantenna. Colloidal nanoantennas are fabricated by assembling close-packed Ag nanocube (AgNC) films onto AFM tips.

Chapter 3 shows that unlike other TERS probes, the performance of colloidal nanoantennas is largely invariant to many geometric variations in the plasmonic nanostructure. The robust optical response arises from complex hybrid plasmon modes that reflect the nature of close-packed AgNCs placed near metal surfaces. The discussion of these plasmon modes is relevant to the following chapters, which focus on the gap-plasmons of AgNCs oriented parallel to a metal surface.
Chapter 4 introduces a metasurface as a new platform for SERS (mSERS). mSERS substrates are highly versatile for studying both fundamental aspects of plasmon modes as well as many types of analytes. A unique aspect of mSERS substrates is their invariability over large areas, allowing large scale chemical mapping of surfaces.

Chapter 5 is an in depth study of the polydispersity of synthesized AgNCs and how it affects the Raman EF of real mSERS substrates. By examining features such as particle size and corner sharpness, we gain a better understanding of which factors are important for a strong optical response.

Chapter 6 observes quantum effects of mSERS substrates at unprecedented gap distances larger than 2 nanometers. We also show that this tunneling gap can be varied widely by modifying the chemistry within the plasmonic cavity. These quantum effects at large gap-distances have important consequences for both near- and far-field spectroscopy measurements, relating to both the colloidal nanoantenna and mSERS platforms.
1.6. References

Chapter 2

Fabrication and Characterization of Highly Reproducible Colloidal Nanoantennas
2.1. Introduction

Tip-enhanced Raman spectroscopy (TERS) is a powerful optical technique for chemical mapping that has the potential to achieve quantitative spectroscopic analysis of arbitrary surfaces with nanoscale resolution.1, 2 TERS combines ultrasensitive vibrational spectroscopy with scanning probe methods by using a nanoscale metal tip to raster a surface. Upon irradiation, the metal tip behaves like an optical antenna to facilitate near-field amplification of both the incident and Raman-scattered light. By scanning this tip laterally across a surface, TERS enables the point-by-point acquisition of chemical information-rich Raman spectra with spatial resolutions from a few tens of nanometers down to < 1 nm.3-6 Unlike other optical methods that yield super-resolution images or electron and X-ray mapping techniques, TERS is inherently label-free, nondestructive, and can be performed under ambient conditions. As such, TERS is well-suited for probing highly sensitive samples, such as single molecules,3, 7, 8 nanostructures,5, 9, 10 and biological surfaces.7 However, the resolution and sensitivity of TERS readouts is highly dependent on the near-field enhancements provided by the nanoscale metal feature at the tip apex.11-13 Understanding and engineering probe structures with sufficient optical quality and regularity remains a major obstacle in the implementation of TERS.

To achieve large near-field enhancements, TERS probes must possess a sharp radius of curvature, on the order of a few tens of nanometers or less.11 The metal tip must possess the appropriate size and shape such that it exhibits maximum field confinement of light near the incident wavelength. In addition, tips must be resilient to
both mechanical damage incurred by contact with the sample surface and thermal
damage incurred by laser irradiation.14, 15 There are currently two approaches to TERS
probe fabrication. The first approach uses methods such as electrochemical etching of
an all-metal wire or physical vapor deposition (PVD) of metals such as silver or gold
onto an atomic force microscopy (AFM) probe.16, 17 These methods tend to produce
tips with arbitrary nanoscopic features, leading to the difficulties in characterizing or
reproducing optical measurements for which TERS is notorious. While recent studies
have shown improvements in etching Au tips with consistent shapes at the micro- and
nanoscale,18, 19 they have not led to consistent optical field enhancements. The second
approach uses top-down fabrication techniques such as focused ion beam milling20, 21
and induced deposition mask-lithography22 to generate engineered nanoantenna with
specific plasmonic properties.23 However, top-down methods encounter difficulties in
producing reliable features < 10 nm due to the surface roughness generated by
templated metal deposition.

Here we demonstrate TERS probes that are fabricated by assembling shaped,
colloidal metal nanoparticles onto an AFM probe to generate a nanoantenna structure.
When brought into contact with a metal substrate, the nanoparticles form a high
quality plasmonic cavity that supports a coupled resonance mode. Using colloidal Ag
nanocubes (AgNC), we are able to engineer these cavities to possess strong resonances
in the visible to near-infrared range. We have found that these cavities produce Raman
enhancements of \(10^9\), far surpassing the sensitivity of other TERS probes. AgNCs
synthesized using solution-based methods24 are ideal optical probes because they
exhibit localized surface plasmon resonances in the visible spectrum, and because these optical resonances are highly tunable with AgNC size. Additionally, unlike bulk metal wires or evaporated metal films, colloidal AgNCs are single-crystalline with nearly atomically smooth faces, which results in better near-field enhancements due to decreased boundary scattering and phonon-electron relaxation rates.25, 26 Colloidal nanoparticles are also synthesized in milliliter to liter volumes, a process that can be readily scaled for manufacturing.

2.2. Results and Discussion

2.2.1. Nanoantenna Characterization and Validation

Figure 2.1. Fabrication process of colloidal nanoantenna. (A) Commercial AFM probe is coated with a layer of SiO\textsubscript{2} via PECVD to increase the radius. It is then coated with a continuous film of AgNCs. (B) Langmuir-Blodgett film of AgNCs is compressed to a monolayer and then transferred via mechanical dip coating to an AFM tip. (C) SEM image at high magnification (scale bar 200 nm) of a colloidal nanoantenna showing a uniform layer of AgNCs coating the surface. (D) Photograph showing multiple AFM tips simultaneously coated with a monolayer of AgNCs.
We fabricate colloidal nanoantennas by depositing a close-packed monolayer of colloidal AgNCs onto commercially available Si AFM cantilevers. Figure 2.1.A,C shows a schematic and a scanning electron microscope (SEM) image of the colloidal nanoantenna. Using the Langmuir-Blodgett method (LB), AgNCs are deposited at an air-water interface and then isothermally compressed to form a highly ordered monolayer (Figure 2.1.B,D). A mechanical dipper then transfers the film to an AFM probe. SEM imaging confirms that AgNCs are deposited uniformly on the probe and that they remain in a close-packed configuration during film transfer.

Figure 2.2. shows that the radius of curvature (ROC) of the AFM tip plays an important role in the quality of the AgNC assembly on our colloidal nanoantenna. We found that the ROC must be on the order of AgNC size in order to ensure that multiple

Figure 2.2. Modifying the radius of curvature of an AFM probe before AgNC deposition. (A) SEM image of an unmodified AFM probe after a monolayer of AgNCs was deposited. Excessively sharp probes cannot support an AgNC monolayer. (B) SEM image showing the comparison between an unmodified (false color overlay) AFM probe and an AFM probe with a PECVD SiO₂ layer resulting in a 125 nm curvature. (C-E) SEM images of AgNC monolayers deposited on PECVD SiO₂ modified AFM probes with (C) 65 nm ROC, (D) 90 nm ROC, and (E) 125 nm ROC. Scale bars in A,C-E are 500 nm, B is 200 nm.
AgNCs are seated at the AFM tip apex (for mechanical stability), but that only one protrudes further than the others (for maximum field confinement). For extremely sharp AFM tips with a radius of curvature <10 nm, AgNCs do not deposit at the apex because the sharp tips destructively pierce the AgNC monolayer during the dip-coating process (Figure 2.2.A). Therefore, we coat Si probes with a thin layer of SiO₂ by plasma-enhanced chemical vapor deposition (PECVD) to produce a tip with a controlled radius of curvature. Parts C-E of Figure 2.2. show examples of colloidal nanoantenna fabricated with 65, 90, and 125 nm ROC resulting from differing oxide thicknesses.

A molecular self-assembled monolayer (SAM) of 1-hexadecanethiol (HDT) is reacted with the AgNC surfaces to displace any polyvinylpyrrolidone (PVP) on the Ag surface that remains from the nanoparticle synthesis. The SAM also protects the AgNCs against oxidation and other contamination.²⁷

To measure the field enhancement of these colloidal nanoantennas, we collected Raman scattering spectra for SAMs of thiophenol (PhSH) molecules on a supported Ag thin-film. Figure 2.3.A shows a schematic of the TERS experiment. Nanoantennas were mounted into an AFM and the apex was illuminated through an optically coupled Raman spectrometer. The distance between the nanoantenna and the Ag thin-film is controlled by a piezoelectric stage; when the nanoantenna is brought in contact with the Ag film, the supported SAM serves as a dielectric gap between the AgNC located at the nanoantenna apex and the underlying metal film. This nanoscale gap supports a highly confined optical resonance that leads to a large enhancement of
Raman scattering intensities. A typical Raman spectrum obtained by measuring scattering off of our colloidal nanoantenna is shown in Figure 2.3.B (top). When the nanoantenna is engaged to the Ag surface, we observe Raman scattering peak intensities (I_{eng}) that correspond to the vibrational modes for Si, HDT, and PhSH (See Table 2.1.). When the nanoantenna is disengaged from the surface by approximately 100 nm, we observe Raman scattering peak intensities (I_{dis}) corresponding only to Si and HDT (Figure 2.3.B, middle). Figure 2.3.B (bottom) shows the Raman spectrum obtained by subtracting $I_{\text{eng}} - I_{\text{dis}}$, which shows Raman peaks for only PhSH. Most notable are the 999 cm$^{-1}$ out-of-plane ring stretch, $\nu(C-C)_{\text{Ring}}$, and the 1574 cm$^{-1}$
To examine the near-field nature of this Raman enhancement, we plotted the intensities (I_{eng}) of these peaks as the analyte substrate was moved toward the nanoantenna stepwise in 2 nm increments. The AFM feedback voltage — which depends on the deflection of the cantilever — was used to verify the location of the nanoantenna relative to the Ag film (Figure 2.4.A). A slope of zero indicates that the nanoantenna is disengaged (i.e., substrate movement yields no cantilever deflection). As the substrate approaches the nanoantenna, the snap-in force pulls the nanoantenna into contact with the substrate28, and shows as a discontinuity in the AFM feedback voltage. Further movement of the substrate will deflect the cantilever and change the feedback voltage linearly with distance. We define effective distance (d_{eff}) as the distance the Ag film has traveled in either direction from the measured snap-in position. A positive d_{eff} is the distance separating the nanoantenna and the Ag film,
whereas a negative d_{eff} is generated by movement of the Ag film that applies an additional force to the cantilever.

From the plots in Figure 2.4.B-E, we define three regimes of I_{eng}: substrate approach, nanoantenna engagement, and deflection of the cantilever by the substrate. The intensities of the Si and HDT peaks remain constant at 538 ± 17 and 180 ± 20 counts/mW·s, respectively, since the laser remains focused on the nanoantenna apex. However, peak intensities associated with PhSH change drastically. For $d_{\text{eff}} = 2–20$ nm, the peak intensities for $\nu(C-C)_{S}$ and $\nu(C-C)_{\text{ring}}$ remain constant at 6 ± 7 and 7 ± 12 counts/mW·s, respectively. These intensities increase just prior to the snap-in of the nanoantenna and engagement with the substrate at $d_{\text{eff}} = 2$ nm, which is consistent with other reported TERS simulations29,30 and experiments.31,32 From $d_{\text{eff}} = -4–26$ nm, the peak intensities of $\nu(C-C)_{S}$ and $\nu(C-C)_{\text{ring}}$ have values of 423 ± 108 and 358 ± 50 counts/mW·s, respectively.

As the nanoantenna is deflected by the substrate beyond $d_{\text{eff}} = -15$ nm, the average Raman intensity increases for both vibrational modes of PhSH. Because this increase has been observed for multiple nanoantenna, we believe it is not an artifact of our probe fabrication (Figure 2.5.). This intensity increase may result from a number of effects related to an increased deflection of the cantilever. These effects may include: (i) conformational changes of the PhSH molecules within the SAM, (ii) changes in the optical near-field distribution due to bending of the cantilever, or (iii) changes in the optical near-field due to nanoscopic deformation or movement of the AgNC located at the apex with increased pressure from the substrate. We can rule out
the first effect since the pressure applied at the AgNC-substrate interface is likely too low to induce any significant conformational change of the PhSH molecules. We use the equations for the deflection of a cantilever with one fixed end and one free end to calculate applied force:

\[\delta = \frac{FL^3}{3EI} \]

\[(2.1.)\]
\[\theta = \frac{FL^2}{2EI} \]

where \(\delta \) is the deflection of the cantilever at the free end, \(\theta \) is the bending angle of the cantilever at the free end, \(E \) is Young’s modulus, \(I \) is the moment of inertia, and \(F \) is the applied force. When \(\delta \) is -60 nm (\(d_{\text{eff}} \), a distance that is generously larger than the \(d_{\text{eff}} \) we employed for most of our experiments), we estimate that the maximum pressure applied at the nanoantenna apex would be 1.0 GPa (5 nm radius of applied pressure). Previous studies have reported that the wavenumber for the vibrational modes of PhSH will blue-shift linearly with pressure by a few tens of wavenumbers.\(^{33}\)

Figure 2.5. Additional tips showing the TERS near-field effect. Tip 2) engaged over 2 nm, tested over 60 nm engaged, 785 nm 150 uW 5s integration times. Tip 3) engaged over 8 nm, 785 nm 150 uW 5s integration times. Both show a PhSH intensity increase while HDT intensity is constant, bottom figures show peak positions of 999 cm\(^{-1}\) and 1574 cm\(^{-1}\), and no change in their positions.
Figure 2.4.E and 2.5. show no shift in wavenumber for the 999 cm$^{-1}$ PhSH vibrational mode. Similarly, no shift was observed for any of the PhSH vibrational modes. To rule out contributions from cantilever bending, we estimate using equation 2.2. that the nanoantenna apex rotates by approximately 0.02° during deflection. Simulations indicate that this rotation is unlikely to result in any measurable effect on Raman enhancement (Figure 2.6.). The third effect is the most likely cause of the observed change in I_{eng}. Applying strain has been observed to alter the near-field distributions associated with plasmonic Ag nanostructures. Applied pressure may also cause minor slipping of the metal nanoparticles on the oxide-coated nanoantenna.

2.2.2. Experimental Determination of Enhancement Factor

Using our colloidal nanoantenna, we achieved Raman enhancement factors (EFs) ranging from 10^5 – 10^9 depending on the excitation wavelength. Figure 2.7. shows tip-engaged and tip-disengaged spectra taken with a single nanoantenna probe.
using three different laser excitation wavelengths: 785 nm, 633 nm, and 514 nm. Figure 2.8.A shows the subtracted TERS spectra. We obtained the highest I_{eng} with an $\text{EF} = 5.5 \pm 2.0 \times 10^8$ using the 785 nm laser line. The other two laser lines gave $\text{EF} = 1.3 \pm 0.4 \times 10^7$ for 633 nm and $\text{EF} = 9.7 \times 10^5$ for 514 nm (See section 2.4. for detailed EF calculations). Similar experiments were repeated for 16 different nanoantennas probes under 633 nm excitation and 20 different nanoantennas probes under 785 nm excitation. Raman scattering obtained from 514 nm excitation was very weak and was only detected for the single nanoantenna discussed in Figure 2.8A. Our results demonstrate that the average EF for our nanoantennas is in the range of 10^8–10^9 using the 785 nm laser line and in the range of 10^6–10^7 for the 633 nm laser line (raw data is listed in Appendix A). In a separate experiment, we fabricated 10 nanoantenna probes in parallel and evaluated
the EF of each nanoantenna under 785 nm excitation. Eight out of the 10 nanoantennas resulted in an EF between 1.0×10^8 – 2.8×10^9, while two nanoantennas were only weakly Raman active or completely inactive (Appendix A, nanoantennas 20-27). In addition, we compared batch reproducibility using a single AgNC sample. We fabricated 36 nanoantennas in five separate batches. Of these nanoantenna, 28 (78%) were TERS active and 23 exhibited suitable EFs to acquire chemical maps.

2.2.3. Electrodynamic Modeling of Nanoantenna
We generated electrodynamic models of the colloidal nanoantenna showing that these large EFs result from a single, intense electromagnetic hotspot supported by a single AgNC located at the nanoantenna apex. SEM images (Figure 2.8.B,C) of the nanoantenna were used to determine the geometry and orientation of the AgNC that is most likely in contact with the substrate upon nanoantenna engagement (highlighted in false color). We generated a finite-difference time-domain (FDTD) model of this AgNC (See section 2.4, Figure 2.14.). Large TERS signals are attributed to the excitation of a resonant gap mode generated by plasmon coupling between the AgNC and the Ag substrate. When the Ag substrate is substituted with a dielectric such as SiO₂, this gap mode is no longer supported (Figure 2.9.A). Figure 2.8.D-F shows the calculated electric field distributions for a cross-section taken 1 nm above the Ag surface. Our model predicts the most intense electric field localization for 785 nm excitation, which shows a near-field strength of $E/E_o = 135$. This is also consistent with our experimental results. A recent study found that clusters of unconnected

![Figure 2.9](image)

Figure 2.9. FDTD EF control simulations of a single 115 nm cube oriented as in Figure 2.8. (A) EF simulation showing the dependence of substrate material: Ag (black line) and SiO₂ (red line). (B) EF simulation showing the dependence on the presence of the SiO₂ tip. (C) EF simulation showing the dependence on AgNC corner radius.
nanoparticles on an AFM tip support a unique waveguiding mode that increases the maximum TERS intensity and redshifts the optical resonance of the tip.35 This is discussed in detail in Chapter 3. Additional models show that the inclusion of the Si/SiO\textsubscript{2} AFM tip or that varying the sharpness of AgNC corners has minimal effect on the predicted near-field intensities (Figure 2.9.B,C).

We calculated the expected Raman EF for our colloidal nanoantenna over a wavelength range of 400-1000 nm, which is expected to reach a maximum at 733 nm.
To determine the EF at a given wavelength, we first calculated the EF for each pixel in the near-field distribution map using the equation:

\[EF = \left(\frac{E_{\text{Incident}}}{E_0} \right)^2 \left(\frac{E_{\text{Raman Shift}}}{E_0} \right)^2 \]

(2.3)

The EF was calculated for the 999 cm\(^{-1}\) vibrational mode of PhSH. Figure 2.10.A,B shows the near-field distribution maps for the incident wavelength and the Raman-shifted wavelength for the 999 cm\(^{-1}\) mode; similar near-field maps were obtained over the entire wavelength range of interest. Figure 2.10.C shows the spatial dependence of the calculated EF for 785 nm excitation, as determined from the E/E\(_0\) values in Figure 2.10.A,B. For visual clarity, the calculated EF is only shown within the hotspot area, which we defined as the region from which 90% of the Raman signal originates and is considered a conservative estimate of the EF. For example, we determined the hotspot area to be 598 nm\(^2\) for 514 nm excitation, 249 nm\(^2\) for 633 nm excitation, and 302 nm\(^2\) for 785 nm excitation. We then determined the average EF — the metric most representative of the experimental data — by dividing the sum of all EF values within the hotspot by the total hotspot area. The average EF value was calculated at each wavelength over the visible spectrum. The results are plotted in Figure 2.10D (black line) against our experimentally calculated EFs (black circles). The discrepancy between our experimental and theoretical EF values is attributed to a deficiency in our FDTD models, which only accounts for electromagnetic enhancement of Raman scattering. It is well-known that Raman scattering intensities also experience a chemical enhancement, which can arise from molecular resonances or an increase in
polarizability due to surface adsorption. For PhSH monolayers that are chemisorbed to Ag surfaces, a chemical EF ≈ 11 is expected. Taking into account both the chemical and electromagnetic EFs increases the overall EF and reduces the discrepancy between our measured and predicted values (Figure 2.10.D, dotted line). Another possibility is that a waveguiding mode could contribute to an unexpectedly high EF. Alternatively, it is possible that other inaccuracies in our FDTD model—with the tip-to-substrate gap distance, measured AgNC size, or the bulk Ag dielectric function—may contribute to this discrepancy.

2.2.4. Performance and Comparison of Colloidal Nanoantenna to Other Probes

Figure 2.11. shows the comparison of the EFs obtained for our colloidal nanoantenna to the EFs obtained from commercially available electrochemically etched Au wires operated in tuning fork feedback mode. The logarithmic values of the EFs are displayed for our colloidal nanoantenna at both 633 nm and 785 nm excitation and for the purchased etched Au wire probes at 633 nm excitation. All measurements were made on identically fabricated PhSH monolayers on Ag substrates. We measured the TERS performance of ten etched Au wire probes and found that only five gave measurable TERS signals. We calculated the average EF of these five probes to be $6.3 \times 10^5 \pm 7.4 \times 10^5$. The large error in EF likely stems from nanoscale morphological differences at the wire apices, a common problem with etched wire probes. We then measured the TERS performance of 16 colloidal nanoantenna and calculated their EFs to be $1.4 \pm 1.3 \times 10^7$. Not only do our colloidal nanoantenna achieve EFs that are over
20 times higher than the commercial probes for 633 nm excitation and 1-2 orders of magnitude better for 785 nm excitation, but they also exhibit much lower deviations in EF with 78% of the colloidal nanoantenna resulting in measurable TERS enhancements. We attribute the consistency in EF amongst our colloidal nanoantenna probes to the broadband response of the gap plasmon mode, which is tolerant of variance in AgNC orientation and AgNC shape. We explore this in detail in Chapter 3.

TERS performance is also commonly gauged by measuring the signal-to-noise ratio (SNR). In 2014, a detailed reproducibility study was carried out across 13 different TERS instruments around the world. They investigated the ability of different groups with different instrumentation and probes to identify a common analyte consisting of a PhSH SAM supported on an Au substrate. To compare TERS performance across all of the groups who were able to collect TERS data (only 7 out
of 13 groups), the authors devised a data normalization scheme that accounted for laser wavelength, power, integration time, number of acquisitions, numerical aperture, and illumination angle. This metric was applied to three probes per group and found that the average normalized SNR for the 999 cm⁻¹ peak ranged from 0.5 – 160. One group had a single Ag probe give an outlier response with a normalized SNR of 1052.

To compare our results with the results obtained by Blum et al., we tested 16 nanoantenna at 633 nm excitation and attained an average normalized SNR = 360 ± 256. We additionally tested 15 nanoantenna at 785 nm excitation and obtained a normalized SNR = 598 ± 381, with a single outlier nanoantenna possessing a SNR = 7043.

2.2.5. Colloidal Nanoantenna Demonstrate Sub-Diffraction Chemical Imaging

To further demonstrate the efficacy of assembled AgNC probes, we used our colloidal nanoantenna to map a chemical surface by TERS. We patterned an Ag substrate with two different molecular monolayers — 1,1’:4’,1”- Terphenyl-4-thiol (TPT), and Thiophenol (PhSH)— using soft contact lithography (Figure 2.12.A). SEM images verify that the stripe pattern was successfully transferred to the Ag surface (Figure 2.13.A). Confocal Raman maps taken of the patterned substrate provide no evidence of the chemical patterns and exhibit Raman scattering intensities that are too low to distinguish either molecular component of the heterogeneous pattern (Figure 2.13.B). When we collect TERS spectra perpendicularly to the patterned substrate however, a clear variation in chemical spectra is present (Figure
2.12.B). The blue and red spectral peaks represent TPT and PhSH respectively. Orange and green peaks are attributed to the AgNC SAM and the Si probe respectively. Spectra were taken with a linear step of 39 nm and well below the Abbe diffraction limit of 280 nm (for a 785 nm light source). At some stripe edges, two mutually exclusive spectra are observed, indicating that the resolution of the TERS probe is at least as good as the step size. Other stripe edges display a mix of the

Figure 2.12. TERS map of patterned heterogeneous SAM. (A) Cartoon of a patterned Ag thin-film with TPT (stamped molecule, blue), and PhSH (backfilled molecule, red), the pitch is 2 µm, and the width of individual lines varies between substrates. (B) Hyperspectral linescan across the stripped pattern. Blue peaks represent TPT, while red peaks represent PhSH. Orange and green peaks represent HDT and Si, respectively. The stripe pattern can clearly be identified with a 39 nm step size. (C) TERS map and representative spectra (D) of the stamped molecule on the Ag substrate. The map is 5 x 2.5 µm, and has a pixel size of 78 nm x 78 nm. (E) TERS map and representative spectra (F) of the backfilled molecule (PhSH). Spectra for B were collected with an excitation wavelength of 785 nm, at a power of 1.5 mW, and a 0.3 s integration time, while C-F were collected with a 1 s integration time.
spectra suggesting a diffusion region where the two components have mixed. While we expect the nanoantenna to produce spatial resolution significantly less than shown here, patterned molecular monolayers are not likely able to identify spatial resolution below the 39 nm step size presented here as it would become convoluted with the diffusion region.

Figure 2.12.C,E show the TERS map collected using a colloidal nanoantenna scanned over the patterned Ag substrate. Each pixel is 78 x 78 nm. The color scale bars encompass > 98% of the intensity ranges that were collected in our TERS experiments. Figure 2.12B shows a TERS map generated by plotting the intensity of the ring vibrational mode at 1610 cm$^{-1}$, which is unique to TPT. The maps show an average stripe width of 837 ± 24 nm, which is consistent within the range of stamped substrates. Figure 2.12.D shows a TERS map generated by plotting the intensity of the

![Figure 2.13.](image)

Figure 2.13. Characterization of the patterned substrate by (A) SEM (scale bar = 2 µm), and (B) confocal Raman measurements plotting peak intensities for (top) TPT, and (bottom) PhSH. Images are 8 x 21 µm. The nonzero intensities result from background fluorescence of the Ag substrate due to long exposure times.
ν(C-C)$_3$ mode at 1023 cm$^{-1}$, which is unique to PhSH. While the stripe pattern in both maps are clearly visible, the TERS intensity varies significantly from pixel to pixel. In some cases, the TERS intensities are low enough that they appear as dark pixels in the map. We believe this fluctuation in TERS intensity is due to surface roughness of the Ag substrate that results from the deposition process. Using AFM, we measured the Ag surface roughness parameter to be $R_{RMS} = 2.7$ nm with $R_{Max-Min} = 17.7$ nm. It has previously been reported that surface roughness can contribute significantly to TERS enhancement variation.39 This intensity fluctuation can be alleviated by using ultra-flat metal surfaces to increase the signal uniformity, as is seen in Figure 2.12.B when a template-stipped Ag thin-film is substituted for the rougher, sputtered Ag.

2.3. Experimental and Computational Methods

AgNC Synthesis: AgNCs mean edge length (70-100 nm) are prepared via a polyol synthesis described previously.24 Briefly, AgNO$_3$ is heated and reduced in 1-5 pentanediol. CuCl$_2$ and Polyvinylpyrrolidone (PVP, MW = 55,000) are added to control nucleation and growth process, and to surface passivate the AgNCs after growth. The AgNCs are then vacuum-filtered (Millipore Durapore membranes with 650 nm, 450 nm, then 220 nm pore sizes) to reduce the size dispersity of the particles by selectively removing larger, non-cubic particles. AgNCs are repeatedly centrifuged in ethanol to remove excess polymer and finally suspended in CHCl$_3$.

Colloidal Nanoantenna Fabrication: Colloidal nanoantenna are fabricated by coating Ag NCs on the surface of commercially available AFM tips: Olympus AC240TS-R3 or NT-MDT VIT_P_C-A. Ag NCs are deposited onto the AFM tip via
Langmuir-Blodgett trough (KSV Nima KN2001), as described previously. The film is compressed at a rate of 5.8 cm²/min to a surface pressure of Π = 12-18 mN/m. The AFM tips are drawn vertically through the monolayer film via mechanical dipper at a rate of 1.0 mm/min and allowed to dry in air. PVP is displaced from the Ag NC surface by a self-assembled monolayer (SAM) of alkylthiols. The probes are submerged overnight in a 1 mM ethanolic solution of 1-hexadecanethiol (HDT, Sigma-Aldrich). The tips are then thoroughly rinsed in ethanol and dried under a stream of N₂. They are stored under vacuum until use, within 24 hours.

Au Etched Wire Probes were obtained commercially from Bruker Nano Inc.

Substrate Preparation: Thiophenol (PhSH) SAM on Ag thin-film: Si (100) was sonicated in ethanol and dried under a stream of N₂. It was then cleaned for 60 s in a 100 W RF Ar plasma (Denton Discovery). A 50 nm Ag film was sputtered (50 W, 2 mtorr Ar). Ag substrates were then immersed in 100 µM ethanolic solution of PhSH (Sigma Aldrich) overnight, then rinsed with ethanol and dried under a stream of N₂ to remove any excess thiol ligand. PhSH on Ag thin-film substrates are stored under vacuum until use, within 24 hours.

Patterned TPT with backfilled PhSH on Ag thin-film: An SU-8 master mold was fabricated using standard photolithography. The mask consists of an array of lines with a pitch of 2 µm, with individual line thicknesses varying depending on applied pressure and wear on the master. After silanization of the master, PDMS was poured over the master, and cured overnight at 60° C. The PDMS stamp was removed from the master and inked with a 10 mM ethanolic solution of TPT for 60 s and dried with
N₂. Full contact between the stamp and Ag was ensured (In the case of Figure 2.13.B, an ultra-flat Template-stripped (TS) Ag thin-film was used, 100 nm thickness), but no further pressure was applied. The stamp remained in contact for 10 – 15 s. The remaining exposed Ag was backfilled by covering the surface with a 50 µL droplet of 10 mM ethanolic solution of PhSH for 10 s. The patterned Ag substrate was then rinsed with copious amounts of ethanol and dried with N₂.

TERS Equipment and experiments: A commercial Raman/AFM (Renishaw inVia/Bruker Innova) system was used for all experiments in this study. The TERS objective is set at 60 degrees to normal (Figure 2.3.) with an ELWD 50x objective, NA = 0.42. The objective was controlled with three orthogonal, independently controlled stepper motors with 0.1 µm step size. Measurements were taken at powers between 80-1500 µW. 785 nm illumination was provided by a Renishaw 300 mW stripe diode laser. 633 nm illumination was provided by a Renishaw 17mW HeNe laser. 514 nm illumination was provided by a Modu-Laser 50 mW Ar+ Ion laser. A modified Bruker IRIS head with a 980 nm diode feedback laser was used for 785 nm measurements to prevent interference with the OEM 830 nm broadband feedback diode. All TERS measurements were taken in contact mode. To prevent contamination and/or degradation, colloidal TERS nanoantennas are imaged under a UHR SEM only after all TERS data is collected.
FDTD Simulations: Electromagnetic (EM) modeling was performed with Lumerical FDTD Solutions to determine computational EF. AgNCs (Palik41 dielectric data) were modeled in 3 dimensions with a flat silver film as a substrate. A 3 nm spacer was added with index of refraction (n) = 1.4 to reflect the organic SAM spacers. Incident light was 72° to normal with s-polarized light. A 1 nm global mesh was used with a 0.5 nm local mesh at the junction added to improve accuracy. Control simulations were carried out with a 1 nm global mesh only. Figure 2.15. shows the difference between the simulations, we observe a uniform increase in EF without affecting the qualitative nature of the plasmonic response. The model was solved from 300-1500 nm. The electric field enhancements were calculated in the plane of the Ag film, offset 1 nm vertically.

Enhancement Factor Calculations: We determined experimental EFs by comparing the TERS spectral intensity of PhSH (I\textsubscript{TERS}) to the bulk Raman spectral intensity of neat PhSH (I\textsubscript{Raman}) and dividing by the number of molecules in the hot
According to the equation:

\[EF = \left(\frac{I_{TERS}}{I_{Raman}} \right) \left(\frac{N_{Raman}}{N_{TERS}} \right) \] \hspace{1cm} (2.4)

The laser spot size was calculated using the scanning knife-edge method. A cleaved Si wafer edge was scanned over the laser spot in both X and Y directions and the 520 cm\(^{-1}\) peak intensity was recorded over the length of the scan. The plots were fitted to error functions and the Gaussian beam waists derived. Focal Depth was calculated by translating the Si along the z-axis, with the focal plane in the center. This was fitted to a Gaussian and the focal depth was taken as the integral (-inf, inf) of the fit. \(N_{Raman}\) was calculated using the density and molecular weight of bulk PhSH. \(N_{TERS}\) was calculated from the hotspot area defined by simulation, multiplied by the literature packing value for PhSH SAMs of 6.8 molecules/ nm\(^2\). \(I_{Raman}\) and \(I_{TERS}\) were taken with the same experimental configuration and power setting, and then normalized for
integration time. The enhancement factor was calculated using the 999 cm\(^{-1}\) peak because it displays low orientational dependence on intensity,\(^ {43}\) and is therefore less affected by molecular reordering on a metal surface. In addition it displays the highest bulk Raman signal (by a factor of > 5) and so gives us the most conservative EF calculation.

Experimental error analysis:

Fig 2.2. - Error is calculated as the standard deviation of peak value within each regime described, as determined by the feedback voltage.

Fig 2.3. - EFs were calculated from \(\geq 3\) spectra taken at random locations on a PhSH on Ag thin-film (powers and times for each tip are listed in Table S3). Error in the TERS performance, was calculated only from the deviation between the acquired spectra, and ignores error within the normal Raman spectra, which is < 5% and does not contribute to our understanding of tip intensity deviation.

Signal-To-Noise (SNR): Noise was taken as the average value of a blank spectral region, usually 50 cm\(^{-1}\) wide, with a spectral resolution of \(\sim 1\) cm\(^{-1}\), equaling about 50 data points. SNR was calculated by dividing the Peak height of the designated peak by the Noise level for that spectrum.

2.4. Conclusions

In conclusion, we have demonstrated that colloidal nanoantennas serve as high-quality TERS probes that produce significantly large, reproducible, and predictable Raman EFs. While nanoparticle-based probes have been explored in previous studies on either TERS or near-field scanning optical microscopy, the ability
to fabricate nanoantennas via the bottom-up assembly of metal nanocrystals is enabling. We expect that the combination of ease of fabrication and unprecedented reliability in batch-to-batch TERS readouts will make colloidal nanoantenna ideal for chemical mapping with nanoscale spatial resolution.

Chapter 2 is a reformatted reprint in full, of the material from: Dill, T. J., Rozin, M. J.; Palani, S.; Tao, A. R., Colloidal Nanoantennas for Hyperspectral Chemical Mapping.” ACS Nano 2016, 10 (8), 7523-7531. The dissertation author was the principal researcher and author of this paper.
2.5. References

34. Qian, X.; Park, H. S., Strain effects on the SERS enhancements for spherical silver nanoparticles. *Nanotechnology* 2010, 21 (36), 365704.

Chapter 3

The Broadband Optical Response of Colloidal Nanoantenna Results from Interparticle Coupling
3.1. Introduction

Scanning probes that facilitate local optical measurements have enabled a variety of nanospectroscopy techniques, such as near-field scanning optical microscopy,1-3 tip-enhanced Raman spectroscopy (TERS),4-9 Tip-enhanced photoluminescence,10, 11 and nano infra-red spectroscopy.12-15 These techniques are capable of mapping surfaces and structures with nanometer resolution, making them particularly suitable for characterizing nanomaterials.6, 16-19 TERS, in particular, is capable of providing rich chemical information through the collection of Raman scattering signals from highly confined nanoscale volumes. While TERS has the potential to become an invaluable analytical tool for probing both solid-state10, 20-22 and biological surfaces,23-26 TERS probe fabrication remains a large hurdle in using TERS for routine surface analysis and mapping. The optical responses of TERS scanning probes are highly dependent on probe tip geometry, material, and surrounding environment.27-34 High performance probes can be attained by designing tips to support optical resonances (namely surface plasmon resonances) that are matched to the incident illumination wavelength and/or molecular resonances to enhance Raman signals.17, 35, 36 A recent and thorough review by Fujita and co-authors describes various kinds of TERS probes that have been fabricated and demonstrated.30 Probes fabricated by electrochemical etching of all-metal wires or fabricated by physical vapor deposition (PVD) of metals exhibit poor reproducibility of Raman enhancement. Engineered probes using e-beam lithography, focused-ion beam milling, template-stripping, and the attachment of colloidal metal nanostructures to sharp tips
have exhibited improvements both in TERS performance and enhancement reproducibility. Each of these probe types shows a different characteristic plasmonic response, (e.g. localized vs. propagating plasmons). It is clear that in order to engineer scanning probes that give rise to robust and consistent Raman scattering signals, a detailed understanding and thorough characterization of the plasmonic properties of the probe structure is critical.

Previous work has shown that TERS probes supporting a broadband optical resonance result in Raman signals that are less sensitive to minor defects in probe tip morphology. One strategy to achieve such an optical response is by using closely-spaced metal nanoparticles to uniformly coat a scanning probe tip. Taguchi et al. recently demonstrated that physically separated Ag nanoparticles on an atomic force microscopy (AFM) tip support a broader plasmon resonance than does a single Ag nanoparticle on an AFM tip, with a TERS intensity maximized for a small number of nanoparticles located at the probe tip. Lassiter et al. showed that cube-shaped nanoparticles deposited on a metal backplane result in a cavity plasmon whose fundamental resonance mode is in the visible wavelength range, and Rozin et al. demonstrated that close-packed nanocubes display a similar behavior with the fundamental mode dramatically redshifted into the near-infrared due to interparticle coupling. Inspired by these works, we recently employed a nanocube system for demonstrating TERS probes fabricated by self-assembly, where colloidal nanoantenna are generated by transferring a continuous film of colloidal Ag nanocubes (AgNC) onto a blunt AFM tip. We observed that nearly 100% of colloidal nanoantenna with
AgNCs located at the probe tip apex were TERS active. While this suggests great potential for high-performance probes made by scalable fabrication, we were unable to identify the exact plasmon mode (e.g. localized vs. propagating plasmons) responsible for improved TERS performance. We hypothesized that the consistently large TERS signals observed in our experiments stemmed from a broadband localized surface plasmon resonance (LSPR), but were unable to measure this optical mode directly.

A combination of electrodynamic modeling and experimental efforts are needed to answer these questions regarding our colloidal TERS probes and their performance. For example, it is unclear whether our colloidal AgNC nanoantenna exhibit plasmonic behavior that is dominated by the effects of a continuous nanoparticle film, or of a single AgNC at the apex. Closely-spaced nanoparticle films have demonstrated long-range plasmon coupling in which energy can be transferred distances in excess of a micrometer, serving as an effective plasmon waveguide, and can be used to further increase near-field intensity in a local nanoscale region. In a similar manner, close-packed AgNCs may be able to transfer energy from illuminated AgNCs located along the length of the AFM probe towards the tip apex. In addition, systematically varying probe tip geometries should be able to tease out which parameters are critical to TERS performance and elucidate plasmonic probe behavior. Examples include AgNC size, which is expected to have a greater effect on TERS probes in which single nanoparticle behavior is predominantly responsible for the enhanced field localization, and probe tip curvature (i.e. the radius of curvature (ROC))
of the underlying AFM tip), which is expected to significantly alter coupling between AgNCs.

In this work, we investigate the effects of AgNC edge length (e), tip ROC (R), and AgNC packing geometry on the near-field optical response of these colloidal nanoantenna (Figure 3.1.A,B). Our fabrication process enables us to readily control these fabrication variables, and we can validate electrodynamic finite-difference time-domain (FDTD) models with data from experimental prototypes of TERS probes. We employed self-assembled monolayers (SAM) of thiophenol (PhSH) adsorbed to an Ag thin-film as a standard Raman analyte to quantify the differences in Raman enhancement for various nanoantenna configurations. Figure 3.1.C shows a representative TERS spectra obtained from PhSH. We demonstrate that the robust performance of AgNC TERS probes results from the presence of multiple, close-packed AgNCs and that the broadband plasmon resonance responsible for the high Raman signals observed originate from long-range coupling between these close-

Figure 3.1. Colloidal nanoantenna geometric parameters and TER spectra (A) Schematic showing the variables affecting the optical response of colloidal nanoantenna: nanocube size (e), tip radius (R), orientation (θ, ϕ), relative placement to other nanocubes, and nanocube cluster size. (B) Schematic showing the gap region between the apex nanoparticle and the substrate. Monolayers of HDT and PhSH functionalize the AgNCs and Ag substrate respectively. (C) Representative Raman spectra showing (from top to bottom) the nanoantenna engaged to the Ag substrate, the nanoantenna withdrawn by roughly 150 nm from the surface, the retracted spectra subtracted from the engaged spectra.
packed AgNCs.

3.2. Results and Discussion

3.2.1. Plasmon Response of a Single AgNC Based Nanoantenna

Figure 3.2. shows the plasmon resonance expected for a colloidal nanoantenna where a single AgNC is brought in contact with an Ag surface (analyte substrate). To model this, we record the electric field enhancement in the plane parallel to the metal thin-film offset vertically by 1 nm. Figure 3.2.A shows a schematic of a simulated AgNC and the angles θ and ϕ that define its orientation relative to the surface by rotation around the X- and Y- axis respectively. In the shown configuration, the AgNC appears distorted because it is rotated at an angle θ and $\phi = 45^\circ$. From experimental characterization of AgNC probes by electron microscopy, it is unlikely that the apex AgNC on a colloidal TERS probe would be oriented perfectly tangential to the AFM tip at $\theta, \phi = 0^\circ$. Figure 3.2.B shows the simulated electric field enhancement profile at 783 nm (chosen for its proximity to the experimental illumination wavelength of $\lambda=785$ nm that provided the highest TERS signals) for an AgNC with $e=89$ nm and oriented at $\theta=\phi= 5^\circ$. At the probe apex, which we consider to be the AgNC corner closest to the substrate, a highly confined electric field is generated. This simulation shows that even small angular orientations are enough to localize the cavity resonance to a nanoscale region that is only a fraction the footprint of the actual AgNC. This is important because it has previously been shown that an AgNC placed flat on a metal surface with a nanometer sized gap generates a large cavity resonance originating from multiple reflections within the gap45. Such a cavity resonance occupies the entire
footprint of the AgNC and would result in poor spatial resolution for TERS measurements (e.g. limited by the size of the AgNC, ~70-100 nm).

Using field enhancement profiles for various AgNC sizes and orientations, we are able to calculate an average Raman enhancement factor (EF) at each wavelength (see Methods for detailed calculations). Figure 3.2.C shows average Raman EF over the wavelength range 400-1000 nm oriented at $\theta = \phi = 5^\circ$ for three different AgNC edge lengths, matching sizes made by colloidal synthesis: $e = 74$, 89, and 100 nm. From field distribution maps, these AgNCs result in respective hotspot radii of 12.4, 11.7, and 11.0 nm. Larger AgNC sizes significantly redshift the resonance peak. We also

Figure 3.2. Single AgNC FDTD simulations. (A) Schematic showing a single AgNC oriented a θ and ϕ along the X and Y axis respectively relative to the substrate. The field enhancement is calculated 1 nm above the Ag substrate and 2 nm below the AgNC. (B) Field enhancement map showing the plasmonic hotspot beneath the nearest corner of the apex AgNC. The plane is solved at 785 nm for an 89 nm edge length AgNC with $\theta, \phi = 45^\circ$. (C) EF solved from 400 – 1000 nm for a 74, 89, and 100 nm AgNC with $\theta, \phi = 5^\circ$. The dashed line is located at 785 nm. (D) EF at 785 nm for AgNCs of edge lengths: 70, 74, 85, 89, 100, and 115 nm each solved at $\theta, \phi = 5^\circ; 25^\circ, 5^\circ; \text{and} \ 45^\circ$.}
simulated a single AgNC ranging in size from 70 – 115 nm at three different angular orientations: low angular orientation (θ=ϕ = 5°), medium angular orientation (θ= 25°, ϕ = 5°) to high angular orientation (θ=ϕ = 45°). Figure 3.2.D shows the EFs calculated at the wavelength of 785 nm. The gray region shows the EFs expected with angular orientations not simulated, representing the expected variation in TERS measurements for probes fabricated with a given AgNC size. The effect of changing AgNC size is independent of the AgNC orientation: while changing angular orientation varies the Raman EF by a factor of 5, decreasing the AgNC size from 115 nm to 70 nm decreases the average EF by 2-3 orders of magnitude. This decrease indicates a strong dependence of the plasmon response on nanoparticle size over angular orientation.

3.2.2. Experimental Dependence of Raman EF on AgNC Size

To validate these models, we fabricated batches of colloidal nanoantenna using three different sizes of AgNCs: e=74 nm (8 nanoantenna, Figure 3.3.A), e=89 nm (8 nanoantenna, Figure 3.3.B), and e=100 nm (4 nanoantenna, Figure 3.3.C). We calculated the experimental TERS EF by performing multiple tip-in/tip-out measurements for each nanoantenna (see Methods for detailed calculations). The TERS EFs are plotted against the average AgNC size in Figure 3.3.D. There is no significant observed change in TERS EF over the size range investigated from 74- 100 nm AgNCs, which disagrees with our single AgNC model. This result suggests that more than a single AgNC located at the probe tip apex is responsible for the TERS response observed in our experiments.
3.2.3. Contribution of Interparticle Coupling to the Plasmon Response of a Multi-AgNC Based Nanoantenna

Figure 3.4. shows the results of simulations using models that include multiple AgNCs in addition to the apex particle. We modeled clusters of 1, 5, 9, and 13 AgNCs (Figure 3.4.A) positioned on a Si AFM tip with R=125 nm. The apex AgNC was then placed 3 nm above an Ag thin-film (not shown). In our model, AgNCs were organized in a close-packed manner somewhat resembling a folded square lattice, with the condition a single AgNC be nearest the center of the probe apex, while remaining tangent to the tip surface. A 4 nm gap was introduced between the nearest points of
adjacent AgNCs to accurately represent the spacing from the organic capping layer on
the AgNC surface. The apex AgNC had an orientation of $\theta = \phi = 5^\circ$ for each of the
simulations. Figure 3.4.B shows the average EFs for each of the models in Figure
3.4.A. While the single AgNC model exhibits a single dominant resonance peak at 691
nm, the 5 AgNCs model shows two resonance peaks at 633 and 855 nm. When 9
AgNCs are modeled, the resonant peaks become broader, and the overall near-field
optical response becomes flatter. When 13 AgNCs are modeled, individual resonant
peaks are no longer distinguishable and a broadband response from 609 nm to >1000

nm remains.

Figure 3.4. EF Dependence on number of nearest neighbor AgNCs the apex AgNC has. (A)
Schematics of single, five, nine, and thirteen AgNC simulations (the apex AgNC is highlighted in
blue for multiple AgNC simulations) All AgNCs have an edge length of 89 nm and the apex AgNC
is at a θ and ϕ of $5^\circ \times 5^\circ$ for all above simulations. (B) Wavelength dependent EFs for the
simulations shown in (A). (C) Electric field profiles taken at a cross-section (along the plane of
incidence) of the thirteen AgNC simulation at (from top to bottom) 630, 818, and 935 nm excitation.
This multi-nanoparticle response can be better understood by examining the plasmon modes associated with the gap between the AgNCs and the underlying metal substrate. A recent paper by Esteban et al. examines the plasmon modes associated with pairs of flat- and hemispherically-capped nanorods as they approach each other axially. For flat-capped nanorods, two separate types of surface plasmon are identified. One is polarized perpendicular to the gap, between the nanoantennas, which is referred to as the longitudinal antenna plasmon (LAP). LAPs are excited by light components polarized perpendicular to the interparticle gap. These modes interact with the far-field and tend to be highly scattering. In the near-field, LAPs are characterized by having a single polarity on each side of the gap, like a plate capacitor or dipole-dipole coupled system. Transverse cavity plasmons (TCP) are polarized parallel to the gap. TCPs act like fabry-perot resonators and generate multiple reflections within the gap, leading to standing wave patterns. Importantly, TCPs can be excited by light components polarized in multiple orientations, including parallel to the interparticle gap. TCPs generated as a result of metal nanoparticles near metal films have been studied extensively. TCPs can lead to near-perfect absorption as well as high near-field enhancement over the entire footprint of the nanoparticle.

We assigned the LAC and TCP modes of the AgNC TERS antennas using the near-field distribution maps in Figure 3.4.B. The broadband plasmon response originates from interparticle coupling. The cross-section of a single AgNC oriented at $\theta=\phi=5^\circ$ shows that the LAP serves as the dominant resonance peak at 691 nm. However, a weak TCP mode exists at higher wavelengths (Fig S1). Figure 3.4.C
shows a cross-section of the excitation plane from the 13 AgNC simulation for three different excitation wavelengths: 630, 818, and 935 nm. (Note that because these electric field profiles do not cross through the probe apex, they do not accurately represent either the intensity or the radius of the Raman hotspot.) Several LAP modes are observed when multiple AgNCs are present. Shown in Figure 3.4.C are LAP modes at 630 and 935 nm. Because resonances generated from interparticle coupling are red-shifted from their single AgNC equivalents, we attribute the shorter wavelength LAP at $\lambda=630$ nm to the apex AgNC, while the longer wavelength LAP at $\lambda=935$ nm likely results from interparticle coupling across multiple AgNCs. This is consistent with the larger full-width half-max of this LAP. At intermediate wavelengths ($\lambda=818$ nm), we observe a TCP. The TCP mode is identifiable by the polarity flip across the gap (i.e. from red to blue). This near-field distribution map visibly displays the strong interactions between neighboring AgNCs for the TCP mode. Because the LSPR transitions from distinct peaks to a broadband response as AgNCs are added to the model, we suspect there is hybridization between the LAP

![Figure 3.5. Cross-section of 13 AgNC simulation at 785 nm excitation when the apex AgNC is not illuminated. Only three of 13 AgNCs (top row) are illuminated by the incident light (dashed box). Energy transfer is observed between the remaining AgNCs showing a gap mode resonance still exists between the apex AgNC and the Ag substrate.](image)
As previously discussed, interparticle coupling can also result in energy transfer via a waveguiding effect. By reducing the simulated excitation area to only illuminate three of the 13 AgNCs, we are able to directly observe energy transfer resulting from interparticle coupling. Without direct illumination of the apex AgNC, we observed a Raman hotspot similar (but weaker) to that of the fully illuminated simulation (Figure 3.5.). This demonstrates that in addition to hybridization of plasmon modes, additional energy transferred to the apex AgNC increases the TERS EF beyond the field generated by a single AgNC. Taken together, these simulation results suggest that interparticle coupling is responsible for new, hybridized plasmon modes that result in a broadband optical response and high local field enhancements at the probe apex.

Figure 3.6. shows how interparticle coupling accounts for our experimental observation that AgNC size has a negligible effect on TERS EF. We carried out simulations with 5 AgNCs; this model was chosen to conserve computational power while sufficiently demonstrating the nature of the new LAP and hybrid modes. Figure 3.6.A shows a schematic of the FDTD model. Figure 3.6.B shows an electric field enhancement profile using $\lambda=783$ nm excitation for five AgNCs with size=89 nm and with the apex AgNC oriented at $\theta=\phi=5^\circ$. The Raman hotspot radii for these simulations ranged from 10.8 – 11.4 nm, very similar to the size of hotspots generated for single AgNCs. Figure 3.6.C shows the average TERS EFs over the range 450-1000 nm for AgNC probes with the same geometry, but with varying sizes of 74, 89, and
100 nm with the apex particle oriented at \(\theta = \phi = 5^\circ \). The dashed line demarcates 785 nm and shows that for AgNCs in this size range, a 785 nm excitation laser lies within the broadband plasmon resonance, resulting in a relatively uniform EF. Figure 3.6.D plots the Raman EFs at 783 nm for five AgNC colloidal nanoantenna with AgNC sizes ranging from 70 – 115 nm and apex AgNC orientations of \(\theta \times \phi = 5^\circ \times 5^\circ; 25^\circ \times 5^\circ; \) and \(45^\circ \times 45^\circ \). The average TERS EF factor varyies between \(10^7 \) - \(10^8 \) for varying AgNC orientation. However, the TERS EF neither increases nor decreases significantly with AgNC size. This is in contrast to single AgNC models but in agreement with our

Figure 3.6. FDTD Simulations with four nearest neighbor AgNCs. The field enhancement is calculated 1 nm above the Ag substrate and 2 nm below the AgNC. (A) Schematic showing five AgNCs with the apex AgNC (highlighted in blue) oriented at \(\theta \) and \(\phi \) along the X and Y axis respectively relative to the substrate. Nearest neighbor AgNCs are placed tangent to a sphere (representing a AFM probe, radius 125 nm) with the nearest edge separated by 4 nm from the apex AgNC. (B) Field enhancement map showing the plasmonic hotspot beneath the nearest corner of the apex AgNC. The solution is at 785 nm for 89 nm edge length AgNCs with an apex AgNC orientation of \(\theta, \phi = 5^\circ \) (C) EFs for five AgNC simulations, shown are AgNC edge lengths of 74, 89, and 100 nm AgNC with a \(\theta \) and \(\phi \) of \(5^\circ \times 5^\circ \). The dashed line is located at 785 nm. (D) EF at 785 nm for AgNCs of edge lengths: 70, 74, 85, 89, 100, and 115 nm each solved with apex AgNC orientations of \(\theta \) and \(\phi \) of \(5^\circ \times 5^\circ, 25^\circ \times 5^\circ, \) and \(45^\circ \times 45^\circ \).
Experimental observations.

Experimental control over probe tip ROC also allows us to investigate the effect of interparticle coupling and waveguiding effects on TERS EF. AFM tips are made blunt by PECVD oxide deposition, where increasing oxide film thickness effectively increases ROC. The curvature of the tip subsequently affects the location and orientation of neighboring AgNCs relative to the apex AgNC. We fabricated colloidal nanoantenna probes using 87 ± 5 nm AgNCs and measured their TERS EFs. Figure 3.7.A-D show example SEM images of colloidal nanoantenna fabricated on

Figure 3.7. Experimental EF dependence on tip radius. (A-D) SEM images showing side views (top images), and top views (bottom images) of colloidal nanoantenna with different SiO₂ growth times: 42 s (A), 60 s (B), 80 s (C), and 100 s (D). (E) Experimental EF dependence on measured colloidal nanoantenna ROC (determined by fitting a circle to the apex of the colloidal nanoantenna). The gray area between two dashed lines represent the experimentally determined detection limit for our instrumentation given the integration time and power used for these experiments. Circles in red represent colloidal nanoantenna displaying AgNCs at the apex but with no measurable TERS signal.
AFM tips with different oxide thickness growth times: 42 s, 60 s, 80 s, and 100 s. Tips with a growth time of 42 s were sharp enough to puncture the AgNC film during fabrication and did not support an apex nanoparticle. We found none of these nanoantenna were TERS active (Figure 3.7.A). Blunter tips with growth times ranging from 60 – 100 s were able to support unbroken AgNC films and all except two (discussed below) provided measurable TERS EFs. We calculated the experimental Raman EF and imaged each nanoantenna by scanning electron microscopy. Using image analysis software, we measured the ROC of the tip (including the AgNC film coating the underlying tip). Nanoantenna that had large breaks or gaps in the film at or near the apex were not considered in this experiment because an ROC could not be accurately determined. Figure 3.7.E plots the relationship between nanoantenna curvature and measured Raman EF. Of interest are the two red circles with ROCs of 264 nm and 292 nm (100 s PECVD growth times). These nanoantenna gave no measurable TERS EF. These are the only examples out of over 40 TERS active nanoantenna fabricated where an AgNC was positioned at the apex but a measurable TERS signal was not obtained. We believe that these nanoantenna were TERS active but that the TERS activity was below the detection threshold of our instrument (which we calculated to be 1.5 – 3 X 10^7 at 785 nm for the measurement configuration used in this experiment).

We expect that this decrease below the threshold of detection is due to strong interparticle coupling. To verify this, we simulated 5 AgNC simulations with increasing tip ROC (Figure 3.8.A). Simulations were carried out with 85 nm AgNCs
with the apex AgNC oriented at $\theta = \phi = 5^\circ$. Figure 3.8.B shows that increasing the tip ROC from 65 nm to 250 nm redshifts the LAP resulting from interparticle coupling from 758 to 868 nm. This redshift is likely a result of increased interparticle coupling as the orientation angle between AgNCs is decreased. This redshift also decreases the simulated EF at 783 nm from 8.5×10^7 to 4.3×10^6. We conclude that the inability to measure an EF from the nanoantenna with a large ROC results not from the
disappearance of any plasmon resonance, but from a significant redshift away from our 785 nm excitation source.

3.2.4. AgNC Arrangement

As tip radius increases, so does the likelihood of a double-tip (multiple Raman hotspots resulting from two or more AgNCs generating comparable enhanced electric fields). To investigate the requirements for a double-tip, we simulated a nanoantenna where multiple nanocubes were nearly-equidistant from the substrate. While a simulation of multiple AgNCs perfectly equidistant from a surface would result in multiple hotspots, the purpose of this experiment is to investigate an apex AgNC that is dominant by only a small distance. Figure 3.9 compares the results of our previous 5 AgNC simulation, where the apex AgNC was 28 nm closer to the substrate than the neighboring AgNCs, with a simulation in which four AgNCs are nearly centered around the tip apex (Figure 3.9.A). This is representative of real nanoantenna imaged with SEM, in which an apex AgNC was not obviously visible, implying any apex AgNC would have been closer to the substrate by only several nm. In this nearly-equidistant simulation, AgNCs have small lateral offsets to allow for a 2 nm offset of a single AgNC.

Figure 3.9.B shows the Average Raman EFs for both the centered apex and nearly-equidistant simulations as well as a single AgNC nanoantenna for reference. The centered apex AgNC model has a Raman hotspot radius of 10.9 nm while the nearly-equidistant model has a Raman hotspot radius of 12.8 nm. Thus even the small offset of 2 nm for an apex AgNC is enough to generate a single-tip high-resolution
TERS signal. An important difference is that the resonance peak edge is red-shifted for the nearly-equidistant model, reaching an \(EF=1 \times 10^7 \) at 666 nm while the centered apex nanoparticle model reaches an \(EF=1 \times 10^7 \) at 602 nm. This shift is important for considering experimental design; HeNe lasers (633 nm) are a commonly used excitation source for TERS measurements. We observed previously that 785 nm excitation consistently provided higher EFs for colloidal nanoantenna than 633 nm excitation.\(^{35}\) There were at least two nanoantenna observed that provided measurable TERS with 785 nm excitation and no measurable TERS at 633 nm excitation.

Even with control over the size and ROC of colloidal nanoantenna, the fabrication process still leaves random variation between nanoantenna. An experimental deviation in EF of around an order of magnitude was observed for our nanoantenna despite attempts to keep experimental parameters constant. This is
significantly less deviation than we have previously observed for Au etched wire tips.35 Simulations predict a deviation of a factor of 5-8 in EF for orientation differences of the apex AgNC. Additional deviation between tips likely results from differences in the location and orientation of neighboring AgNCs, density of the AgNC film, and whether the film has holes or non-cubic nanoparticles. In addition, there is heterogeneity on a small scale between individual nanocubes as well as tip ROC. Each of these variables is expected to lead to small deviations in EF between nanoantenna.

3.3. Experimental and Computational Methods

The Experimental and Computational methods employed here can be found in detail in Chapter 2.

3.4. Conclusions

We have observed through experiment and simulation that a consistent Raman EF is observed across nanoantenna using a variety of AgNC sizes and tip ROCs. This effect results from a hybridized plasmon resonance of coupled AgNCs on the AFM tip that generates a broadband optical response. This broadband resonance is able to reduce the variation in performance across batches of simultaneously fabricated TERS probes, increasing their utility through high levels of reproducibility. The coupling between AgNCs additionally introduces a waveguiding mode that may contribute to the robust and high Raman EFs. The colloidal self-assembly process allows flexibility
to explore near-field optical probes fabricated with other shaped nanocrystals that display sharp features and high levels of interparticle coupling.

Chapter 3, in full, is currently being prepared for submission for publication of the material. Dill, T. J., Tao, A. R. The dissertation author was the principal researcher and author of this material.
3.5. References

Chapter 4

Self-Assembled Ag Nanocubes for Metasurface-Enhanced Raman Spectroscopy
4.1. Introduction

In chapter 4 we introduce metasurface-enhanced Raman spectroscopy (mSERS), a sensing platform based on Ag nanocubes (AgNC) deposited by the Langmuir-Blodgett (LB) method onto a metal substrate. The AgNC-on-metal structure has been previously demonstrated to efficiently focus visible and near-infrared light into the parallel gap formed between the nanocube face and the underlying thin-film.\(^1\) The gap region layers allows a plasmon that propagates in the plane of the metal. At the AgNC edge the light undergoes reflection, resulting in a Fabry-Perot like resonance and strong electric field-confinement within the gap.\(^1\)\(^4\) The resonance can be tuned by varying either the AgNC size or the gap height. When a Raman analyte is introduced into the gap, the mSERS substrate generates strongly enhanced Raman signals from a diffraction-limited spot. mSERS substrates can be fabricated at wafer-scale with high AgNC deposition uniformity. The uniformity of the self-assembly process allows the mSERS substrate to generate spatial Raman maps with uniform Raman EF over large areas. Here we demonstrate Raman maps of patterned molecular monolayers over regions >100 μm\(^2\).

In order to maximize the collected Raman signal, we are also interested in studying the properties of the LSPR of the mSERS substrate. Here we look at AgNC interparticle coupling as well as the polarization of the gap-plasmon near-field. When AgNCs become close enough to each other, the LSPR between AgNCs becomes coupled and has an effect on the resonance.\(^5\) We find that below a AgNC surface density of 30% the Raman EF is maximized because AgNCs are non-interacting. In
this regime, any additional AgNCs contribute linearly to the signal. At higher surface density, the LSPR results in a weaker plasmon gap-mode and the Raman EF decreases significantly. We additionally find that molecules with polarizabilities oriented orthogonally to the surface will generate higher Raman EFs than materials that lie with their polarizability in-plane. This is a result of the gap-plasmon being oriented predominantly out-of-plane of the gap. The polarization of incident light (near-field) in Raman spectroscopy has been shown to be critically important for 2D materials such as graphene.6–9

In chapter 3, we demonstrated the detection limit for colloidal nanoantenna (for our experimental system at 785 nm excitation) to be an EF of $1.5 - 3 \times 10^7$. Because colloidal nanoantenna and mSERS substrates have similar LSPR resonances, they can be expected to return similar results for a given Raman analyte. mSERS substrates offer an advantage in that the number of active hotspots is several hundred AgNCs versus only one for a colloidal nanoantenna. More active hotspots results in a higher total collected Raman signal without modifying the EF or the optics of the experimental system. This higher Raman signal can be used to study systems that are below the detection threshold of the colloidal nanoantenna. The mSERS data is useful for determining a minimum EF for TERS detection, and subsequent experimental design.

We also introduce a modified fabrication process, in which AgNCs are first deposited onto a polydimethylsiloxane (PDMS) substrate, which can then be inverted and adhered to a functionalized metal surface. If the metal surface has regions of
varying surface energy, traditional LB deposition can result in uneven deposition due to drying effects. This modified fabrication gives uniform AgNC deposition as the PDMS is highly uniform. This fabrication method also allows high-levels of control over the ligand within the gap which can control chemical interactions as well as physical dimensions (discussed in detail in chapter 6).

4.2. Results and Discussion

4.2.1. mSERS Fabrication and Characterization

Figure 4.1. shows an overview of the functionality of mSERS substrates. Figure 4.1.A shows a schematic representation of an AgNC separated from an Au thin-film (50 nm) by one or more passive or functional organic spacer layers. Incident light is focused into the gap, increasing the electric field strength within the nanojunction (area within white dashed line) to 1.05 X 10^2 times that of the incident field. Raman enhancements are generated wherever the electric near-field is enhanced, in the case of mSERS substrates this is a large fraction of the cross-sectional area. The mSERS substrate is unlike other SERS substrates where small hotspots are responsible for the majority of SERS signals.10-13 A Raman analyte is positioned directly in the nanoscale junction, the inset shows the ligand(s) within the gap. Figure 4.1. shows the case of a pattern of self-assembled monolayers (SAM) of thiophenol (PhSH, green) and 1-hexadecanethiol (HDT, red). The layer of polyvinylpyrillidone (PVP) on the AgNC surface remains from AgNC synthesis. The overall gap height is estimated to be 2-3 nm. We fabricated mSERS substrates using the Langmuir-Blodgett (LB) deposition (see methods). A uniform layer of well-spaced AgNCs is transferred onto a
substrate already treated with one or more types of Raman analyte molecules. Figure 4.1.B shows a scanning electron microscope (SEM) image of a mSERS surface. The AgNCs used here have an average size of 74 ± 3 nm, and have an average interparticle spacing of 210 ± 80 nm. The AgNC size is chosen for its resonance located near that
of a 785 nm excitation laser, the interparticle spacing insures no plasmon coupling between AgNCs (discussed further below).

To demonstrate both large-scale chemical mapping as well as uniform Raman enhancement over large areas, we patterned an Au thin-film with two chemically unique SAMs. A PDMS stamp was used to print a deuterated-HDT (dHDT) SAM into the circles. PhSH was then backfilled into the unstamped Au region. Finally, a layer of AgNCs was deposited to make the mSERS substrate. All subsequent spectra were collected with the resonant excitation wavelength of 785 nm unless noted otherwise. Figure 4.1C displays representative SERS spectra from each region of the patterned substrate, the red spectra shows mSERS spectra of PhSH, the green spectra shows mSERS spectra of dHDT. We collected spectra over a 100 x 150 µm region, Figure 4.1.D. Each diffraction-limited point on the map contains the chemical signature of the underlying molecular pattern. Here we plot the intensities of two vibrational modes distinctly representing PhSH and dHDT. These vibrational modes are highlighted in Figure 4.1.C with the 999 cm\(^{-1}\) and 1146 cm\(^{-1}\) vibrational modes corresponding to the aromatic ring stretch and the aliphatic C-C backbone stretch respectively.\(^{14,15}\)

The mSERS fabrication process gives control over both AgNC size and average interparticle spacing, we expect both to have significant effects on Raman enhancement factor (EF). While simulations suggest that 74 nm AgNC with a 17 nm corner radius is resonant at 785 nm, it was experimentally shown mSERS substrates with AgNCs in the size range of 70-91 nm showed little variation in measured Raman enhancement factor (EF), the amount an analyte molecule has its Raman signal
enhanced by the electric near-field. This study concluded that only AgNCs larger than 91 nm showed a decrease in EF, and by much less than predicted by simulation. It is hypothesized that AgNC polydispersity plays a large role in maintaining a uniform EF over a large AgNC size range. The polydispersity effect on Raman EF is discussed in detail in Chapter 5. AgNC surface density however, plays a large role in Raman EF due to interparticle plasmon coupling. The surface density of AgNCs is controlled by monitoring surface pressure of the LB film. It was previously shown via UV-Vis spectroscopy that AgNC surface densities below 17%, interparticle spacings of >190 nm, showed negligible interparticle coupling. For AgNC films nearing a close-packed nature, interparticle spacing of < 50 nm, interparticle plasmon coupling became dominant and altered the resonance structure. As the AgNCs progress from well-spaced to close-packed, a delocalized plasmon resonance forms, red-shifting the TCP into the IR. Here we probe the Raman EF and indirectly, the near-field strength, resulting from different surface densities of AgNC mSERS substrates.

4.2.2. The Effects of AgNC Surface Density on EF

We functionalized Au thin-films with PhSH and deposited 91 ± 4 nm AgNCs with surface densities estimated by image analysis software at: 6.2%, 16.2%, 17%, 27.1%, 32%, 43.1%, and 65%. Figure 4.2.A shows spatially averaged mSERS spectra for mSERS substrates with varying surface density. Figure 4.2.B shows the average intensity of the \(\nu (\text{Ring}) \), 1024 cm\(^{-1}\), vibrational mode plotted for each mSERS substrate. From 6.2 – 32% the Raman intensity increases from 1950 – 9492 counts linearly with surface density (\(R^2 = 0.96 \)). This indicates negligible interparticle
plasmon coupling. Each added AgNC provides an additional hotspot with the same intensity and linearly contributes to the total collected Raman signal. At 43.1% AgNC surface density there is a sharp decrease in Raman intensity (3015 counts), SEM imaging shows this substrate primarily consisting of small aggregates (average cluster size is 1.9 AgNCs). As neighboring AgNCs become electromagnetically coupled, the resonance red-shifts away from the 785 nm excitation, decreasing observed Raman scattering. At 65% surface density, the average cluster size increases to 56 AgNCs,
further increasing electromagnetic coupling and decreasing the Raman intensity (1150 counts). Figure 4.2.C shows the Raman EF for each substrate (see methods for detailed calculations). Raman EF accounts for surface density and thus returns a constant EF for non-coupled mSERS surfaces from 6.2 – 32%. As increased electromagnetic coupling decreases the near-field strength at 785 nm however, we observe a decrease in the Raman EF. An mSERS substrate that provides an optimal Raman EF (at 785 nm excitation) will be fabricated with a surface density at the top of the linear regime (~30%) with AgNCs in the 70-91 nm size range.

4.2.3. Effect of Near-Field Polarization on EF

The observed Raman EF depends highly on the polarizability of a molecule relative to the polarization of the electric field it experiences. The intensity of Raman scattering from a vibrational mode is highly dependent on its polarizability tensor.\(^{16}\) Because enhanced-Raman scattering is dependent on the fourth power of field enhancement, we expect to find larger Raman intensities for molecules when the polarizability tensor is aligned to the polarization of the exciting light. Figure 4.3.A,B shows simulated field enhancement profiles of the out-of-plane and in-plane components of the plasmon resonance (1000 nm, 96 nm AgNC). The component of the field enhancement perpendicular to the substrate (out-of-plane) has an average field enhancement of 64 while the orthogonal component (in-plane) has an average field enhancement of 6. Figure 4.3.C shows the calculated Raman EFs from 400 – 1000 nm. At 785 nm, the out-of-plane component is 5 orders of magnitude stronger.
than the in-plane component. This suggests that the Raman analyte must be oriented favorably to achieve high Raman EFs.

We are able to indirectly probe in-plane and out-of-plane field enhancements via mSERS measurements. Aromatic ring structures are known to be polarizable predominantly in the plane of the ring. PhSH SAMs and graphene have rings oriented orthogonally to each other on a flat surface. These molecules can be used to probe the polarization of the field enhancement. Figure 4.3.C shows the wavelength dependent Raman EFs for both PhSH and graphene on a mSERS substrates. At the maximum EF, 785 nm, the EF of PhSH is $4.1 \pm 0.48 \times 10^6$, while the EF of graphene is
5.2 ± .1 \times 10^4$, roughly 2 orders of magnitude smaller. Graphene shows similarly smaller EFs for other wavelengths: 633, 514, 488, and 457 nm. The EF difference predicted by simulation between in-plane and out-of-plane polarization is 3 orders of magnitude larger than the experimentally observed EF difference. A possible explanation is that the Au surface is not perfectly flat. This nanoscale roughness may result in a graphene layer that has components out-of-plane, which would interact with the out-of-plane field enhancement and increase the EF significantly. It is also known that Raman scattering from graphene is not localized, the Raman vibrational modes are based on phonon scattering.18-20 It is possible that this could lead to inflated EFs where Raman scattering originates in regions other than the AgNC hotspot.

4.2.4. mSERS Substrates Fabricated on PDMS for Increased Uniformity

Direct deposition of AgNCs onto a substrate can lead to regions of varying AgNC density in some cases. This affects the uniformity of the EF. If the substrate has regions of analytes displaying different physical properties such as surface energy then drying effects can cause AgNCs to deposit to one region preferentially. To eliminate this effect, we introduce a modified fabrication process (Figure 4.4.), in which AgNCs are deposited onto a thin layer of PDMS (150 μm). The highly uniform PDMS insures a uniform dispersion of AgNCs (Figure 4.4.A). These substrates are termed mSERS stamps. mSERS stamps can be placed in contact with an arbitrary substrate containing a Raman analyte, and be scanned as previously. Figure 4.4.B shows a schematic of a mSERS stamp adhered to an Au thin-film. Figure 4.4.C shows a photograph as well as
an SEM image of a mSERS stamp showing large scale uniformity. Importantly, the PDMS contributes negligibly to our SERS spectra. Additionally, mSERS stamps allow the PVP adsorbed to the AgNC to be exchanged with other ligands prior to bringing the AgNC surface into contact with the substrate. When AgNCs are deposited directly onto the Raman analyte, the PVP capping layer is trapped. Ligands with well characterized lengths, functional groups, and known Raman spectra can be used to further enhance the sensitivity and specificity. This is discussed in detail in chapter 6.

4.3. Experimental and Computational Methods
Ag nanocube preparation: Ag Nanocubes were synthesized via a polyol method published elsewhere.21 In brief, AgNO\textsubscript{3} is reduced in a solution of pentanediol, CuCl\textsubscript{2}, and polyvinylpyrrolidone (PVP) (M\textsubscript{w}=55,000). PVP serves as a selective capping agent that controls nanocube nucleation and growth. The reaction was allowed to proceed until the resulting colloidal dispersion turned an opaque yellow-green color. To remove excess reactants, the nanocube dispersion product was centrifuged (2700 rpm for 10 min) using a Thermo Scientific CL2 Centrifuge, and the resulting precipitate was redispersed and diluted in an ethanol and water mixture, and then vacuum-filtered (Millipore Durapore membranes, with 0.65 µm, 0.45 µm, then 0.22 µm pore sizes) to remove any larger, unwanted particles.

Substrate preparation: Si was sonicated in EtOH and cleaned for 60s under a 100W RF Ar plasma in a high vacuum sputter chamber (Denton Discovery 18 Sputter System). 5-10 nm of Ti followed by 50 nm of Au was then sputtered.

SAM functionalized Au substrates were fabricated by incubating the metal thin-film substrates in a 100 µM (PhSH) or 1 mM (HDT, dHDT) ethanolic solution for 60 min, rinsed thoroughly with EtOH and dried under N\textsubscript{2}. Functionalized Au substrates either immediately had AgNCs films deposited or were stored under vacuum until ready for use.

Patterned SAMs were fabricated using standard photolithography and µ-contact printing. We fabricated an SU-8 mold with a pattern of of circles (10 µm diameter) arranged in a square lattice (20 µm pitch), and a 5 µm relief height. After silanization the master, PDMS was cured into it overnight at 60° C. The PDMS stamp
was then inked with a 10 mM ethanolic solution of the analyte for 60 s and dried with N₂. Full contact between the stamp and the Ag thin-film was ensured, but no further pressure was applied. The stamp remained in contact for 10 – 15 s. The remaining unstamped Au area was then backfilled by immersing the surface with a 50 µL droplet of 10 mM ethanolic solution of a second analyte for 10 s. The patterned Au substrate was then rinsed with copious amounts of ethanol and dried with N₂.

Nanocube deposition and mSERS Stamps To prepare the AgNCs for Langmuir-Blodgett deposition, a AgNC dispersion is washed by centrifugation and the precipitate is dispersed in EtOH. This process was repeated three times before finally dispersing the precipitate in chloroform. AgNC films were fabricated using a KSV Nima KN2001 Langmuir-Blodgett trough, as previously described. The AgNC solution was deposited drop-wise onto a deionized water (18 MΩ) subphase. The film formed at the air-water interface was allowed to equilibrate for 30. The Ag nanocube film was isothermally compressed to a desired surface density before being transferred to the substrate via mechanical dipping. For mSERS stamps, the AgNC film was transferred to a 150 µm thick PDMS film backed by Si.

SERS measurements: All Raman spectra were obtained using a Renishaw inVia confocal Raman microscope. Measurements were taken at powers < 1 mW to prevent laser induced damage. 785 nm illumination was provided by a Renishaw 300 mW diode laser. 633 nm illumination was provided by a Renishaw 17mW HeNe laser. 514, 488, and 457 nm illumination was provided by a Modu-Laser 50 mW Ar+ Ion laser. Spectra were collected through a 50x, 0.9 NA objective. For each EF calculation
an average of 100 data points was taken over a SERS substrate, the standard deviation in these points were used as the error for the EF calculations.

EF Calculations: For each EF calculation, 100 spectra were collected from random locations on an mSERS substrate and averaged. All Raman EFs were calculated using the PhSH vibrational mode of 1024 cm$^{-1}$, corresponding to the ring breathing mode, which is independent of molecular orientation. Raman EFs were then calculated using the following equation:

$$EF = \left(\frac{I_{SERS}}{I_{Raman}} \right) \left(\frac{N_{Raman}}{N_{SERS}} \right)$$

(4.1)

Where I_{SERS} and I_{Raman} are the Raman intensities for the mSERS substrates and bulk PhSH respectively. N_{SERS} and N_{Raman} are the number of Raman molecules from which the signal originates and are calculated using the density of neat PhSH and literature packing values for a SAM of PhSH on an Au surface. Laser spot sizes were measured by scanning step-wise over a cleaved Si edge. N_{SERS} is normalized to the surface density of AgNCs on the substrate. Error in EF was determined from the standard deviation in the measured I_{SERS} values; error for I_{Raman} was considered negligible.

FDTD Simulations and Simulated EF: Electromagnetic modeling was performed with Lumerical FDTD Solutions. AgNCs (Palik dielectric data) were modeled in 3 dimensions with an underlying 50 nm Au thin-film. A 3 nm dielectric layer with $n = 1.4$ was added to reflect the analyte layer positioned within the plasmon volume. Incident light was injected normal to the substrate, and polarized parallel to the (100) faces of the AgNC. A 1 nm global mesh was used; to improve accuracy, the mesh size
was reduced in the gap region to 0.5 nm. The electric field profiles were calculated in
the plane of the Au thin film, 1 nm offset from the surface. An average EF for the
mSERS substrate is calculated by summing \(|E/E_0|^4\) at each pixel (1x1 nm) and
normalizing to the cross-sectional area of each nanocube. This calculation was carried
out at discrete wavelengths over the visible range.

4.4. Conclusions

mSERS substrates use Ag nanocubes coupled to an underlying metal
film to support a strong gap-plasmon, providing large field-enhancements and a
uniform Raman EF. These mSERS substrates can be fabricated in a scalable fashion
over large areas and on many types of surfaces. We show through experiment that
mSERS substrates are able to generate Raman maps over large areas with the ability to
easily identify unique chemical components. By exploring the limitations of mSERS
substrates pertaining to Ag nanocube surface density and analyte orientation, we can
better understand the fundamental interactions between these plasmonic junctions and
molecular analytes. The large number of Ag nanocubes in an mSERS substrate
produces many hotspots and larger Raman scattering signals, allowing us to
investigate systems with signals too weak to be detected by TERS. This improved
understanding of the optical resonance and its interaction with Raman analytes can
help engineer mSERS substrates and TERS probes that will produce higher Raman
signals and allow the study of new materials and analytes. Chapters 5 and 6 will
further investigate the mSERS substrate and the effects of Ag nanocube polydispersity and gap-height.

Chapter 4, in full, is currently being prepared for submission for publication of the material. Dill, T. J., Rozin, M. J., Rodarte, A. L., Brown, E. R., Palani, S., Tao, A. R. The dissertation author was the principal researcher and author of this material.
4.5. References

Chapter 5

Contributions of Polydispersity and Defect Particles to the Raman EF
5.1. Introduction

Raman spectroscopy is a highly advantageous technique for chemical and biological identification because it provides chemical-specific vibrational signatures of analytes, performs over a large wavelength range, can be implemented using portable spectroscopic instrumentation, and is well suited to detection in aqueous environments.\(^1\)\(^-\)\(^3\) These features enable high analyte specificity along with real-time measurement capabilities. However, typical values for Raman scattering cross-sections are low compared to other optical processes, ranging between \(10^{-31} \text{ – } 10^{-29}\) cm\(^2\) per molecule. Surface-enhanced Raman spectroscopy (SERS) overcomes these low scattering cross-sections by placing the analyte within the evanescent field generated at a metal surface, resulting in the near-field amplification of scattered light.\(^4\) Colloidal metal nanoparticles composed of Ag, Au, and other highly conducting metals are highly studied substrates for SERS\(^5\)\(^-\)\(^9\) because they support localized surface plasmon resonances (LSPRs) that produce intense electromagnetic fields localized at the nanoparticle surface and within nanoparticle junctions.\(^10\)\(^-\)\(^14\) In addition, colloidal nanoparticles are readily synthesized using wet chemistry, and are thus amenable to solution post-processing and chemical surface modification to generate SERS substrates for chemical detection. As examples, colloidal metal nanoparticles have been used as SERS substrates for trace detection of molecules such as narcotics\(^15\) and pesticides,\(^16\) and to characterize the chemical reactions of surfaces\(^17\) and catalysts.\(^12\)

A critical challenge in SERS sensing is the ability to predict the optical behavior — and thus, the chemical sensitivity — of these nanoparticle-based
substrates. There has been a considerable amount work trying to predict Raman EFs. Experimentally determined hotspot distributions on SERS substrates have been reported.13 Experiment and simulation have been paired to explain the EF resulting from shaped nanoparticles, dimers, and clusters.5, 18, 19 More recently, studies have used simulations and electron tomography to analyze near-atomic scale features, and their effects on optical properties.20-22 While these studies are carefully conducted, they are limited to single particles or clusters and not representative of the polydispersity resulting from an ensemble colloidal solution. Most colloidal nanoparticles are synthesized in batch quantities and possess a large degree of heterogeneity in comparison to lithographically generated metal nanostructures. A typical size dispersion curve for colloidal nanoparticles is Gaussian,23, 24 where larger nanoparticles exhibit red-shifted dipolar LSPR resonances and smaller nanoparticles exhibit blue-shifted LSPR resonances from the average peak position in the optical scattering spectrum. Complex shapes and assemblies can also introduce higher-order LSPR modes as well as dark plasmon modes, where near-field enhancement is high while far-field scattering is suppressed.5, 25-27 As heterogeneity increases, the optical scattering response corresponding to LSPR excitation broadens, while the near-field enhancements of non-ideally sized nanoparticles are shifted off-resonance. Because SERS sensing typically relies on ensemble measurements where the optical readout is collected from many nanoparticles28 experimental SERS sensitivities can vary dramatically from predictions that are based on the optical behavior of singular
nanoparticle size, shape, or assemblies where sample dispersity is not taken into
count.18, 29

Here we construct an analytical model for the effects of nanoparticle size
dispersity in the SERS response of colloidal Ag nanocubes arranged on flat Au films.
We and others have recently demonstrated that these colloidal structures behave as
large-scale plasmonic surfaces that exhibit high electromagnetic field enhancements.30,
31 This is due to the highly confined optical gap generated between the colloidal
nanocube and the metal film when they are separated by distances of < 20 nm. These
colloidal surfaces have already been demonstrated as substrates for perfect optical
absorption32 and fast fluorescence emission.33 In addition, Ag nanocubes present an
ideal model system to understand the effects of colloidal dispersity on SERS response
because they are single crystalline and nearly atomically planar, which means that they
can be accurately modeled using electrodynamic simulations to account for different
nanoparticle sizes and shapes (i.e. using simple parameters such as nanocube edge
length and radius of curvature of cube corners). Here, we investigate the effects of
colloidal dispersity by measuring the SERS enhancement factor (EF) for Ag nanocube
substrates and comparing these results with our electrodynamic simulations. We
measure the size and shape dispersity of typical Ag nanocube samples to simulate the
optical response of an ensemble of nanoparticles, rather than a single nanoparticle.
Our analysis shows that by taking into account a range of nanocube sizes and shapes,
we can predict the broad optical resonances and EFs observed in our experimental
colloidal SERS substrates.
5.2. Experimental Raman EFs for Various Nanocube Size Distributions

In order to determine colloidal Ag nanocube size distributions, we analyzed multiple SEM images (Figure 5.1.) for SERS substrates fabricated with five different average nanocube sizes. We measured nanoparticle size and radius of curvature (ROC). Using standard image analysis software (ImageJ), we measured edge lengths of at least 100 nanocubes per substrate. Their distributions are displayed as histograms in Figure 5.2. for five different nanocube samples. The distributions were fit to a Gaussian curve to calculate average edge lengths and standard deviations. The same image analysis software was used to determine the ROC for the corners of the nanocube.

Figure 5.1. SERS Substrate schematic and representative SEM Images. A) A schematic of the nanocube on an Au-thin film as well as the PhSH and PVP layers producing a 3 nm dielectric spacer layer (inset). B,C) SEM Images of (B) 96 nm and (C) 74 nm nanocube dispersions deposited on an Au thin-film. Scale bars = 500 nm.
nanocubes. The ROC however is more difficult to accurately measure due to resolution limits of SEM imaging. The average sizes, standard deviations, and ROC for the SERS substrates are listed in Table 5.1.

Table 5.1. Nanocube sample size distributions.

<table>
<thead>
<tr>
<th>Mean Nanocube Size (nm)</th>
<th>Standard Deviation (nm)</th>
<th>Radius of Curvature (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>74</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>91</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>96</td>
<td>6</td>
<td>11</td>
</tr>
<tr>
<td>105</td>
<td>5</td>
<td>11</td>
</tr>
</tbody>
</table>

We performed Raman spectroscopy on these nanocube substrates in order to determine the effect of average nanocube size on the Raman enhancement factor (EF). Figure 5.1A shows a schematic of a nanocube SERS substrate that is functionalized with the Raman reporter, PhSH, a well-studied and characterized molecule often used

![Figure 5.1](image.png)

Figure 5.2. Histogram of size distributions for five different SERS substrates fabricated with varying nanocube sizes: A) 70 nm, B) 74 nm, C) 91 nm, D) 96 nm, E) 105 nm.
to estimate Raman EFs.34,35 PhSH is also known to form well-packed molecular monolayers on Au surfaces, which enables us to obtain an accurate estimate of the number of reporter molecules located in the optical gap.36 The remaining gap between the nanocube and film results from a thin layer of PVP on the nanocube leftover from the colloidal synthesis. The lateral spacing between individual nanocubes on the substrate is sufficient to ensure no inter-nanoparticle coupling occurs.32

Figure 5.3. shows the average PhSH SERS spectra collected for each of the five SERS substrates. Table 2 shows the SERS intensities at the 1024 cm-1 vibrational mode for each substrate. All intensities fall in the range of 1.07 – 2.3 x 105 counts. Using these intensities, we calculated the Raman EF to approximate how much the Raman scattering intensity is increased per molecule for a given SERS substrate using the following equation:26

\[\text{Raman EF} = \frac{I_{\text{SERS}}}{I_{\text{Raman}}} \]

\textbf{Figure 5.3.} Average SERS spectra from five different SERS substrates fabricated from different sized nanoparticles (intensity displayed in counts): A) 70 nm, B) 74 nm, C) 91 nm, D) 96 nm, E) 105 nm. Each spectra is an average of 100 individual spectra collected from random points on the substrate.
\[EF = \left(\frac{I_{SERS}}{I_{Raman}} \right) \left(\frac{N_{Raman}}{N_{SERS}} \right) \] (5.1)

Where \(I_{SERS} \) and \(I_{Raman} \) are the Raman intensities for the SERS substrates and bulk PhSH samples respectively. \(N_{SERS} \) and \(N_{Raman} \) are the number of Raman molecules from which the intensities originate and are calculated using the PhSH bulk density and literature packing values for a molecular monolayer of PhSH on an Au surface.\(^3\) Laser spot sizes were determined by scanning over a cleaved Si edge. \(N_{SERS} \) is then normalized to the density of nanocubes on each SERS substrate. All EFs were calculated at the 1024 cm\(^{-1}\) vibrational mode, which corresponds to the ring breathing mode and does not depend on molecular orientation.\(^4\) Error in EF was determined from the standard deviation in the measured \(I_{SERS} \) values; error for \(I_{Raman} \) was considered negligible.

5.3. Simulated Raman EFs of Nanocubes

5.3.1. Simulated Single Nanocube EFs

As previously reported, our simulation results show the appearance of a resonant optical cavity that is confined to the gap between the Ag nanocube and Au film.\(^3\) Figure 5.4.B-F show the electrical field distributions for Ag nanocubes with edge lengths of 70, 74, 91, 96, and 105 nm, respectively. The color maps are obtained by simulating the electrical field enhancement, \(|E/E_0|\) at an excitation wavelength of 783 nm, the data point nearest the 785 nm Raman laser line. The field distributions in Figure 5.4. are characterized by a symmetric mode where reflections of the cavity resonance occur at the edges of the nanocube. The symmetry of these plasmon modes
arises from the waveguide-like nature of the cavity modes supported in metal-insulator-metal cavities. The electric field profiles shown in Figure 5.4.B-F correspond to the lowest order dipolar mode, or the fundamental waveguide mode. This resonance is intimately linked to both nanocube size and gap height.

Figure 5.4.G plots the Raman EF versus wavelength for each of the Ag...
nanocube substrates. An average Raman EF for each nanocube size is calculated by summing $|E/E_o|^4$ at each pixel (1x1 nm) and normalizing to the cross-sectional area of each nanocube. This calculation was carried out at discrete wavelengths over the range of 300-1300 nm. The maximum EFs correspond to excitation at the fundamental resonance. The position of the maximum EF shifts by approximately 10 nm per nanometer increase in edge length. At 785 nm, we observe a maximum $|E/E_o| = 97.1$ for a 74 nm Ag nanocube, whereas a cube only 4 nm smaller in edge length has a maximum field enhancement of $|E/E_o| = 36.9$, confirming a strong dependence on size. Table 2 shows the calculated Raman EFs resulting from single nanocube models. For excitation at 785 nm, a 74 nm nanocube possesses a Raman EF = 1.24×10^7 which is 54 times larger than that of a 70 nm nanocube that possesses EF = 2.29×10^5. Ag nanocubes with edge lengths of 91, 96, and 105 nm all possess Raman EFs near 10^4, almost 3 orders of magnitude less than the smaller cubes. Other studies have shown similar results indicating strong size dependence for differently shaped colloidal metal nanoparticles.30, 38, 39 In general, colloidal size-tuning where the nanoparticle LSPR is frequency-matched to the Raman excitation source is a widely accepted mechanism to engineer colloidal metal nanoparticles with maximum Raman EFs.

5.3.2. Simulated Ensemble Nanocube EFs

To accurately predict the effect of size dispersity on Raman EF, we used our single-nanoparticle FDTD simulation results to model the optical response of an ensemble of Ag nanocubes that possess a range of edge lengths. Each ensemble EF was calculated by using a weighted average of the EFs for five differently sized
nanocubes. The five sizes for each ensemble EF were determined from the experimentally determined size distributions shown in Figure 5.2. We chose to include the optical response for Ag nanocubes with edge lengths corresponding to the mean size, the mean size ± one standard deviation, and the mean size ± two standard deviations. The ensemble EF curve was generated by weighting each of these components to its population count on the Gaussian fits shown in Figure 5.2., roughly approximating the real size distribution of the colloidal sample.

The ensemble EFs calculated for 70, 74, 91, 96, and 105 nm nanocube samples are plotted in Figure 5.5. (gray shaded region) along with the simulation results for

![Figure 5.5. Calculation of ensemble EFs for different NP size distributions A) 70 nm, B) 74 nm, C) 91 nm, D) 96 nm, and E) 105 nm. Each ensemble EF is calculated by simulating five different nanocube sizes and generating a weighted average. Nanocube edge lengths were chosen to be representative of a Gaussian distribution of nanocube sizes, as determined by SEM image analysis. Nanocube models were constructed for edge lengths corresponding to the average nanocube size and ± one or two standard deviations.](image-url)
each single-nanoparticle component that contributes to the weighted average (colored lines). The Raman EF curves for the 70 and 74 nm nanocube ensembles differ significantly from the EF curves for the single nanocubes, specifically with respect to peak broadening of the LSPR band. The 91, 96, and 105 nm nanocube ensembles exhibit resonances far enough from 785 nm that the EFs calculated for a size-disperse ensemble sample is not significantly different from the initial single nanocube models.

Table 5.2. Experimental and simulated Raman intensities and enhancement factors for each SERS substrate. All values are calculated at 785 nm.

<table>
<thead>
<tr>
<th></th>
<th>70 nm</th>
<th>74 nm</th>
<th>91 nm</th>
<th>96 nm</th>
<th>105 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>I<sub>SERS</sub> (1024 cm<sup>-1</sup>) (X 10<sup>5</sup> Counts)</td>
<td>1.68 ± 0.41</td>
<td>2.30 ± 0.25</td>
<td>1.94 ± 0.16</td>
<td>1.14 ± 0.12</td>
<td>1.07 ± 0.09</td>
</tr>
<tr>
<td>Experimental EF (X 10<sup>6</sup>)</td>
<td>2.47 ± 0.61</td>
<td>2.61 ± 0.28</td>
<td>2.21 ± 0.18</td>
<td>1.10 ± 0.11</td>
<td>1.16 ± 0.10</td>
</tr>
<tr>
<td>Single nanocube EF</td>
<td>2.29 x 10<sup>5</sup></td>
<td>1.24 x 10<sup>7</sup></td>
<td>3.51 x 10<sup>4</sup></td>
<td>1.86 x 10<sup>4</sup></td>
<td>1.56 x 10<sup>4</sup></td>
</tr>
<tr>
<td>Ensemble nanocube EF</td>
<td>1.97 x 10<sup>6</sup></td>
<td>6.89 x 10<sup>6</sup></td>
<td>5.69 x 10<sup>4</sup></td>
<td>2.63 x 10<sup>4</sup></td>
<td>1.82 x 10<sup>4</sup></td>
</tr>
</tbody>
</table>

5.4. Discussion

Figure 5.6. shows a plot of our simulated and experimental Raman EFs as a function of average nanocube size. Our single nanocube models predict the highest Raman EF of 1.24 x 10⁷ for a nanocube with an edge length of 74 nm, whereas the Raman EF drops by almost three orders of magnitude for nanocubes over 90 nm. Our experiments, however, show that this decrease is only by a factor of two. Our ensemble nanocube models predict a large peak broadening in the overall LSPR resonance of each SERS substrate, which may account for this discrepancy. Accounting for the peak broadening that accompanies a disperse colloidal sample
allows us to more accurately predict the optical response for small nanocubes whose resonances lie near the excitation wavelength. However, our analytical model does not account for the large Raman EFs observed for substrates composed of large nanocubes (> 90 nm), which we observe to give large EFs even though their LSPRs are off-resonance.

This discrepancy for SERS substrates composed of larger Ag nanocubes is likely due to the contributions from shape heterogeneity, which can have large effects on the resonance and which are not accounted for in our analytical model. Figure 5.1. shows that our colloidal substrates are composed of many “defect” nanoparticles that posses other polyhedral shapes (e.g. rods and tetrahedra), rounded corners, or form small nanoparticle clusters. Figure 5.7.A shows the field distribution profiles for a 100
nm nanocube and a 100 nm tetrahedron, a common shape defect observed in our colloidal SERS substrates. At an excitation wavelength of 785 nm, the maximum field intensity is $|E/E_0| = 55.2$ for the tetrahedron and $|E/E_0| = 15.4$ for the nanocube. While the field intensity is higher for the tetrahedron, the optical mode of the cube extends over a larger surface area. As a result, the two polyhedral shapes possess near identical Raman EFs at this excitation wavelength (Figure 5.7.C).

We also considered the effect the orientation of silver nanocubes may have on the Raman EF. Nanoparticle orientation relative to incident light is known to significantly affect the plasmon resonance in many systems27, 40. We simulated a 70 nm nanocube with a 17 nm radius of curvature oriented with sides parallel to and at 18, 27, and 45° relative to the incident polarization. Figure 5.8.A-D) shows the field...
enhancement profiles. The mode shape changes to fill the volume of the cavity in the direction of the polarization, evolving from rectangles to triangles as the nanocube approaches a 45° orientation. The mode volume doesn’t change however, and we found that the resonance location didn’t change either. The enhancement factor at 728 nm (at resonance) increases from 1.38×10^7 at 0° to 1.76×10^7 at 45°. This small change is not considered significant for the experimental discrepancy we observe. To be sure these orientational results were generalizable, we also modeled an 80 nm nanocube with a 5 nm radius of curvature and found a similarly low enhancement factor dependence on polarization.

Figure 5.9. shows the effects of curvature at colloidal nanocube corners on Raman EF. We simulated the field distributions for 70 nm Ag nanocubes modeled with ROCs of 5, 9, 13, and 17 nm. At an excitation wavelength of 785 nm, decreasing the ROC from 17 to 13 nm increases the maximum field intensity from $|E/E_0| = 36.9$ to
$|E/E_0| = 101.9$ (Figure 5.8.A-D). This results in a significant increase in Raman EF, from $EF = 2.29 \times 10^5$ to $EF = 1.80 \times 10^7$. Further decreasing the ROC leads to a decrease in field intensity and Raman EF as the fundamental LSPR mode becomes red-shifted beyond 785 nm. (Figure 5.9.C,D) To expand this analysis, we plotted the energetic location of the resonance peak as a function of both Ag nanocube size and ROC (Figure 5.9.E). The resonance peak shifts by as much as 300 nm for a fixed nanocube size when the ROC is varied from 2-20 nm. As a visual aid, the regions bounded within the dashed lines denote the nanocube sizes and ROC combinations that are resonant at 785 nm (Figure 5.9.E, solid red line).

5.5. Experimental and Computational Methods

SERS Substrate Fabrication: Ag nanocubes were synthesized using a modified polyol reaction as previously described. In brief, AgNO$_3$ is reduced in 1-5
pentanediol heated to ~200° C. CuCl2 and polyvinylpyrrolidone (PVP, MW = 55,000) are added to control the nucleation and growth processes, and also to passivate the nanocube surfaces after growth. In order to decrease polydispersity and remove non-cubic particles, nanocubes were vacuum filtered. Millipore Durapore membranes were used in three different sizes to remove sequentially smaller nanoparticles: 650 nm, 450 nm, and 220 nm. The final nanocubes are then concentrated and washed via centrifugation several times to remove excess PVP, and resuspended in CHCl3.

Nanocube films are made via a Langmuir Blodgett trough (KSV Nima KN2001). The nanocube suspension is slowly drop-cast onto a deionized water subphase. After the nanocubes equilibrate, they are isothermally compressed at a rate of 3 cm²/min to a desired surface pressure between 0 and 2 mN/m. The film was then transferred to a 50 nm Au thin-film sputtered on (100) Si. The Au is treated with 1 mM (ethanol) thiophenol (PhSH) overnight to form a self-assembled monolayer (SAM) on the Au surface. It is then copiously rinsed with EtOH and dried under N₂. The nanocube film is then transferred to the Au via dip coating and allowed to dry. Figure 5.1.A shows a schematic of a single nanocube deposited on the functionalized Au. Figure 5.1.B,C shows SEM images of two SERS substrates fabricated from different sized nanocubes, with averages of 74 and 96 nm.

Raman Data Collection: All data was collected on a Renishaw inVia Raman microscope. A 785 nm stripe diode laser was used with an illumination power of < 1 mW. A 50x, 0.9 NA objective was used for both illumination and collection of Raman data. For each SERS substrate, 100 data points were collected at random locations and
averaged. For bulk PhSH Raman, 10 data points were collected and averaged under the same illumination conditions.

Electrodynamic Simulations: Electromagnetic modeling was performed with Lumerical FDTD Solutions. Ag nanocubes (Palik dielectric data) were modeled in 3 dimensions with a 50 nm Au thin film as a substrate. A 3 nm spacer with index of refraction \(n = 1.4 \) was added to reflect the organic spacing layers (PhSH and PVP). Incident light was injected normal to the substrate, and polarized parallel to the (100) faces. A 1 nm global mesh was used; to improve accuracy, the mesh size was reduced in the gap region to 0.5 nm. The model was solved at 200 points at 5 nm intervals from 300 nm to 1300 nm. All \(|E/E_0|\) and EF values were calculated for 785 nm using a cubic spline interpolation from the surrounding data points. All electric field profiles shown are at 783 nm, the data point nearest our 785 nm Raman laser line. The electric field measurements were calculated in the plane of the Au thin film, 1 nm offset from the surface.

5.6 Conclusions

Our results show that size and shape dispersity in colloidal metal nanoparticle samples can have a significant effect on the resulting Raman EF for nanoparticle-based SERS substrates. Single nanoparticle models do not provide an accurate prediction of Raman EFs, which can lead to inaccurate predictions of SERS detection levels. Using an analytical model that weight averages the optical response of multiple single nanoparticle models that possess different sizes can improve this accuracy. Extending these models to encompass shape dispersity requires image analysis to
gauge ROC distributions and counts for other shape defect populations. Finally, accounting for other variables such as Ag surface roughness and deviations in optical gap thickness may also improve the accuracy of our ensemble model.

Chapter 5 is a reformatted reprint in full, of the material from: Dill, T. J., Rozin, M. J., Brown, E. R., Palani, S., Tao. A. R., Investigating the Effects of Polydispersity on Gap-Mode SERS Enhancement Factors. The Analyst 2016, 141 (12), 3916-3924. The dissertation author was the principal researcher and author of this paper.
5.7 References

Chapter 6

Quantum Effects Observed in mSERS

Substrates with Small Gaps
6.1. Introduction

When multiple plasmonic nanostructures are placed within their respective evanescent fields, their LSPRs become electromagnetically coupled, modifying the plasmon resonance. Coupled LSPRs can lead to an increased electric near-field intensity in the nanojunction between the particles, known as a hotspot, as well as a broadened and red-shifted LSPR. \(^1\text{-}^6\) Gap-mode hotspots have found use in single molecule sensing as well as for metamaterials. \(^7\text{-}^{11}\) It is generally recognized that smaller gaps lead to stronger near-field enhancements as a result of stronger coupling. \(^12\text{-}^{13}\) However, it was shown that there is a limit to this increasing enhancement with decreasing gap size. \(^14\text{-}^{16}\) Below a critical gap size, quantum effects such as electron tunneling become important and can strongly modify the LSPR. \(^17\) Tunneling across plasmonic gaps manifests as several measurable effects. In the far-field, a blue-shift and disappearance of the coupled plasmon mode occurs as the gap distance decreases. \(^18\text{-}^{20}\) Simultaneously, one or more charge transfer plasmon (CTP) modes may appear. \(^19\text{-}^{21}\) In addition, the near-field enhancement becomes quenched. \(^16\text{, }19\text{, }22\) For nanospheres, electron tunneling has only been observed up to \(~0.5\) nm. \(^14\text{, }19\text{, }23\)

Molecular junctions offer a way to increase the critical tunneling distance and modify the LSPR. The HOMO-LUMO gap of self-assembled monolayers (SAMs) modifies the tunneling barrier height, which helps determine the distance over which electrons can tunnel. Tunneling through gaps up to several nanometer has been observed for molecular tunnel junctions. \(^24\) In a recent example, an increase in gap conductivity is observed when a dithiol molecular SAM is used instead of the
equivalent monothiol to separate an Au nanosphere and a metal film. The higher conductivity of the dithiol results in a large blue-shift of the LSPR. The large interfacial area of Ag nanocubes has been combined with a molecular tunnel junction to observe CTPs in nanocube dimers with gap distances as large as 1.1 nm, larger than the nanosphere equivalent tunnel junction. It has also been shown that molecular conductivity can be increased by the presence of a gap-plasmon, further increasing an electrons ability to tunnel. A thorough understanding of the nature of these quantum effects could lead to improved design for sensors, new optoelectronic devices, or opportunities in nonlinear optics.

Here we demonstrate plasmonic tunneling with tunable critical tunneling distances. By changing the molecular SAMs within the junction, we are able to modify the tunneling barrier height and allow tunneling in gaps as large as 2.5 nm. These large and tunable gap distances are achieved with colloidal patch nanoantennas, a type of metasurface formed when Ag nanocubes (AgNCs) are placed onto a metal film. Colloidal patch antennas function via a fabry-perot like resonance, which allows multiple reflections of a standing wave called a transverse cavity plasmon (TCP). Colloidal patch antennas were first demonstrated as tunable near-perfect light absorbers. These multiple reflections also create a highly enhanced near-field within the gap which are of great importance when designing a metasurface for use in enhanced spectroscopy. When other nanoparticle geometries are used, such as Ag nanospheres (AgNS), we observe no tunneling, highlighting the importance of geometry in tunneling.
We achieve unprecedented control over gap thickness by fabricating our AgNC metasurfaces in two steps instead of one. AgNCs are deposited onto an elastomeric stamp (PDMS) before coming into contact with a metal film (Figure 6.1A). This allows the ligand on both metal surfaces to be modified independently, resulting in a tunable gap distance of 0.8 – 3.5 nm. This gap size tunability allows us to accurately observe the onset of tunneling. In previous studies investigating AgNC metasurfaces, the smallest gap available was 2-3 nm.\(^{35}\) This gap was generated by the polyvinylpyrrolidone (PVP) layer that remains on the AgNC surface from synthesis and cannot be removed or exchanged within the junction.\(^{35}\) Furthermore, by modifying only the ligand on the metal film and changing the molecular interface, we can tune the tunneling gap distance from 1.5 – 2.5 nm. We also demonstrate that these

Figure 6.1. Schematic for the design and characterization of the mSERS substrate. (A) A cartoon shows a dispersion of AgNCs deposited onto a PDMS substrate, which was then inverted and adhered to an Au substrate. The schematic of the blown up AgNC shows the interface of a single AgNC. The AgNC ligand is exchanged for an alkanethiol of chain length (n) before the AgNC comes into contact with the Au surface which can have a Raman analyte (RA). The conductivity of the gap beneath the AgNC is a function of n and RA. (B) Schematic for a classical electrodynamic simulation of an AgNC on an Au substrate separated by a gap. For a given AgNC size, the plasmon response is a function of h and σ_T.
metasurfaces operate as efficient SERS substrates. By tuning the gap distance down to the onset of tunneling, we can increase Raman signal intensity by roughly an order of magnitude. Below the critical gap distance however, the SERS intensity drops significantly. Both our near-field (SERS) and far-field (UV-Vis) measurements support the observation of tunneling.

6.2. Results & Discussion

6.2.1. Tunable Gap-Height Metasurfaces

Figure 6.1.A shows the experimental design of the AgNC metasurfaces and the molecular SAMs used to define the gap. We fabricate AgNC metasurfaces by depositing a film of AgNCs onto a thin PDMS stamp (150 µm thick), then performing a ligand exchange with an alkanethiol of length n (CH₃(CH₂)n SH) on the AgNCs before adhering the exposed AgNC surface to an Au thin-film substrate. This Au thin-film can be functionalized with a Raman analyte layer (RA). When the two molecular surfaces come into contact, they form the gap of height h. Tunneling through the gap is treated here as analogous to a finite conductivity within the gap region (σₜ), it is a function of both n and RA. Figure 6.1.B shows a schematic of the metasurface geometry simulated via the finite difference time-domain (FDTD) method. An example of the near-field enhancement profile of the TCP resonance mode is shown located beneath the AgNC. The simulated plasmon resonance is a function of h and σₜ. The condition of σₜ = 0 is considered free of electron tunneling regardless of h, and is designated the classical model.
Figure 6.2. shows results from classical modelling of an AgNC metasurface with different values of h. AgNCs were modeled with an edge length of 73.6 nm and a 17 nm corner radius of curvature (ROC), representative of real AgNCs metasurfaces discussed below. The molecular gap between the metal structures is modeled as a dielectric (n= 1.4, $\sigma_T = 0$). Figures 6.2.A,B show the far-field reflectance spectra and the average near-field enhancement respectively. Both field enhancement and reflectance spectra were investigated for h = 5, 4, 3, 2.5, 2, and 1.5 nm. We observe that as h decreases, coupling between the AgNC and the Au film increases and the resonance red-shift from 678 nm (h = 5 nm) to 977 nm (h = 1.5 nm). Simultaneously, the average resonant near-field enhancement increases from 43.6 to 81.5. When the resonance peak locations are plotted against h, we find $\lambda_{Res} \propto 1/\sqrt{h}$ (Figure 6.5. black dashed line). This is consistent with previous theoretical and computational work examining TCP modes in similar structures.13 Figure 6.2.C shows a reflectance spectra.

![Figure 6.2.](image)

Figure 6.2. FDTD simulations for a AgNC separated by a dielectric gap (n=1.4) from an Au substrate by h. (A) Simulated reflectance spectra of an AgNC on Au for different values of h. (B) Simulated average electric field enhancements within the gap for different values of h. (C) Reflectance spectra for a fabricated AgNC metasurface with a Raman analyte layer of dHDT and an alkanethiol layer of n=11 (dodecanethiol). The inset shows an SEM image of AgNCs deposited on PDMS prior to adhesion to an Au substrate. AgNCs have an average edge length of 73.6 ± 3.7 nm, the gap is estimated at h = 3 nm, $\sigma_T = 0$ (blue line), the red line shows the FDTD simulated reflectance for h = 3 nm. The simulation was modified from (A) to reflect the surface density of AgNCs. The dashed line shows the reflectance spectra of PDMS adhered to Au with no AgNCs.
of a large-area ensemble measurement of an AgNC metasurface. The AgNCs were functionalized with 1-dodecanethiol (DDT, n=11), while the Au substrate was functionalized with deuterated 1-hexadecanethiol (dHDT). We estimate the gap size to be 3.05 nm (see methods). The dip observed in the spectra (peak at 756 nm) has been extensively shown to be the fundamental resonance (TCP) mode.30, 32, 35 This spectra is compared to a classical simulation of h=3 nm (adjusted from 6.2 Å to reflect the surface density of the AgNC metasurface shown in the inset). There is excellent agreement between the simulated and experimental data. The larger full-width half-maximum (FWHM) of the experimental data can be ascribed to the polydispersity of the AgNCs which have a size distribution of 73.6 ± 3.7 nm and corner sharpness of 17 ± 2.2 nm.

6.2.2 Quantum Tunneling in Ag Nanocube Metasurfaces

In order to investigate the gap-size dependent field enhancement and far-field (reflectance) behavior of our metasurfaces, we fabricated metasurfaces functionalized with different length alkanethiols (n = 1, 2, 3, 5, 7, 11, 15, 17). The RA SAM used to coat the Au substrate was thiophenol (PhSH). Figure 6.3.A shows an intensity plot of the reflectance spectra for n=1—17. The black dashed line shows the TCP modes, and the arrows represent decreasing h. As n decreases, we observe a red-shift of the TCP mode, in agreement with classical simulations. Unexpectedly, between n = 5 and n = 3, the TCP mode begins to blue-shift, as well as becoming both broader and less intense. We suspect this damping is a result of a weakened near-field enhancement
We also observe for $n \leq 3$, an additional mode appears between 610 – 626 nm.

These findings can be replicated through simulations that incorporate quantum effects. We use an established method known as the quantum corrected model (QCM). The QCM has been validated by comparison to full quantum calculations. The QCM replaces the dielectric gap material with a conductive material (σ_T), allowing electrons to cross the gap. Figure 6.3.B shows the QCM calculated reflectance spectra with a fixed gap ($h = 2$ nm), and a σ_T ranging from $\sigma_T = 0.1 – 2.5 \times 10^5$ S/m. At low conductivities, there is no noticeable change in the spectra. In this regime, tunneling is not expected to contribute significantly to the plasmon mode, the absence of the red-shift observed in Figure 6.3.A results from the fixed h. As the conductivity reaches 2.5×10^3 S/m however, we observe a blue-shift as well as damping of the TCP mode. In addition, we observe the appearance of a higher-energy

Figure 6.3. Intensity plots of reflectance for experimental and simulated metasurfaces. (A) Intensity plot of metasurfaces fabricated with alkanethiols of $n=1—17$, and a Raman analyte layer of PhSH. The resonance peak locations are plotted as a dashed black line, the arrows show the direction of decreasing h. (B) Simulated Reflectance for a metasurface with $h = 2$ nm and a changing σ_T. The arrows show the direction of the resonance peak location as a function of σ_T.

(discussed below).
mode at 575 nm. These observations are consistent with similar simulations performed for AgNC dimers.26 This study ascribed the appearance of the higher energy mode to a CTP as the TCP mode disappears. The reflectance spectra used in Figure 6.3.A are shown in Figure 6.4.A The magnitude of the blue-shift, qualitative damping, and the location of the CTP are all in excellent agreement between experiment and simulation. The accuracy of the QCM suggests the critical tunneling gap is $n = 3$.

We find other phenomena that could result in the blue-shift to be unlikely. One possibility is shape change or etching of the nanoparticle. It is possible that short chain alkanethiolates are more likely to etch the AgNCs due to lower stability. We performed our alkanethiol ligand exchanges at 1 mM for 1 hr. Subsequent SEM image analysis of AgNC stamps with alkanethiol ligands ($n=1$-17) shows no change in average nanoparticle size, suggesting ligand based nanoparticle etching is insignificant. Selective etching has also been observed on AgNCs when an a Schottky barrier was formed with a TiO$_2$ surface.37 This etch process requires a rectified photocurrent to produce Ag$^+$, which then diffuses away from the nanoparticle and is reduced. While it is possible that a MIM junction can have a photocurrent38, the etching observed occurred due to a combination of rectifying junction, high humidity, and long periods light exposure. Since our reflectance measurements were taken in standard humidity environments, within minutes of the AgNCs coming into contact with the Au surface, we find that a blue-shift due to current induced etching is also unlikely.
Another possible cause for a blue-shift is the lowering of the dielectric constant in the gap. For a specific Au substrate, the only change between metasurfaces is the length of the alkanethiol ligand capping the AgNC. A change in alkanethiol length should have minimal effect on refractive index within the gap relative to the effect it has on h. Control simulations additionally suggest that small changes in refractive index would not result in a resonance shift of more than several nanometers. Thus we

Figure 6.4. Reflectance spectra for metasurfaces fabricated from alkanethiol and PVP capped AgNCs (n = 1—17) on an Au thin-film functionalized with different Raman analyte layers. (A) Reflectance spectra for metasurfaces fabricated with AgNCs of edge length 109 nm ± 10 nm and a PhSH Raman analyte layer. (B-D) Reflectance spectra for metasurfaces fabricated with AgNCs of edge length 73.6± nm and a (B) Bare Au, (C) PhSH, and (D) dHDT Raman analyte layer.
believe changes in refractive index within the gap to be unlikely to affect the LSPR significantly.

6.2.3. The Effect of Surface Chemistry on Tunneling

Figure 6.5. shows the effect of interfacial chemistry on the critical tunneling gap. Metasurfaces are fabricated with alkanethiols (n = 1—17) and PVP (the polymer capping ligand on the AgNC surfaceremaining from synthesis), and are brought into contact with Au substrates functionalized with three different RA layers: bare Au (unfunctionalized), PhSH, and dHDT. The TCP mode is fitted from reflectance data (Figure 6.4.B-D) and plotted against h. We estimated h using literature values (See section 6.3. for details). There are significant differences in the value of h for the critical tunneling gap between RA layers. This difference is dependent only on the

![Figure 6.5](image)

Figure 6.5. Experimentally determined gap-mode resonance (circles) for metasurfaces fabricated from alkanethiol and PVP capped AgNCs (n= 1—17) on an Au thin-film substrate with Raman analyte layers of dHDT (black circles), PhSH (blue circles), and bare Au (red circles). The black dashed line shows the reflectance peak determined by the classical model for AgNCs.
chemistry of the Au surface and the resulting interface between the alkanethiol on the
AgNC and the RA on the Au. We observe the critical tunneling gap at 1.3 nm for a
bare Au surface, 1.9 nm for a PhSH coated Au surface, and 2.7 nm for a dHDT coated
Au surface. This suggests that by varying interfacial chemistry, the conductivity of the
gap can be significantly affected. We observe that junction conductivity is highest for
a bilayer of interdigitated alkanethiols, followed by an alkanethiol interacting with an
aromatic thiol, and lowest for an alkanethiol on an untreated Au surface. It has been
previously shown that for DC tunneling, a bilayer of alkanethiols on Hg electrodes
will conduct a significantly larger current than the equal thickness equivalent
monolayer of alkanethiol.39 This is in qualitative agreement with the larger critical
tunneling gap observed for an RA of dHDT than bare Au. It is also likely that the bare
Au surface has several monolayers of H2O adsorbed to the surface, which could
dramatically affect the molecular interface. We hypothesize that CH-CH interactions
between interdigitated alkanethiols may play a role in the larger critical tunneling gap
for dHDT than PhSH. This significant increase in conductivity over vacuum/air gaps
as well as the large interfacial geometry of an AgNC allows plasmonic tunneling at
unprecedented and tunable gap distances of several nanometers.

6.2.4. Quantum Tunneling is Only Observed for Ag Nanocubes

AgNC metasurfaces displaying large interfaces and TCPs may enable
Quantum effects at larger distances than those of nanospheres. In order to investigate
the geometric dependence of our metasurfaces, we repeated our experiments with Ag
nanospheres (AgNS) synthesized using a similar polyol method.40, 41 We simulated Ag
quasi-spheres to reflect the faceted nature of the synthesized AgNS (Figure 6.6.A). Ag quasi-spheres were simulated to include a regular hexagonal facet at the interface with a diameter of 18 nm. The Ag quasi-sphere displays two distinct plasmon resonances (Figure 6.6.B). The higher energy resonance peak position fits well to $1/h^3$, consistent with a dipole-dipole interaction\(^2\). However, the lower energy resonance peak position

Figure 6.6. FDTD Simulations and reflectance data of a metasurface fabricated from AgNS on an Au thin-film. (A) Schematic showing a sphere separated by a dielectric gap (n=1.4) from an Au substrate by h. (B) Simulated average electric field enhancements within the gap for different values of h. (C) an SEM image showing AgNS deposited onto a PDMS substrate prior to adhesion to an Au thin-film. The AgNS have an average size of 58 ± 12 nm. (D) Reflectance spectra for a fabricated AgNS metasurface with a Raman analyte layer of dHDT and an alkanethiol layer of $n=11$ (dodecanethiol). The gap is estimated at $h = 3$ nm, $\sigma_T = 0$ (blue line), the red line shows the FDTD simulated reflectance for $h = 3$ nm. The dashed line shows the reflectance spectra of PDMS adhered to Au with no AgNCs.
fits well to $1/d^{1/2}$, consistent with a TCP (a similar mode to the AgNC, although weaker in intensity).\cite{13} We fabricated AgNS metasurfaces (Figure 6.6.C) using spheres of 58 ± 12 nm diameter. As opposed to the AgNC metasurfaces, we observe a monotonically red-shifting resonance with decreasing gap-size down to our smallest gap of 8 Å (Figure 6.7.). These resonances fall between the simulated TCP and dipolar modes of the quasi-sphere. This is likely due to polydispersity of the AgNS and many different possible sizes and shapes of crystalline facet being in contact with the Au substrate. The only observable difference between our AgNC and AgNS metasurfaces are the nanoparticle size and geometry, 58 ± 12 nm diameter for the AgNS and 73.6 ± 3.7 nm the AgNCs. We suspect the primary cause for the increase in gap conductivity is the increased surface area in which there is a uniformly small gap. For an ideal

Figure 6.7. Experimentally determined gap-mode resonance (circles) for metasurfaces fabricated from alkanethiol and PVP capped AgNS ($n = 1—17$) on an Au thin-film substrate with Raman analyte layers of dHDT (black circles), PhSH (blue circles), and bare Au (red circles). The black dashed line shows the reflectance peak determined by the classical model for ideal AgNCs, the black solid line shows the cavity resonance reflectance peak determined for a quasi-sphere, the green solid line shows the dipolar resonance reflectance peak determined for a quasi-sphere.
AgNS, the point of contact is infinitesimal, while for a real AgNS it is likely a crystalline facet lying in contact with the Au thin-film. This facet is small relative to the AgNC face area, we estimate over an order of magnitude difference in most cases. Classical simulations ($h = 1.5$ nm) indicate that the average near-field enhancement is 81.4 for AgNCs with an interfacial area of 5,400 nm2. For AgNS we estimate an average near-field enhancement of 38 over an area of 280 nm2. A larger near-field enhancement over a larger area may enable tunneling in the AgNC metasurface. It is also possible that the plasmon mode plays a role. The fundamental mode for an AgNC metasurface is a TCP, while the AgNS substrate resonance is a dipolar bonding plasmon (DBP). It is possible that the polarity of the plasmon is important to the distance across which plasmons can induce tunneling. A third possibility is that the single crystalline nature of the AgNC allows for better tunneling than the polycrystalline AgNS. Single crystal particles have previously shown longer plasmon decay lifetimes, suggesting a larger population of high energy electrons can exist.42

6.2.5. Tunneling Effects on Near-Field Enhancement

We can indirectly measure the effects of tunneling on the near-field enhancement via SERS. We took SERS measurements for alkanethiol ($n = 1—17$) and PVP functionalized AgNC metasurfaces with a RA layer of PhSH, and recorded the intensity of the PhSH ring vibrational mode (999 cm$^{-1}$). PhSH is constant relative to the changing alkanethiol molecules and so can be used as a gauge for near-field enhancement at a constant distance from the Au substrate. SERS measurements are taken with two different excitation sources 785 and 633 nm in order to ensure...
resonance effects do not become convoluted with near-field strengths. Figure 6.8. show SERS intensities for 785 and 633 nm excitations respectively. For both laser excitations, PhSH intensities increase with decreasing gap size until \(n = 3 \), where the SERS intensity rapidly decreases, suggesting a loss of near-field enhancement as the metasurface experiences tunneling. From \(n = 17 \) to \(n = 3 \) the Raman signal intensity increases 15x for 785 nm excitation and 31x for 633 nm excitation. These results indicate that although a smaller \(h \) can provide a higher near-field strength and Raman enhancement factor (EF), the strength of the near-field decreases quickly below a critical \(h \), at which tunneling negatively affects SERS intensity.

6.3 Experimental and Computational Methods

Ag nanocubes and nanospheres were synthesized using the polyol method. Details of the Ag nanocube synthesis can be found in chapter 2. Ag nanosphere synthesis was carried out as previously described.\(^{41}\) Briefly, 1.28 g of PVP (55000 MW) is dissolved in 50 mL of ethylene glycol and heated to 150° C. The solution is allowed to preheat for 10 min. Under vigorous stirring, 0.2 g of AgNO\(_3\) dissolved in
deionized (DI) water is rapidly injected into the PVP solution. After 30 minutes of reaction time the solution is removed from heat and allowed to cool.

Metasurface fabrication: Ag nanoparticles are repeatedly washed by centrifugation in ethanol and finally redispersed in chloroform. The nanoparticle solution is then carefully drop-cast onto a DI water sub-phase and allowed to equilibrate. Thin (150 µm) PDMS adhered to a silicon backing was then mechanically dipped through the film to transfer it to the substrate. Alkanethiols were used to displace the PVP and form controlled SAMs on the nanoparticle surfaces. Nanoparticle coated PDMS surfaces were submerged in a 1 mM ethanolic solution of the desired alkanethiol for 1 hour. They were then rinsed copiously with ethanol, dried in N₂, and adhered immediately to an Au thin-film substrate. The Au thin-film was prepared by DC sputtering a Si substrate with a 10 nm Ti adhesion layer followed by 50 nm of Au. The Au thin-film was then either treated with a 1 mM ethanolic solution of a desired thiolated molecule prior to adhesion to the Ag nanoparticle PDMS surface, or immediately adhered to form the metasurface.

UV-Vis and SERS measurements: a Perkin-Elmer Lambda 1050 was used for all reflectance measurements. Data was collected with an 8° angle of incidence. Raman measurements were collected on a Renishaw inVia Raman microscope, either with a 633 nm HeNe laser or a 785 nm diode laser. All measurements were collected with < 1 mW with a 0.9 NA 50x objective. 100 measurements were collected at random for each substrate.
FDTD Simulations were carried out according to the same procedure described in Chapter 2.

6.4 Conclusions

We have observed quantum tunneling gap distances of up to 2.5 nm, where the critical tunneling distance is tunable by modifying the gap ligand chemistry. This effect is only observed for metasurfaces fabricated with AgNCs, a plasmonic nanostructure with high crystallinity and a large interfacial gap surface area. The quantum tunneling affects not only far-field properties like absorption, but the near-field enhancement as well. By decreasing the metasurface gap to only slightly larger than the critical tunneling gap distance, we have been able to increase SERS intensity by over an order of magnitude. A thorough understanding of the mechanisms that allow electrons to tunnel across the molecular tunnel junction can help to engineer plasmonic systems. It may also be possible to leverage high-energy electrons tunneling across the gap to create high-sensitivity sensors, plasmonic-electronic devices, or photocatalytic reactors.

Chapter 6, in full, is currently being prepared for submission for publication of the material. Dill, T. J., Rodarte, A. L., Tao, A. R. The dissertation author was the principal researcher and author of this material.
6.5 References

Appendix A

Colloidal Nanoantenna Data
<table>
<thead>
<tr>
<th>Tip #</th>
<th>Wavelength (nm)</th>
<th>Spectra #</th>
<th>Peak (cm(^{-1}))</th>
<th>Noise</th>
<th>Peak Height</th>
<th>SNR</th>
<th>Int time (s)</th>
<th>IPower (nW)</th>
<th>EF (Probe Average) Normalized SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>633</td>
<td>1</td>
<td>999</td>
<td>23.7</td>
<td>1690.1</td>
<td>71.31</td>
<td>10</td>
<td>8.00E+05</td>
<td>1.40E+07</td>
</tr>
<tr>
<td>1</td>
<td>633</td>
<td>2</td>
<td>999</td>
<td>25.9</td>
<td>780.7</td>
<td>30.14</td>
<td>10</td>
<td>8.00E+05</td>
<td>179</td>
</tr>
<tr>
<td>1</td>
<td>633</td>
<td>3</td>
<td>999</td>
<td>37.6</td>
<td>1447</td>
<td>38.48</td>
<td>10</td>
<td>8.00E+05</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>633</td>
<td>1</td>
<td>999</td>
<td>90.82</td>
<td>2131.4</td>
<td>23.47</td>
<td>10</td>
<td>8.00E+05</td>
<td>2.61E+07</td>
</tr>
<tr>
<td>2</td>
<td>633</td>
<td>2</td>
<td>999</td>
<td>98.1</td>
<td>1481.5</td>
<td>15.10</td>
<td>10</td>
<td>8.00E+05</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>633</td>
<td>3</td>
<td>999</td>
<td>98.1</td>
<td>1481.5</td>
<td>15.10</td>
<td>10</td>
<td>8.00E+05</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>633</td>
<td>1</td>
<td>999</td>
<td>45.2</td>
<td>821.3</td>
<td>18.17</td>
<td>10</td>
<td>4.00E+05</td>
<td>2.28E+07</td>
</tr>
<tr>
<td>3</td>
<td>633</td>
<td>2</td>
<td>999</td>
<td>52.7</td>
<td>1267.6</td>
<td>24.05</td>
<td>10</td>
<td>4.00E+05</td>
<td>296</td>
</tr>
<tr>
<td>3</td>
<td>633</td>
<td>3</td>
<td>999</td>
<td>50.7</td>
<td>1189</td>
<td>23.45</td>
<td>10</td>
<td>4.00E+05</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>633</td>
<td>4</td>
<td>999</td>
<td>59.29</td>
<td>5256</td>
<td>88.65</td>
<td>10</td>
<td>4.00E+05</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>633</td>
<td>1</td>
<td>999</td>
<td>73.1</td>
<td>5457.3</td>
<td>74.66</td>
<td>10</td>
<td>4.00E+05</td>
<td>5.03E+07</td>
</tr>
<tr>
<td>4</td>
<td>633</td>
<td>2</td>
<td>999</td>
<td>78</td>
<td>5896.3</td>
<td>75.59</td>
<td>10</td>
<td>4.00E+05</td>
<td>553</td>
</tr>
<tr>
<td>4</td>
<td>633</td>
<td>3</td>
<td>999</td>
<td>80.3</td>
<td>5503.9</td>
<td>68.54</td>
<td>10</td>
<td>4.00E+05</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>633</td>
<td>4</td>
<td>999</td>
<td>27.9</td>
<td>1951.8</td>
<td>69.96</td>
<td>10</td>
<td>4.00E+05</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>633</td>
<td>1</td>
<td>999</td>
<td>15.32</td>
<td>533</td>
<td>34.79</td>
<td>10</td>
<td>4.00E+05</td>
<td>8.12E+06</td>
</tr>
<tr>
<td>5</td>
<td>633</td>
<td>2</td>
<td>999</td>
<td>15.7</td>
<td>480</td>
<td>30.57</td>
<td>10</td>
<td>4.00E+05</td>
<td>325</td>
</tr>
<tr>
<td>5</td>
<td>633</td>
<td>3</td>
<td>999</td>
<td>18.4</td>
<td>510</td>
<td>27.72</td>
<td>10</td>
<td>4.00E+05</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>633</td>
<td>4</td>
<td>999</td>
<td>19.8</td>
<td>320</td>
<td>16.16</td>
<td>10</td>
<td>4.00E+05</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>633</td>
<td>4</td>
<td>999</td>
<td>17.1</td>
<td>124</td>
<td>7.25</td>
<td>10</td>
<td>4.00E+05</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>----</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>633</td>
<td>5</td>
<td>999</td>
<td>15.9</td>
<td>129</td>
<td>8.11</td>
<td>10</td>
<td>4.00E+05</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>633</td>
<td>6</td>
<td>999</td>
<td>15.8</td>
<td>85</td>
<td>5.38</td>
<td>10</td>
<td>4.00E+05</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>633</td>
<td>7</td>
<td>999</td>
<td>12.9</td>
<td>102.7</td>
<td>7.96</td>
<td>10</td>
<td>4.00E+05</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>633</td>
<td>8</td>
<td>999</td>
<td>16</td>
<td>155.5</td>
<td>9.72</td>
<td>10</td>
<td>4.00E+05</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>----</td>
<td>----------</td>
<td></td>
</tr>
</tbody>
</table>
| 10 | 633 | 1 | 999 | 17.74| 143.5| 8.09 | 10 | 4.00E+05 | 2.84E+06
<p>| 10 | 633 | 2 | 999 | 14 | 239.5| 17.11| 10 | 4.00E+05 |
| 10 | 633 | 3 | 999 | 14.4 | 453.7| 31.51| 10 | 4.00E+05 |
| 10 | 633 | 4 | 999 | 16 | 165.1| 10.32| 10 | 4.00E+05 |</p>
<table>
<thead>
<tr>
<th>10</th>
<th>633</th>
<th>5</th>
<th>999</th>
<th>12.9</th>
<th>323.8</th>
<th>25.10</th>
<th>10</th>
<th>4.00E+05</th>
</tr>
</thead>
</table>
| 11 | 633 | 1 | 999 | 14.3 | 303 | 21.19| 5 | 4.00E+05 | 5.90E+06
<p>| 11 | 633 | 2 | 999 | 17.5 | 265 | 15.14| 5 | 4.00E+05 |</p>
<table>
<thead>
<tr>
<th>11</th>
<th>633</th>
<th>3</th>
<th>999</th>
<th>24.1</th>
<th>518</th>
<th>21.49</th>
<th>10</th>
<th>4.00E+05</th>
</tr>
</thead>
</table>
| 12 | 633 | 1 | 999 | 31.76| 4266 | 134.32| 10 | 4.00E+05 | 3.13E+07
<p>| 12 | 633 | 2 | 999 | 37.22| 2392 | 64.27| 10 | 4.00E+05 |</p>
<table>
<thead>
<tr>
<th>12</th>
<th>633</th>
<th>3</th>
<th>999</th>
<th>33.7</th>
<th>2114</th>
<th>62.73</th>
<th>10</th>
<th>4.00E+05</th>
</tr>
</thead>
</table>
| 13 | 633 | 1 | 999 | 16.5 | 855.7| 51.86| 5 | 4.00E+05 | 1.77E+07
<p>| 13 | 633 | 2 | 999 | 15.6 | 844 | 54.10| 5 | 4.00E+05 |
| 13 | 633 | 3 | 999 | 13 | 808 | 62.15| 5 | 4.00E+05 |</p>
<table>
<thead>
<tr>
<th>13</th>
<th>633</th>
<th>4</th>
<th>999</th>
<th>13.5</th>
<th>800</th>
<th>59.26</th>
<th>5</th>
<th>4.00E+05</th>
</tr>
</thead>
</table>
| 14 | 785 | 1 | 999 | 21.6 | 1975 | 91.44| 10 | 8.00E+05 | 6.78E+08
| 14 | 785 | 2 | 999 | 20.2 | 2970 | 147.03| 10 | 8.00E+05 |
| 14 | 785 | 3 | 999 | 21.4 | 3278 | 153.18| 10 | 8.00E+05 |
| | | | | | | |
|---|---|---|---|---|---|---|---|
| 14 | 785 | 4 | 999 | 21.1 | 1536 | 72.80 | 10 | 8.00E+05
| 14 | 785 | 5 | 999 | 26.6 | 2232 | 83.91 | 10 | 8.00E+05
| 14 | 785 | 6 | 999 | #DIV/0! | 2648 | 80.00 | 10 | 8.00E+05
| 14 | 785 | 7 | 999 | 26.7 | 1904 | 71.31 | 10 | 8.00E+05
| 15 | 514 | 1 | 999 | 28 | 30 | 38000 | 1.46E+06
| 15 | 514 | 2 | 999 | 25 | NA | NA | NA
| 15 | 514 | 3 | 999 | 11.98 | 38 | 3.17 | 30 | 38000
| 15 | 785 | 1 | 999 | 43.9 | 1977 | 45.03 | 10 | 8.00E+05
| 15 | 785 | 2 | 999 | 30.7 | 1068 | 34.79 | 10 | 8.00E+05
| 15 | 785 | 3 | 999 | 30.8 | 1584 | 51.43 | 10 | 8.00E+05
| 15 | 785 | 4 | 999 | 37.4 | 2615 | 69.92 | 10 | 8.00E+05
| 15 | 633 | 1 | 999 | 17 | 440 | 25.88 | 10 | 8.00E+04
| 15 | 633 | 2 | 999 | 15.8 | 336 | 21.27 | 10 | 8.00E+04
| 15 | 633 | 3 | 999 | 11.87 | 386 | 32.52 | 10 | 8.00E+04
| 15 | 633 | 4 | 999 | 17.21 | 195 | 11.33 | 10 | 8.00E+04
| 16 | 633 | 1 | 999 | 15 | 106 | 7.07 | 10 | 8.00E+04
| 16 | 633 | 2 | 999 | 12.4 | 92 | 7.42 | 10 | 8.00E+04
| 16 | 633 | 3 | 999 | 11.7 | 78 | 6.67 | 10 | 8.00E+04
| 16 | 633 | 4 | 999 | 12.6 | 103 | 8.17 | 10 | 8.00E+04
| 16 | 785 | 1 | 999 | 31 | 2428 | 78.32 | 10 | 8.00E+05
| 16 | 785 | 2 | 999 | 29.5 | 2715 | 92.03 | 10 | 8.00E+05
| 16 | 633 | 1 | 999 | 14.4 | 135 | 9.38 | 10 | 8.00E+04
| 16 | 633 | 1 | 999 | 14.4 | 135 | 9.38 | 10 | 8.00E+04

174
<table>
<thead>
<tr>
<th>16</th>
<th>633</th>
<th>2</th>
<th>999</th>
<th>10.5</th>
<th>129</th>
<th>12.29</th>
<th>10</th>
<th>8.00E+04</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>785</td>
<td>1</td>
<td>999</td>
<td>21</td>
<td>1022</td>
<td>48.67</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>16</td>
<td>785</td>
<td>2</td>
<td>999</td>
<td>25</td>
<td>816</td>
<td>32.64</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.64E+08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>240</td>
</tr>
<tr>
<td>17</td>
<td>785</td>
<td>1</td>
<td>999</td>
<td>27.8</td>
<td>873</td>
<td>31.40</td>
<td>10</td>
<td>1.50E+05</td>
</tr>
<tr>
<td>17</td>
<td>785</td>
<td>2</td>
<td>999</td>
<td>34.9</td>
<td>12554</td>
<td>359.71</td>
<td>10</td>
<td>1.50E+05</td>
</tr>
<tr>
<td>17</td>
<td>785</td>
<td>3</td>
<td>999</td>
<td>28.6</td>
<td>5190</td>
<td>181.47</td>
<td>10</td>
<td>1.50E+05</td>
</tr>
<tr>
<td>17</td>
<td>785</td>
<td>4</td>
<td>999</td>
<td>42.3</td>
<td>19250</td>
<td>455.08</td>
<td>10</td>
<td>1.50E+05</td>
</tr>
<tr>
<td>17</td>
<td>785</td>
<td>5</td>
<td>999</td>
<td>77.2</td>
<td>9126</td>
<td>118.21</td>
<td>10</td>
<td>1.50E+05</td>
</tr>
<tr>
<td>17</td>
<td>785</td>
<td>6</td>
<td>999</td>
<td>37.7</td>
<td>20425</td>
<td>541.78</td>
<td>10</td>
<td>1.50E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.91E+09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>986</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.50E+05</td>
</tr>
<tr>
<td>18</td>
<td>785</td>
<td>1</td>
<td>999</td>
<td>19.7</td>
<td>1002</td>
<td>50.86</td>
<td>10</td>
<td>1.60E+05</td>
</tr>
<tr>
<td>18</td>
<td>785</td>
<td>2</td>
<td>999</td>
<td>21.3</td>
<td>845</td>
<td>39.67</td>
<td>10</td>
<td>1.60E+05</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.65E+09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1333</td>
</tr>
<tr>
<td>19</td>
<td>785</td>
<td>1</td>
<td>999</td>
<td>14.4</td>
<td>1666.8</td>
<td>115.75</td>
<td>10</td>
<td>1.60E+05</td>
</tr>
<tr>
<td>19</td>
<td>785</td>
<td>2</td>
<td>999</td>
<td>10.6</td>
<td>1921</td>
<td>181.23</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.95E+09</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7043</td>
</tr>
<tr>
<td>20</td>
<td>785</td>
<td>1</td>
<td>999</td>
<td>37</td>
<td>771</td>
<td>20.84</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>20</td>
<td>785</td>
<td>2</td>
<td>999</td>
<td>22</td>
<td>750.1</td>
<td>34.10</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>20</td>
<td>785</td>
<td>3</td>
<td>999</td>
<td>18</td>
<td>1100</td>
<td>61.11</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>20</td>
<td>785</td>
<td>4</td>
<td>999</td>
<td>19</td>
<td>2915</td>
<td>153.42</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>20</td>
<td>785</td>
<td>5</td>
<td>999</td>
<td>20.5</td>
<td>794</td>
<td>38.73</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.63E+08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>363</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.00E+05</td>
</tr>
<tr>
<td>21</td>
<td>785</td>
<td>1</td>
<td>999</td>
<td>21.9</td>
<td>466.4</td>
<td>21.30</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>21</td>
<td>785</td>
<td>2</td>
<td>999</td>
<td>25.24</td>
<td>236</td>
<td>9.35</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.01E+08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>785</td>
<td>3</td>
<td>999</td>
<td>19</td>
<td>330</td>
<td>17.37</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>21</td>
<td>785</td>
<td>4</td>
<td>999</td>
<td>15</td>
<td>398</td>
<td>26.53</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>21</td>
<td>785</td>
<td>5</td>
<td>999</td>
<td>16.6</td>
<td>323.5</td>
<td>19.49</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>22</td>
<td>785</td>
<td>1</td>
<td>999</td>
<td>54</td>
<td>15856</td>
<td>293.63</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>22</td>
<td>785</td>
<td>2</td>
<td>999</td>
<td>26</td>
<td>1588</td>
<td>61.08</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>22</td>
<td>785</td>
<td>3</td>
<td>999</td>
<td>85.7</td>
<td>15673</td>
<td>182.88</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>22</td>
<td>785</td>
<td>4</td>
<td>999</td>
<td>30.6</td>
<td>7881</td>
<td>257.55</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>22</td>
<td>785</td>
<td>5</td>
<td>999</td>
<td>28.9</td>
<td>8062</td>
<td>278.96</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>23</td>
<td>785</td>
<td>1</td>
<td>999</td>
<td>25.6</td>
<td>631</td>
<td>24.65</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>23</td>
<td>785</td>
<td>2</td>
<td>999</td>
<td>27.1</td>
<td>2159</td>
<td>79.67</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>23</td>
<td>785</td>
<td>3</td>
<td>999</td>
<td>30.8</td>
<td>5639</td>
<td>183.08</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>23</td>
<td>785</td>
<td>4</td>
<td>999</td>
<td>26</td>
<td>3646</td>
<td>140.23</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>23</td>
<td>785</td>
<td>5</td>
<td>999</td>
<td>20.6</td>
<td>4668</td>
<td>226.60</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>24</td>
<td>785</td>
<td>1</td>
<td>999</td>
<td>23.9</td>
<td>2920</td>
<td>122.18</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>24</td>
<td>785</td>
<td>2</td>
<td>999</td>
<td>24.9</td>
<td>769</td>
<td>30.88</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>24</td>
<td>785</td>
<td>3</td>
<td>999</td>
<td>13.4</td>
<td>1006</td>
<td>75.07</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>24</td>
<td>785</td>
<td>4</td>
<td>999</td>
<td>20.6</td>
<td>6564</td>
<td>318.64</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>24</td>
<td>785</td>
<td>5</td>
<td>999</td>
<td>16.6</td>
<td>6214</td>
<td>374.34</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>25</td>
<td>785</td>
<td>1</td>
<td>999</td>
<td>23.1</td>
<td>702</td>
<td>30.39</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>25</td>
<td>785</td>
<td>2</td>
<td>999</td>
<td>27</td>
<td>5256</td>
<td>194.67</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>25</td>
<td>785</td>
<td>3</td>
<td>999</td>
<td>25.4</td>
<td>1322</td>
<td>52.05</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>25</td>
<td>785</td>
<td>4</td>
<td>999</td>
<td>27.8</td>
<td>5275</td>
<td>189.75</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
<tr>
<td>25</td>
<td>785</td>
<td>5</td>
<td>999</td>
<td>23.2</td>
<td>5214</td>
<td>224.74</td>
<td>10</td>
<td>8.00E+05</td>
</tr>
</tbody>
</table>