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ABSTRACT 

Numerical Study of Incompressible Slightly Viscous 
Flow Past Blunt Bodies and Airfoils 

Angela Yit lean Cheer 

Lawrence Berkeley Laboratory 
University of California 
Department of Mathematics 
Berkeley, California 94720 

iii 

A grid free numerical method is used to simulate incompressible 

flow at high Reynolds number. The numerical method simulates the flow 

inside the boundary layer by vortex sheets and the flow outside this 

layer by vortex blobs. The algorithm produces a smooth transition 

between the sheets and the blobs. 

The accuracy of this hybrid numerical method is tested in several 

numerical experiments. In the first experiment,the algorithm is used 

to simulate slightly viscous flow past a circular cylinder. In the 

second experiment, the algorithm is used to simulate flow past a 

Joukowski airfoil at various angles of attack. In the latter case, 

there is no evidence of "blow-up 11 of the flow at the trailing edge of 

the airfoil. In both experiments, the calculated flow and its func­

tionals (such as lift and drag coefficients) are in good agreement with 

both theoretical results and wind tunnel experiments. 





1. Introduction 

Viscous fluid flows can be described by the Navier-Stokes equations 

(see [3], [17], [25], [35], [41], [45], [46], [48], or [54]). These 

equations are difficult to solve numerically, especially at large 

Reynolds numbers. For example, a method based on a grid has the dis­

advantage that the mesh width must decrease as the Reynolds number R 

increases. Consequently, at very large Reynolds numbers, a very fine 

grid must be imposed or else the numerical viscosity due to the grid 

will swamp the effects of the true viscosity as represented by the 

Reynolds number. In this paper we obtain numerical solutions to the 

problems of flow past obstacles by using a grid-free numerical method. 

We apply this method to simulate flow past a circular cylinder and flow 

past airfoils at varying angles of attack. 

Consider a steady two-dimensional flow of a fluid of small 

viscosity past a flat plate with no slip at the solid surface. If we 

neglect viscosity and thus calculate the flow as a potential flow with­

out discontinuities, then it is impossible to satisfy the no-slip con­

dition at the boundary. However, the no-slip condition can be satis­

fied by assuming that a vortex sheet coincides with the solid surface. 

The relative tangential velocity then falls to zero through that sheet. 

As the fluid of small viscosity passes the obstacle, the vorticity 

created at the boundary diffuses, and then this vorticity is convected 

downstream. The diffusion distance in the normal direction is small, 

and the main effect of convection carries the vorticity parallel to 

rather than away from the body. The result is to produce a layer of 



large vorticity adjacent to the solid surface. Through this layer the 

tangential velocity falls from its value in the main stream to zero at 

the surface. Suppose the flow past the flat plate has velocity 

Q = (1,0) parallel to the stream. The time required for the fluid 

of viscosity v to traverse a unit distance along the x-direction of 

the plate is of order x/U. In this time the vorticity attains a 

finite but appreciable value within a layer whose thickness is of the 

order (vx/U) 112 = (l/R) 112• This is the order of the thickness 

of the boundary layer. See [50] for a history of boundary layer theory 

and [55] for a discussion of incompressible boundary layer separation. 

A similar analysis can be applied to the motion of the flat plate 

started impulsively from rest. Initially, the flow is irrotational and 

without circulation. The initial impulse produces a vortex sheet 

coincident with the solid surface. This vorticity immediately begins 

to diffuse, and is eventually convected downstream. After a short time 

t there is a boundary layer whose thickness is of order (vt) 112• 

Thus, in the case of flow past an obstacle and in the case of flow due 

to the motion of an obstacle started impulsively from rest, we see that 

there are two regions to consider, namely, the flow in the regions 

inside and outside the boundary layer. In our study, we consider the 

flow in these two regions separately, and then patch the two solutions 

together at the edge of the boundary layer. 

In this paper, flow past an obstacle started impulsively from rest 

will be simulated by a hybrid numerical method. This hybrid algorithm 

is a coupling of the random vortex sheets and the random vortex blobs 

method. 

2 
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The random vortex blobs methods was first presented by Chorin in 

1973 [9]. This is a grid free numerical method where the inviscid part 

of the equations is studied through interactions of vortex blobs; the 

effects of viscosity are studied through use of the relationship 

between diffusion and random walks; and the no-slip condition is 

satisfied via a vorticity generation algorithm. An outline of this 

method is presented in Section 2. There are, however, some diffi­

culties with this method. First, the convergence near the boundary is 

slow, and second the interaction between blobs is singular. The random 

vortex sheets method was presented by Chorin in 1978 [10]. Vortex 

sheet elements can be used near the boundary to solve the Prandtl 

boundary layer equations. This method is also grid-free and has the 

advantage that the interaction between vortex sheet elements are not 

singular. A more detailed discussion can be found in Section 4. 

The hybrid algorithm introduced in this paper consists of the 

following: The flow inside the boundary layer is approximated by the 

vortex sheet method. The flow outside the boundary layer is approxi­

mated by the vortex blobs method. These two methods are coupled at the 

edge of the boundary layer. In this coupling, we replace the vortex 

blobs with vortex sheets near the boundary thereby eliminating the 

problem of convergence of the vortex blobs near the boundary of the 

obstacle. The interaction between the blobs and sheets is not singu­

lar, and thus this new method poses no additional complications. 

Section 5 gives a more detailed description of how the coupling is done 

to produce this hybrid method. 



To test the accuracy of this hybrid algorithm, we applied it to 

several problems. The first application was to the problem of flow 

past a circular cylinder. The second application was to the problem 

of flow past an airfoil at varying angles of attack. The numerical 

results, as presented in Sections 8 and 10 indicate that we have a good 

model for simulating viscous fluid flow in two-dimensions. For both 

cases, the results of the numerical calculations are in good agreement 

with results obtained from physical experiments. For our hybrid 

method, new computational elements are introduced when we satisfy the 

boundary conditions, and the total number of computations at each time 

step is of order O(n2), where n is the total number of computational 

elements. 

4 



2. Random Vortex Blobs Method in Two Dimensions 

The Navier-Stokes equations for an incompressible flow can be 

written as: 

(1) ~t + (~:~z) ~ = R-1 M; 

( 2) t.l/J = - ~ 

( 3) u -= l/JY , v = -1/Jx 

where Q = (u,v) is the velocity field,.~ =curl U is the vorticity, t 

represents the time, l/J is the stream function, t. = ~2 is the Laplace 

operator, z = (x,y) is the position vector, and R is the Reynolds 

number. 

Let us first consider the above system of three equations in a 

region without boundaries. Solving the Poisson Equation (2) above, we 

obtain the solution: 

(4) l/J (x,y) = f/E(x-x,y-y)(-~(x,y))dxdy 

where E(x,y) = (1/2~) log((x2 + y2)112) is the fundamental solution 

of the Laplace equation. If ~ = ~(~) is radially symmetric, then 

l/J = l/J(~) and ~t; = A(x,y)~l}J. Thus, (Q·:n t; = 0, and equation (1) above 

reduces to the diffusion equation 

The system of equations (3), (4) and (5) lends itself well to the 

following numerical scheme. First, we solve (2) analytically to 
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obtain l/J(x,y). Then "\j.J(x,y) can be approximated using "essentially" 

the discrete form of equation (4). Second, we find Q = (u,v) by 

taking the derivatives of l/J(x,y) according to equations (3). Finally, 

we give each element a random walk, where the method of random walks 

is used to approximate the diffusion equation (5) above. We now 

summarize the details of this numerical scheme. 

Consider a point vortex of strength k
0 

located at some point 

z
0 

= (x
0

,y
0

). The corresponding stream function is 

where ] z-z I is the distance between the points z and z
0

• From the o· 

relationship (3) we can easily find the indue~ velocity by taking the 

derivatives of the stream function. Thus, 

-1 (Y-Yo). u(x,y) = 2 ~ k0 ~ 
0 

(7) \ 

1 (X-X ) v(x,y) = + 2~ ko r2 o 
0 

where r; = (x-x
0

)
2 

+ (y-y
0

)
2• Hence, the trajectory of the vnrtex 

is described by dx/dt=u and dy/dt = v. 

We start by taking the initial distribution of vorticity say ~(0), 

and partition it into a finite number of sections. Each section has 

vorticity distribution ~j' j = 1,2, ... ,N. We visualize our computa­

tional elements as point vorticies situated at points z. = (x. Y·) 
. J J' J 
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with strength k. where k. = !t;,. dxdy is the circulation. Initially 
J J J N 

at time t = 0, we consider the flow corresponding to t;,(o) = I k. • 
j J 

· o(z-zj), where o is the delta function. From (6) we see that the 

corresponding stream functions are given by 

N 
1/J = l: 1/Jj 

j::::l 

where N 
1/J· = (27r )-l L k. log lz .-z ·I 

with 

1 • 1 J 1 J J= 
j ;fi 

i == 1,2, ••• ,N 

From (3) and (7) we obtain the velocity of the vortex point situated 

at z;; 

(8) 

where rij is the distance between the points (x;,Y;) and 

(xj,yj). 

Let us now consider the structure of a point vortex. Let ~ be any 

radius vector joining the center of the vortex to some point of the 

fluid. The induced velocity at a point of distance r away from the 

vortex has magnitude inversely proportional to r and direction perpen­

dicular to r. Thus, the induced velocity tends to zero at great 
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distances. However, as~ tend to zero, the induced velocity tends to 

infinity, which is physically unrealistic. These characteristics can 

be verified from equations (8) with rij ~ 0. As discussed in 

Chorin [9], what we need is a smoother stream function ~0 (r) such 

that 

N o 
~ = }:k.~ (z-z.) 

. 1 J J J= 

where ( ~ (2'1f)-l log r r large 
~0 41 

tl ~ 0 as r ~ 0 

In this way, we also revise the motion of the vortices to get 

dx. 
1 L: k.a ~0 <It"' - j+i J y 

(9) 
dy; 

L: 0 
dt = kja x~ 

j+i 

Revising the stream function in this way has the effect of changing 

the computational elements from vortex points into vortex blobs. Each 

blob has small compact support. The circulation kj = /~j dxdy is 

now integrated over the support of the blob situated at point z .. 
J 

For this study we use the following revised stream function: 

(10) 
(2'1f)-l log r 

(2'1f)-l r/cr r < a 

8 



where r denotes the distance and cr is a cut-off length to be 

determined later. For more information on cut-offs, including 

comparative studies and convergence proofs, see Hald [19] and Hald and 

DelPrete [21]. The induced velocities using this new stream function 

are: 

-u. = (2rr)-l L k. ri-Yj) + (2·)-1 L. k. (i-Yj) 
1 J 2 J crr .. r .. >cr r.. r .. <cr lJ 

lJ lJ lJ= 
( 11) 

k. c-Xj) + cCxj) v. (2n)-1 L (2rr)-1 L k. :::: 
1 J r~. i J crr .. 

r .. >cr lJ ru2cr 
lJ 

lJ 

9 

Next, we consider the diffusion part of the Navier-Stokes equation,. 
~t = R-1 8~, l; = ~(x,y,t) 

with initial condition l;(x,y,t=O) = ~(0). Here we use random walks to 

simulate the diffusion process as follows: First, distribute over the 

plane point masses l;i located at Z; = (x;,Y;) with the condition 

that i;l;. =~(0). 
1 1 

n+l n X. = X. + n1 1 l 

Next, move the points according to the laws 

n+1 yn + 
y i = i n2 

where n1 and n2 are independent random variables with a gaussian 

distribution of mean zero and variance 2•8t/R, where 8t represents the 

time step and (x~,y~) represents the ;th_point at time t=n·8t. For 

more discussion on random walks,. see references [8], [14], and [22]. 



Let u~ and v~ satisfy equations (11) or equivalently the right~ 

hand side of (9), i.e., u and v are velocity components induced by the 

stream function (10). Then, combining the motion due to the induced 

velocity and random walk we arrive at the following: 

(12) 

n+1 n n X; = X; + ~t U; + n1 

Y~+1 + Y~ + 6t v~ + n2 1 1 1 

10 

The vorticity density generated by the motion of the vortices according 

to these laws will approximate the solution to our system of equations 

(1), (2), and (3). Convergence proofs for closely related methods are 

presented by Beale and Majda [4], and Hald [20]. 

Next, let us place an obstacle in the fluid. For example, a 

circular cylinder or an airfoil. The boundary conditions we need to 

satisfy are 

U • T :::: 0 on the boundary aD, 

(13) 
!. tangent to aD 

u.n :::: 0 on aD, where n is 
norma 1 to aD.-

To satisfy the first boundary condition, a vorticity generation 

algorithm will be used. The no-slip condition and the viscosity will 

create a boundary layer next to the obstacle. The vortex sheet method, 

which will be introduced later, will be used to approximate the 

Boundary Layer Equations and, at the same time, will take care of the 

induced tangential boundary condition. 



For the case of a circular cylinder, the second boundary condition 

can be easily satisfied using the method of images. In the case of an 

airfoil, or an obstacle of arbitrary geometry, the boundary condition 

is satisfied by adding to our solution the solution of the Laplace 

equation with Neumann boundary condition. These procedures are 

described in the following section. 

11 



3. Potential Component of the Flow 

We place an obstacle into a field of flow and consider the normal 

velocity induced on the boundary of the object. To satisfy the 

normal boundary condition, ~&~ ~ 0 on aD. we need to add to the 

solution of our problem a potential flow with the opposite normal 

velocity on the boundary. 

For the case of flow past a circular cylinder~ this is particularly 

simple since we can use the method of images. Consider a vortex k 

situated at a point z1 in the xy-plane, and also situated outside a 

circular cylinder of radius a , centered at the origin. The image 

system consists of a vortex -k at the inverse point 1/i1 and a 

vortex k at the origin. The vortex k at z1 together with its 

inverse vortex -k at l/i1 cancels exactly on the boundary, thus 

giving zero normal velocity. The vortex k at the origin does not 

influence the normal velocity on the boundary but is needed t9 satisfy 

conservation of circulation (see Figure 1). 

fiGURE 1 
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Circle Theorem 

Let there be irrotational two-dimensional flow of an incompressible 

inviscid fluid in the z-plane. Let there be no rigid boundaries, and 

let the complex potential of the flow be f(z) where the singularities 

of f(z) are all at a distance greater than a from the origin. If a 

circular cylinder I zl =a is introduced into the field of flow, the 

complex potential becomes w = f(z) + f(a 2/z), where f denotes the 

complex conjugate of f. For proof, see Milne-Thomson [36] and [37]. 

To illustrate this theorem, let us take two vortices: one vortex 

k at point z1 and the other vortex -k at point z1 outside 

the cylinder of radius a centered at the origin. The complex 

potential in the absence of the cylinder is ik{log (z-z1)/(z-z1)}. 

If we insert the cylinder, we get (from the circle theorem) the complex 

potential 

(14) 

If we write W =¢ +i1}; where ¢J is the velocity potential 
zl zl zl zl 

at point z1 and 1JJ

21 
the stream function at point z1, we can readily 

verify that the velocity vector of the vortex at z1 is 

a1};z 1~ 
' ax 1 

13 



When we compare this velocity vector to equations (3), we note that we 

have an extra factor of 1/2 here. This is because a vortex and its 

inverse together influence the velocity at any one point by a factor 

of two. Hence, the correct velocity is one half the velocity induced 

by the image system as indicated by the formula above. 

For flow past an airfoil, we have two cases. 

Case 1: If the airfoil can be obtained easily from a conformal 

transformation of a circle, we make use of a theorem due to Routh. 

Theorem: Under a conformal transformation 

z = f(z) z = x + -ty Z :::: X + )_y , 

which derives the motion in the z-plane from that in the z-plane, the 

Kirchhoff-Routh function for the new motion is given by 

(15) 

where ~~~ is the absolute value of the derivative at point z1• az z
1 

_ 
Thus, the new complex potential W is simply the old complex 

zl 
potential W plus ~log dz For a proof of this theorem see 

2
1 

2 
dz z 1 

C.C. Lin [28]. 

Case 2: If the airfoil, or the obstacle, is of arbitrary shape, 

we do the following: First, from the vortex method described in the 

previous section, we can find the induced velocity Q~ at each point on 

the boundary of the object. Let n = (n1,n2) be the outward normal 

14 



C i r c 1 e Th eo rem 

Let there be irrotational two-dimensional flow of an incompressible 

inviscid fluid in the z-plane. Let there be no rigid boundaries, and 

.let the complex potential of the flow be f(z) where the singularities 

of f(z) are all at a distance greater than a from the origin. If a 

circular cylinder lzl =a is introduced into the field of flow, the 

complex potential becomes w = f(z) + f(a 2tz), where f denotes the 

complex conjugate of f. For proof, see Milne-Thomson [36] and [37]. 

To illustrate this theorem, let us take two vortices: one vortex 

k at point z1 and the other vortex -k at point z1 outside 

the cylinder of radius a centered at the origin. The complex 

potential in the absence of the cylinder is ~k{log (z-z1)/(z-z1)}. 

If we insert the cylinder, we get (from the circle theorem) the complex 

potential 

(14) w = ~k log _(z_-_z_;.;l_) - ~k log (i--a: - 21 ) 
(z-z 1) 

-z - zl 

If we write w 
zl 

=r/J + ~1/J where ¢ 
zl zl zl 

is the velocity potential 

at point z1 and 1/Jz the stream function at point z1, we can readily 
1 

verify that the velocity vector of the vortex at z1 is 
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When we compare this velocity vector to equations (3), we note that we 

have an extra factor of 1/2 here. This is because a vortex and its 

inverse together influence the velocity at any one point by a factor 

of two. Hence, the correct velocity is one half the velocity induced 

by the image system as indicated by the formula above. 

For flow past an airfoil, we have two cases. 

Case 1: If the airfoil can be obtained easily from a conformal 

transformation of a circle, we make use of a theorem due to Routh. 

Theorem: Under a conformal transformation 

'i=f(z) z = x + -ty Z = X + -[y , 

which derives the motion in the z-plane from that in the z-plane, the 

Kirchhoff-Routh function for the new motion is given by 

(15) 

where ,~, is the absolute value of the derivative at point z1• az z
1 

_ 
Thus, the new complex potential W is simply the old complex 

z1 
potential W plus ~log~~~ • For a proof of this theorem see z 2 ~ 

1 dz z 
1 C.C. Lin [28]. 

Case 2: If the airfoil, or the obstacle, is of arbitrary shape, 

we do the following: First, from the vortex method described in the 

previous section, we can find the induced velocity Q~ at each point on 

the boundary of the object. Let n = (n1,n2) be the outward normal 

14 



to the boundary. Next we find a potential flow ~ such that 

~·I!.= -Q~·i!. on the boundary. In references [13] and [53], a 

numerical method for doing this is presented. Adding this potential 

flow to our solution will give us a solution with a zero normal 

boundary condition. 

15 



4. Vortex Sheet Method for Solving Boundary Layer Equations in Two 
Dimensions, and Vorticity Generation Algorithm 

Let us consider the flat plate problem in the z-plane. Assume the 

wall to be at Y=O and the flow field to be in the half space y~O. The 

boundary layer equations are 

(16) ~ t + (~: :z) ~ = v ~YY 

( 17) ~ = -u y 

( 18) u + v = X y 0 

with the following boundary conditions, 

(19) 

( 20) 

Q = (u,v) = (0,0) at Y=O 

u(x,y = oo) = ..\L)x) 

where U = (u,v) is the velocity vector with u tangential and v 

normal to the boundary, ~ is the vorticity, v the viscosity, and 

V =gradient operator. The above equations (16)-(20) are valid for 

the flat plate problem, but there is no difficulty in extending them 

to the case of a curved wall. When this is done, it is found that 

these equations continue to be applicable on condition that the curva-

ture does not change abruptly. i.e. the boundary-layer thickness is much 

smaller than the radius of curvature of the wall (see Chorin, Hughes, 

McCracken,and Marsden [11] for theoretical analysis.) 

First, we derive from equations (18) and (19) 

(21) v(x,y) = ;! t u(x,y) dy 

Next, from equations (17) and (20) we get 

(22) U (X ,y) = Uoo (X) -f y 
~ (x,y) dy 

00 

16 



Thus, we note that once t; (x,y) is known, the velocity !!=(u,v) is also 

known. 

We now present the numerical method. Let us define our computa-

tional elements, the vortex sheets, to be surfaces of discontinuity 

across which the tangential velocity changes abruptly. A vortex sheet 

has strength si when the velocity u above and below the sheet 

differ by s;· Each sheet is broken up into elements which participate 

in the approximation of the flow. 

17 

Consider a collection of vortex sheets Si of intensity s;, i=l, ••• ,N, 

centered at zi=(x;,Y;) and such that Si is parallel to the x-axis. 

Using a center-difference approximation, we can approximate the 

tangential velocity component, using equation (22), as 

(23) u. = u 1 00 

1 2: 
( X } - -2 S· - . s . d. i 1 J J J 

where the smoothing factor d.= 1-lx.-x.l/h and the sum 2: is over all 
J 1 J 

Sj such that yj > Y; and I X;-xjl <h; h=length of the sheet. 

Similarly, from equation (21), for the normal velocity component vi, 

we get 

where 



d-:- = 1 -
jx 1-~-xj 

J h 

* y. 
J 

= min (y. ,y.) 
1 J 

L+ is over all s. 
J 

such 
+ 

that O<;d. - J ~1 

r_ is over all s. 
J 

such that 0 ~dj ~ 1 

Hence 

(24) 

The procedure for approximating the boundary layer equations is as 

follows: First, we consider the corresponding inviscid boundary layer 

equations, 

~t + (_tj_ ·y) ~ = 0 

s = - uy 

u + v = 0 X y 

The motion of the vortex sheets are approximated by 

n+l n + 6t x. = x. u. 
1 1 l 

n+l n + 6t y. = Y; v. 
1 1 

where 6t =time step, (x~,y~) is the ;th_point at time t=n 6t, and 
1 1 

(u;,v;) is the corresponding velocity vector which is computed using 

equations (23) and (24) above. 

18 



Next, we include the effects of viscosity by adding to the 

y-component of our solution an independent random variable ni drawn 

from a gaussian distribution of mean zero and variance 2v&t. Thus, 

n+l = X~ + ilt x. u. 
1 1 1 

(25) 

(26) n+l = y~ + at + y. v. n· 1 1 1 1 

We see that the boundary conditions u(x,y=oo) = U and v(x,y=0)=0 
-00 

are automatically satisfied. The remai.ning boundary condition 

u(x,y=0)=0 will be satisfied through the following vorticity creation 

algorithm. 

Suppose the velocity component tangent to the wall is u(x,O) ~ 0. 

Then the total vorticity per unit length on the wall is 

y t e r i or~ dy = 1.!!! dy = u 
0 ~all ay 
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Here y is in the direction of the normal. By antisymmetry, we continue 

the flow from y > 0 toy< 0, i.e., u(x,-y)=-u(x,y). Choose the 

boundary points O;, i=l, ••• ,m such that o1o2, •.• ,om-l0m are of 

length h. Since ~(x,-y) = ~(x,y), we create at point O; vortex sheets 
2Q, 

S., i=l, .•• , 2R- such tha't L S. = 2u , with IS -l:sr where 
1 • 

1 
1 o 1 -"'max 

1 ::: 

~max is some reasonably small quantity. 

As these sheets are created, they are assigned integer tags. The 

effect of this tagging is to piece together the vortex elements created 
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at different boundary points into a single vortex sheet. Hence, the ele­

ments of the same sheet will have a unique common tag among them. Elements 

with the same tag are assigned the same n. Next, we let these sheets move 

according to the laws {25) and (26). On the average, half of the newly 

created sheets on the wall wiTl flow into the upper half plane. However, 

to reduce the variance of the results, we require that exactly one-half of 

the sheets flow upwards. For this, a rejection technique is used. This 

technique ensures that the successive values of n have opposite signs, 

and upon application of formulae (25) and (26), exactly one half will flow 

into the lower half plane. It is for this reason that the number of vortex 

sheets created at any one point is an even number = 2~. For the vortex 

sheets in the boundary layer, but not on the wall, the antisymmetry of the 

flow is imposed by reflecting the sheets back into the fluid if they cross 

the wall. In using this algorithm, we see that the tangential boundary 

condition is satisfied exactly. For a detailed discussion of this method, 

see Chorin [10]. The computer program implementing this method together 

with complete documentation is presented in [5]. 



5. Calculation Scheme 

We shall consider the calculation scheme for the following two 

problems. 

Problem I: Consider a circular cylinder of radius 1, centered at 

the origin and immersed in a fluid of density 1. Partition the 

boundary of the circle into M equal segments each of length h=2n/M. 

At time t=O, the cylinder is started impulsively from rest with a 

velocity magnitude of 1. The direction of flow is parallel to the 

positive x-axis, therefore, in our present frame of reference the 

velocity at infinity is (-1,0). 

Problem II: Let z = f(z) be the conformal transformation that maps 

the unit circle into a Joukowski airfoil of varying thickness and 

angles of attack. Partition the boundary of the airfoil into M seg­

ments of length hi, i=l, •.• ,M. As in the case of the cylinder, the 

airfoil is immersed in a fluid of density 1. At time t=O, the airfoil 

is started impulsively from rest with a velocity magnitude of 1. The 

velocity at infinity is (-1,0). 

a) Flow Past a Circular Cylinder. (Problem I) 

To illustrate the method, let us first consider Problem I. 
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Immediately after time t=O the tangential and normal boundary conditions 

are violated. To satisfy the tangential boundary condition, we first 

calculate the total amount of vorticity y at the edge of the boundary 

layer. Then, we create a vortex sheet of strength -y on the 

boundary. By doing this, we will satisfy the tangential boundary con­

dition and achieve a smooth transition from zero on the boundary to 
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the correct amount on the edge of the boundary layer. To satisfy the 

normal boundary condition, we use the method of images. 

To be more specific, let us consider the situation at time t=n ~t. 

Let us assume that at this time, we have a collection of vortex points 

(x.,y.,k.) centered at (x.,y.) of strength kJ., j=l, ... ,NN, and a collection 
J J J J J 

of vortex sheets (x.,y.,s.) with midpoints (x
1
.,y

1
.) and intensity 

l l 1 

s;, i:l, ... ,N in the flow. To satisfy the normal boundary conditions 

induced by the flow field, we use the method of images described in 

Section 3. Furthermore, we will calculate the amount of vorticity on 

the edge of the boundary layer when this condition is satisfied. Here 

the boundary layer thickness is O(R-112) where R is the Reynolds 

number. After doing these calculations we arrive at the following 

result. 

The complex potential for the circular cylinder problem, at time 

t=n At, satisfying ~·~=0 is 

w(z
1
.) = -lL:o ~z.- a

2
)+ -2

1 I: ik. ~og(z.-z.)- log (z. __ a
2

)+ log z.l 
1 Z; 'If j:=l J L 1 J 1 z. I 1J 

J 

where a is the radius of the circle and U =(-1,0). Evaluating this 
--co 

expression, we get 

u. = 1 -
1 

( 2+ 2) x.y. 1"" 
1 1 + - "'-1 
2 2 2n j 

( r. ) 
1 

(y.-y.) 1 (y.-y.) 
k. , ~ +-2 r.2k. ( J) 

J ( ) n J a r .. r.. J lJ 
lJ 

+ 



y. 
( h 

1 
41 k . 

(Y; - ri) 
1 l:2 k. 

Y;- rD 
- 21f * 2 -2; * J . J cr(r .. ) J ( r .. ) J lJ lJ 

+l_ L Y; +L L Y; 
21T j1 kj (r.)2 2'lT .2 kj cr(r.) ' 

l 
J . 1 

2x.y. 
1 

(x.- x.) 
1 

(x.-x.) 
v . = - , 2, - -2 r.l k . , 2J - -2 r2 k . 1( J ) 

1 2 1T J ( ) 1r • J a r .. 
( ) J r.. J 1J 

where 

r. lJ 
1 

2 ( r.) = 
1 

( 

X-\ 
x. _...1.' 

1 2 j r . 
·. j I 1 

2 +-
( r ~ . ) 2'lT 

lJ 

(x~ + y~) 
1 1 

:L2 k. 
. J 
J 

r .. 
1J 

~ 2 2 = (X. - y.) + (y. - y.) 
1 J l J 

* r .. 
lJ 

2 2 2 (r.) =x.+y. 
J J J 

cr = cut-off to be determined later 

* z1 is taken over all vortices such that r.,r .. ,r .. > cr 
1 1 J lJ 

* :E2 is taken over all vortices such that r.,r .. ,r .. <cr. 
1 1J lJ = 

23 



Note that at time t = 0, the above formulae yield 
(x~ + y~) 

u - 1 - 1 1 which is = 0 on the boundary aD, 
i - (x~ + y~)2 

1 1 

We want vi to be zero on the boundary aD. The velocity vector is 

U. = (u.,v.) = (O,v.) on the boundary. The resulting vorticity is 
-1 1 1 1 

U.·T = 2~ ~ 0. This is twice the amount because of the contribution 
-1-

due to the image points. This factor of 2 is exactly the factor needed 

when we use the vortex sheet method as described in Section 4. Initi-

ally, at time t=O, the amount to be created at each point on the 

boundary is exactly -2~ 0 unless l-2~0 l<~min' where ~min is some 

very small quantity. In this case, for computational economy, no 

sheets are created. Upon appropriate modification of the rejection 

technique for equations (25) and (26), exactly one-half of what has 

just been created will disappear into the object. Thus, the boundary 

condition is satisfied exactly except for the times when l2~0 l<~min· 
At time t=n6t we create an amount ~diff which is the difference 

between the amount required and the amount already existing in the 

boundary layer. In this way, 1) the transition from ~on the edge of 

the boundary layer to zero on the boundary is achieved and 2) the 

tangential boundary condition is satisfied. 

After all the new sheets are created, they all move according to 

the laws (25) and (26). As stated before, exactly one-half of the 

newly created sheets will walk into the object and will be lost. The 
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rest of the sheets become points if they flow outside of the boundary 

layer. Since sheets and points are determined by the same parameters, 

this change is simple and straightforward, i.e., (xi'yi'~i) becomes 

(x.,y.,k.) where k. = h~ .• Thus, when a vortex sheet becomes a 
. 1 1 1 1 1 

vortex point, the only change is in the intensity of the point to 

satisfy conservation of circulation. To preserve antisymmetry, the 

sheets in the boundary layer (but not on the boundary) that flow into 

the object are reflected to their image points. We know a priori that 

the sheets with sharp gradients are close to the point of separation. 

As a programming tool, we can test the velocity ratio u/v of the sheets 

and change them into points if u/v is greater than some chosen para­

meter determined by the geometry of the obstacle in the flow. 

Transitions from vortex points to vortex sheets follow a similar 

procedure. A point can become a sheet if it either flows back into the 

boundary layer or if it flows into the object and its image point lies 

in the boundary layer. In the latter case, the point is reflected as 

a sheet. One can argue that if ~t were more refined, this point will 

end up in the boundary layer as it follows its trajectory. Thus, when 

it flows into the object as a sheet, it will automatically be reflected 

to preserve antisymmetry. Note that this cannot be done if the image 

point is not in the boundary layer, for we only have this antisymmetry 

property for the boundary layer equations. This procedure, suggested 

by Chorin, yields a non-trivial improvement in the accuracy of the 

model. A similar hybrid algorithm was presented by Chorin for two and 

three dimensional calculations applied to the analysis of the boundary 

layer over a flat plate in 1980 [12]. 



The only remaining task now is to determine the value of the 

cut-off cr • We approach this problem in the following way. Consider 

a collection of vortex blobs. If these blobs are close to the boundary 

of the object, the effects of their interaction with the boundary 

should be the same as the effects of the interaction of the vortex 

sheets with the boundary. In other words, the cut-off should have the 

value that will not only give fast qonvergence, but also smooth 

transition from vortex sheets to vortex blobs. 

Thus, let us consider the following example in determining the 

cut-off. Let the line Y=O be a wall, and consider the flow to be in 

the upper half plane. The boundary layer thickness is O(R-112). 

Let there be a vortex sheet of intensity l; situated at point z1 at 

the edge of the boundary layer. Also, let a vortex blob with the same 

circulation (i.e., of intensity l;h) be situated at the same point z1• 

The image vortex is thus at z1• Let z2 be the point on the 

boundary such that the segment z1z2 is normal to the boundary. If 

we choose a = h/~, we can verify from formula (11) that the velocity 

at z2 induced by the blob at z1 and its image at z1 is 

(1 y - y1) 
u2 = 2 2;t;h crr 

::::: (ll;h 1 ) 
~ (h/lf )! 

::::: l; ' v = 0 2 

This shows that the boundary cannot distinguish between a vortex blob 

and a vortex sheet. Thus, as vortex blobs approach the edge of the 
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boundary layer, their effects on the boundary coincide with the effects 

of the sheets on the boundary. We can, therefore, view the computa­

tional elements as sheets near the boundary and as blobs far away from 

the boundary. Hence, cr = h/~ is the value for the cut-off which is 

consistent with our numerical method. 

b) Flow Past Airfoil (Problem II) 

In computing the flow field around an airfoil, we can either do our 

calculations in the physical plane (the plane that contains the 

airfoil) or in the mapped plane (the plane that contains the circle, 

after the airfoil is mapped into the circle). Calculations in the 

physical plane follow closely the process described in the above 

discussion since the method is essentially independent of the geometry 

of the obstacle. The major differences are 1) the bookkeeping is a 

much bigger project since we cannot rely on the nice properties of the 

circle and 2) we must replace the method of images by a potential 

solver (see Section 3). In making calculations in the mapped plane, 

we can take advantage of the geometry of the circle. However we must 

adjust our calculations to coincide with the solution obtained from 

calculations in the physical plane. 



6. On the Self-Interaction of Vortices Under Conformal Maps 

From the analysis on the cut-off a, we see that if we choose 

a = n/h in the physical plane, the effects of points and sheets 

coincide at the edge of the boundary 1 ayer. However, when "smoothing" 

is carried out in the mapped plane, a correction term must be sub-

tracted off in the original plane. Let us determine this correction 

term. Consider a point vortex with strength k
0 

situated at Z=z
0
tr, 

where r is a region of the z-plane with boundary ar. (See Figure 2.) 

fiGt.RE 2 

Let (u(z),v(z)) be the velocity field in r having 1) zero normal compo­
nent along ar and 2) correct circulation (=k0 ) along curves in r 
which have z0 in their interior. 

Let (u0 (z),v0 (z)) be the velocity field induced in the z-plane by 
the point vortex at z0 • 

We want to find the 11 self-induced velocity of the point vortex in 

presence of boundaries," defined as 

lim (u(z),v(z)) - (u
0

(z),v
0

(z)) 
z~z0 
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let W(z) be a conformal mapping of r onto the upper half plane 

(Imw;;;:.o). 

............ 

Then, (u(z),v(z)) is, by potential theory, 

u(z)- ~v(z) = W'(z) (~(z}-~y(z)) 

where ~-~y is the velocity at W(z) in thew-plane (see equation (15)). 

The velocity at W(z~ due to a point vortex at W(z
0

) and a point 

vortex at W(z
0

), both of strength k
0

, is 

ko l 1 I ~(z)-.-i.y(z) = r W(z)-W(z ) - • 
'IT-t o W(z)-W(z

0
) 

The velocity (u
0

(z), v
0

(z)) due to vortex at point z is simply 
0 

29 
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Now, 

[ ( u ( z ) -i v ( z ) ) - ( u ( z ) -iv ( z ) ) ] 
0 0 

W'(z) W'(z) 

(W(z)-W(z
0

)) W(z)-~(z 0 ) 

W 1 (z) 

The Taylor Expansion of W(z)-W(z
0

) is 

W(z)-W(z ) = W1 (z)(z-z ) _l
2 

W"(z)(z-z )2 + 
0 0 0 

Substituting into above we get 

k
0 

W'(z)(z-z
0

)-W 1 (z)(z-z
0

) + 1 W"(z)(z-z
0

)
2 + W 1 (z) 

::::: 2'ITi 
[W(z)-W(z

0
)] ~ z-z

0
) 

W 1 (z) 

W(z )-W{_z
0 

) 

Hence 

1 im [ ( u ( z ) -iv ( z ) ) - ( u 
0 

( z ) -iv 
0 

( z ) ) ] 

k l W"(z )+O(z-z ) 
= 1 im 0 2 0 

WI ( Z) 

z~z 0 2'ITi (W(z)-W(z 0 )) 

z-z 
0 

ko l W" (z ) 2 0 
W 1 (z) 

=-
2'ITi W1 (zo) w ( z 

0 
) -W ( z 

0 
) 



"Smoothing in the mapped plane 11 would only give the second term 

above. Hence, in order to obtain the correct value for u(z) and v(z), 

we need to add on the correction term 

-k (l W"(z )) 0 2 0 
2'IT.-t W' (z

0
) • 

This term can be neglected only when W"(z
0

) = 0. The above analysis 

is due to Ilkka Karasalo [23]. 
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7. Derivation of the Lift and Dr Formula Due to Pressure 

The formula we used in our numerical program to calculate the lift 

and drag is 

LP is the value of the lift, Dp is the value of the drag, rj is 

the strength of the vortex point situated at w.=(x.,y.), and 
J J J 

* wj is the image vortex. The derivation of the formula is as 

follows. Blasius Formula: 

( 27) £ + l q2 + ¢t = constant 
p 2 

where q = I u--<-v I = I d¢/dz I· 
Now 

[Bernoulli] 

The integral j q2dz can be evaluated by noting that 

But in view of the tangency condition, d¢ is real at the surface so 

that d¢ * = d¢. Thus, we have 

32 



so that 

( 28) L , D P II f ( dw ) 2 d I * a f ,. d P - ..t P "" - 2 dz z -p IT <P z 

For steady flow this reduces to the familiar form (Blasius' Formula) 

DP - ,[LP == ~P f (~!) 2 
dz 

Now Equation (27) is not valid for rotational flow in general. 

The general form is 

(29} a ( 1 2) ---t u •ds + grad p/p + -2 q ds = -1 v wds a - - - n 

where the right side represents the rate at which vorticity is crossing 

the contour. The contour direction is anticlockwise and ~ is the 

outward normal flow. The inviscid model of the flow is as follows: 

Dw O 1. vorticity: Dt = 

2. continuity: v~u = 0 

3. boundary conditions: 
a. u·n ~ 0 at surface 

b. f s ~·d~ ::: 0 
c. ~-""(Uoo,O) as z ~ oo 

d d. w~·~ ~ df (~·~) at surface + € • 

We wish to apply (29) near the body (say at distance e: from the 

surface), such that e:« 51-( 2 characterizes the body), but E»o (the 

boundary-layer thickness). We assume that the pressure at the contour 

differs from that at the body by O(e:) or, at least 0{1) as e:~O. We 
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further assume that, on the contour~·~= O(e), but that wuen = 0(1). 

All of the terms in (29) contribute. 

Consider the form of (29) for point vortices whose velocities are 

0(1). Then~= V¢ and we have from (29) 

Now ~(s)w(s) is the vorticity source for the fluid exterior to 

the contour. Since w is in the form of point vortices, 

where the sum is over those vortices crossing the contour between t 

and t + 6t. It is assumed that the contour location and time step 6t 

preclude multiple crossings within a time step. o is the Dirac 

function, sk is the crossing point of the vortices, and Jeis the 

corresponding Heaviside function. Then 

~s ~t +; +} q
2 + !t r r k JC(s- \)) ~ 0 

1 
so that [as 6t ~ 0, rk ~ 0, such that .6t:E~ = 0(1)], 

E. + nl + _21 q2 + L ~ r '1J'( ) t t P ~t 6t k . k ~ s - sk = cons an 

Then 
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to within O(e). Now for every vortex between the contour and the body 

.there is an image vortex within O(e) of it. The potential of the pair 

is 

w- w. . 
..{. 1 J ..{. 1 - 21r og 1 = - 21r og 

w -* 

w - w . 
J 

w. 
J 

Note: the body is a circle in the w-plane. If the body is a circle 

in the z-plane, then w = z, 

- -i log 
21f , for w- w. = 0(1) 

J 

We then ignore all vortices between the body and the contour (and 

their images). Now, 

where both d~/dw and dw/dz have singularities within the contour. 

We assume that the poles of these two functions do not coincide. 

Since dw/dz is analytic exterior to the unit circle we transform 
' 

. 1 - l var1ab es X = w so that 

J = J (d ~ \ 2 
dw ~ 

dw J dz x2 • 
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Now 

~- 1 -2 i ~ r 
dw - - w ~ 2n j j w-w. - -1-

( 
1 1 ) 
J w---"* 

w. 
J 

~ (Xw; Xwj
1
) r 

j --*- -1 j 
X-w. X-w. 

J J 

Then f ~: is analytic within the unit circle except at X=O and 

(
1 d ¢\ 2 1 ' w. w. 
- -:r:-:- l = -- x - ~ ~r. _J - J 
X uw; X 2n j J X-w ~ X-w -:-1 

J J 

has double poles at X=O and at X=wj1 as well as simple poles at 

X=wj1 (the simple pole at X=O is removable). 

J :::: 

where 

f L2 - 2+x2 - !:. (l - x) ~ r . 
X n X j J 

1 ~ ~ 
- 4n2 j k 

0 ( w) =I) (X) =I> (!) 
Summing Residues: 

* 
J 
~-( 

w. 

X-w. 
J 

w-:-1) J 
-1 X-w. 
J 

The terms independent of r have no residue (D. Alembert's paradox). 

The term 1 inear in r gives 

The quadratic terms give 
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J = 4 

1 
4'1r2 

=21f-t~~ 
2'1r2 !J 

f 1 
--2 

41T 

* r.w. !:k 
J J 

k - r 
j k 

~ I: 
j kf:j 
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-1 I r.w. 
~ \J * D(w.) 
J - J 

wj -wk 

rk 21Ti 
-r. 

D(wk) f r k D(wk) j \ =-2 
wk- * 21T wk- * 

wj 

-1 -1 

r.rk wj ~\ EJ (X) dX . J 
( X-w -}) ( X-wk1) 

r w-
1

o(w ) - + ( ) I k k k + !: r -1 "" r.J· wJ. o w . 
-1 -1 k kwk ~ . J 

wk w j j*k w: 1 -wk-1 
.] 

Then 

where Vk is the complex velocity in the z-plane at the center of 

vortex k, so that 

f 2 * q dz = -2 ~ r k v k 



Now 

f ¢dz = <[ q>z - / zd<P = ~ <Pz - f z ~~ dw 

Again, we map to the X plane since the z+w mapping is analytic 

exterior to the unit circle. Then, 

f d<ll 
z aw dw 

* -1 
_ X2 )_ 2: ( Xw j Xw j ) 

- 21T j rj --* - --:y 
,X-w. X-w. 

J J 

Now since z~w as W~oo, Z(X) - 1/X as x~o. 

Summing residues: 

so that 

f 1' 
. d.dz ::: 21Ti + ~ r. (z. - z - w. + -*! 

p J J J 0 J ; w. 
J 

Z(X)dX 
x2 

where z
0 

is the end point of the integration, so that 

~ t f ¢dz = ~ t j r j (z. - z - w. + ~) 
J 0 J 

wj 

Now we need to evaluate the integral 

j stdz where dst as= ~(s)w(s) 
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Now 

L --to = P ~r .v~ - P ~t ~ r. (z .-z -w. + ~) - P f rt dz 
P P j J J a J J J 0 J w. 

where 

j rtdz =<[rtz- f zdrt = QS"t z - f 
= ~ n z - f z rv;;wds 

now 

~ n f ~wds = ~t l; 
f· :::: 

j J 

so that 

~ QZ 
a ~ 

f·Z =ar j J 0 

and s i nee 

a ~ l; * f at ::i rl j - j r / j + z ~ wd s 

we get (for the limit below) 
N . 1 \ 

( 30) LP - -toP - P !t j rj ~w j - ,. l w.; 
J 

J 

z drt ds 
ds 

as 
rj ~ 0 l Nr . = o ( 1 ) 
N~ooJ J 

The above formula and analysis are due to Rogallo [43]. Another 

derivation of L -iO , similar to the above, can be found in [18]. p p 
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8. Numerical Experiments for Flow Past a Circular Cylinder 

a) Numerical Parameters 

In all of the numerical calculations done on the circular cylinder 

problem, the boundary of the circle is divided into M=20 pieces, each 

of length h=2w/M. The circle has radius r=l. The Reynold•s number is 

R=1000, mainly because there are many experimental studies with which 

to compare the results. Also, at this value one can be sure to observe 

the separating streamlines of the flow clearly. 

The cylinder is impulsively set into motion at time t=O, where t 

is measured in nondimensional units. 6t is chosen to be 0.2. 

Numerical experiments were done with ~t=0.2 and 6t=0.1 and with all 

the other parameters kept fixed. Refining 6t does not improve the 

calculations significantly, i.e., when we compare the calculated lift 

and drag coefficients with these choices of 6t, the average value of 

the lift and drag is changed by less than one percent. 

For reasons of economy, we choose ~max as large as possible, but 

not so large that we loose the main features of the problem. After 

some experimentation ~max=l.O was chosen. Note that a sheet of 

length h and strength ~max will eventually become a blob of 

strength = h·~ax· For the values of h and ~max chosen as above, 

this means that the value 0.31415 is the maximum strength for each 

blob. 

A flow started impulsively from rest goes through a long transi­

tional period before it becomes fully developed. We found that at time 

t=8, the flow is leaving the transitional period and entering into the 
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stage of fully developed flow. At this time, we refine our calcula­

tions by taking ~max to be 0.2. The main reason for this is to 

produce a more accurate model which will predict the point of separa­

,tion very accurately. Changing ~ax to an even smaller quantity, say 

~max=O.l, after time t=8 did not improve the results significantly. 

Again, the results corresponding to ~max=O.l and ~max=0.2 after 

time t=8 differ from each other by less than a percentage point. 

b) Development of the Flow 

41 

Figures 3 through 5 show different stages of the development of the 

flow with ~max=l.O until time t=8 than ~max=0.2; h=2~/M, M=20, 

~=~/h, R=lOOO, and ~t=0.2. This development compares well with 

physical experiments (see [3] and [41]). 

Initially after impulsive start, diffusion outweighs convection. 

However, after a short time, the convection of vorticity becomes more 

significant than the diffusion of vorticity, especially in the direc­

tion of the flow parallel to the cylinder. The vorticity created to 

satisfy the boundary condition is carried by this convection to the 

rear of the cylinder. This vorticity created is negative in sign on 

the upper surface and positive on the lower surface. Ultimately there 

is more vorticity of each sign at the rear of the cylinder than is 

needed to satisfy the no-slip condition there and a backflow is induced 

near the surface. The backflow counters the forward-moving fluid and 

deflects it away from the rear of the cylinder. Most of the fluid 

passing close to the cylinder appears to gather itself into two 

discrete lumps, or eddies, at the rear of the cylinder. (See Figure 3 



corresponding to time t:2). At time t=2, we see that the eddies in the 

wake of the cylinder are just beginning to take form. By time t=5, we 

see that the eddies are well developed and the points of separation are 

about 85° from the forward stagnation point on both sides. The stream­

lines leave the body tangentially at the points of separation. (See 

Figure 4). Furthermore, new eddies are being formed while the original 

ones have convected downstream. The region enclosed by the two separ­

ating streamlines grows larger and is even larger than the cylinder 

itself. By time t=8, the eddies created earlier are merging due to 

diffusion. (See Figure 5.) At time t=ll, the flow is asymmetric and 

the points of separation can be estimated from the graph to be around 

78° and 115° from the forward stagnation point. 

Ultimately, one of the eddies at the rear of the cylinder will 

break loose from the cylinder and move downstream. This departure of 

so much vorticity from the neighborhood of the cylinder will affect the 

flow near the cylinder. The remaining eddy of the opposite rotation 

will consequently become larger, and eventually this eddy will also 

shed. The shedding of the eddies causes asymmetry in the flow pattern, 

asymmetry in the two points of separation, and causes dips and rises 

in the lift and drag coefficients. The numerical experiments we ran 

were stopped on or before time t=ll. This is not enough time for the 

flow to develop a vortex street with more than one oscillation. Hence, 

Strouhal numbers were not calculated in this study. 

c) Lift and Drag Coefficients 

The lift and drag coefficients are calculated using the 

formula (30) 
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with 

Here Lis the value of the lift, 0 is the drag, r. is the strength of 
J 

* the vortex point situated at z.=(x.,y.), z. is the image 
J J J J 

vortex, A is the characteristic length, and p = density = 1. The 

values of L and 0 are averaged over time. At time t=8, the average 

drag coefficient is c0=1.055 which is less than 2 percent from the 

experimental value of 1.04. The lift coefficient CL= -0.098 is very 

close to zero, the desired average value. Assuming that the flow is 

developed at t:8, the following momentum defect equation is also used 

in calcul~ting the drag coefficient at this time: 

where the integration is taken from Y=-5 to Y=+5, and U =freestream 
<X> 

velocity. See Landau arld Lifshitz [26]. 

Using the first formula, we have, after averaging over time t=11, 

c0=1.01 and CL= -0.14. Formula (31) above gives us c02 = 1.01, 

where c02 is averaged over 15 time steps from t=8 to t=11. The 
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behavior of the drag can be seen in Figure 6. It starts at 1.01, climbs 

sharply to about 1.4 corresponding to imp~lsive start, and then oscil-

lates about the point 1.0 with a variance of 0.036. The lift starts at 

zero, rises to 0.1, and then becomes slightly negative for most of 



the time until t=5.6. It then oscillates with varying amplitudes 

staying almost always between ±1, with an average which is slightly 

below zero at time t=l1, and with a variance of 0.100. The last dip 
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in the lift coefficient corresponds to the changing flow pattern around 

the cylinder, and to the shedding of an eddy at the rear of the 

cylinder. (See Figure 7.) For more on experimental values of drag, 

see Sighard [49]. 

A run of this duration takes on the average between 3.5 and 4 

minutes on the CDC-7600 at Lawrence Berkeley Laboratory. This flow at 

time eight is modeled by a total of 467 elements. After this time a 

greater number of points are generated at each time step corresponding 

to the refinement smax=0.2. At time eleven, there are 908 points 

and 176 sheets. For a comparative study using different numerical 

methods to model flow past circular cylinders, see Nahavandi and 

Chen [38], and Sarpkaya and Schoaff [44]. Also, for experimental and 

numerical results related to this problem, see [15], [16], [51], [6], 

and [ 7]. 
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9. Flow at the Trailing Edge of an Airfoil 

a) Treatment of the Map at the Trailing Edge 

Consider the following conformal map which transforms a circle of 

radius (l+a) into a symmetric Joukowski airfoil: 

(32) "' 1 1 --La z = f(z) = TT+a) (z + z ) e 

where z = -a+(l+a)e-L9
, 0 ~ e 2 2w, a£R. (see Figure 8). The 

parameter a controls the shape of the airfoil, and the parameter a 

controls the angle of attack. 

FIME 8 

... _ 

Let P be the point which is mapped into the trailing edge Q of the 

airfoil. If (uq-{vq) is the velocity at Q in the profile plane, 

we have 

where 
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At the point Z=(1,0) we see that f'(z) = 0. Thus, (uq-~vq) is 

infinite at the trailing edge. Therefore, we have a singularity at the 

sharp end of the airfoil. The other singularity is at point Z=(-1,0). 

This point transforms into a point inside the airfoil, and therefore 

produces no problems to our flow. 

However, in the physical problem, the flow at the trailing edge is 

a stagnation point (see Figure 9). Thus, at point Z=(1,0) it follows 

that (up-~vp)=(O,O). Using this information, we see that at 

Z=(1,0) we have 

Applying l'Hospital's rule we see that the singularity at the trailing 

edge is removable since 

is finite at Z=(1,0) 

To make the trailing edge a stagnation point corresponding to the 

physical flow, we add to the potential flow a circulation term. This 

term depends on the orientation of the airfoil, and is chosen so that 

the stagnation point and the velocity peak at the sharp edge 'cancel' 

each other. For this value of the circulation, the velocity is finite 

at the trailing edge. For more information on the theory of wings see 

references [1], [2], and [42] and for information on how to determine 

the circulation term, see (37]. 



FIGURE 9 

b) Treatment of the Sheets at the Trailing Edge 

Consider the problem of flow past a circular cylinder of radius 1 

centered at the origin. Assume that there is a sheet of length h 

situated at point Z;=(1,€) tangential to the obstacle (see 

Figure 10). In the circular plane, the effect of a sheet is calculated 

by subtracting the shadow of the sheet projected normally onto the 

boundary. Thus, a sheet with its center at point z; close to the 

x-axis will effect the fluid both above and below the axis. Recall 

that a vortex sheet is a sheet of discontinuity, where the velocity 

above and below the sheet differs by .;1, where.<; i is the strength 

associated with the sheet located at z .• 
1 

Each sheet tends to slow 

the fluid velocity in the tangential direction. 
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FIGLRE lD 

X-AXIS 

Under our conformal mapping (32) the sheet located at zi in the 

circle plane will be mapped into the folloWing configuration in the 

airfoil plane. 

When we calculate the contribution to the boundary condition from this 

sheet, we see that this sheet affects both sides of the airfoil. It 

simultaneously slows the fluid velocity on top and on the bottom of the 

airfoil. Thus, the effect of this sheet is felt across the &olid 

boundary. This is not physically possible. 

Instead, we do the following. Consider the sheet located at point 

Z;=(l,t) in the circle plane. The center of this sheet is above the 

x-axis, therefore, the transformed point f(z;) lies on the top of the 
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airfoil. The sheet whose center is f(z;) lies in the direction of 

the streamlines. The streamlines of the flow do not bend over the 

trailing edge. Thus, vortex sheets lying in the direction of the 

streamlines should not be allowed to bend over the trailing edge. 

Hence, the correct configuration in the airfoil plane corresponding to 

the sheet situated at Z;=(l,E) in the circle plane, is as shown in 

Figure 12. 

FIGURE 12 

To calculate the contribution of this sheet to the boundary condition 

we project this sheet onto the boundary in the direction normal to the 

boundary. We can easily see that this sheet casts no shadow onto the 

lower part of the boundary. The contribution of this sheet to the 

boundary condition is thus restricted to the top part of the airfoil. 

The portion of the sheet that does not cast a shadow onto the boundary 

of the object acts in exactly the same way as the portion of the sheet 

that does cast a shadow onto the boundary of the object. The only 

difference is that the portion of the sheet that casts no shadow has 

no effect on the boundary condition of the airfoil. When this sheet 

flows out of the boundary layer, it becomes a vortex point of strength 

~.h .• 
1 1 
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10. Numerical Experiments for Flow Past Airfoils 

a) Numerical Parameters 

In calculating flow past an airfoil, the following conformal 

mapping was used: 

- f( ) 1 ( 1) e;_a Z= Z =n+a) z+z 

Again, the parameter a determines the shape of the airfoil and the 

parameter a controls the angle of attack. Note that the solution to 

the irrotational flow is not uniquely determined. In this study, the 

solution to the potential flow was chosen to be the one that gives zero 

velocity at the trailing edge. With this choice, the fluid leaves the 

cusped trailing edge tangentially from both sides of the airfoil. This 

is done by adding the appropriate circulation term to the fundamental 

solution to the potential equation. For a given orientation of the 

airfoil, this circulation should have the value such that the rear 

stagnation point is located at the sharp trailing edge. By choosing 

the circulation to have the value that will make the trailing edge a 

stagnation point, we minimize the amount of work required to achieve 

steady flow. For information on how to determine the value of the 

circulation, see Milne-Thomson [37]. 

Numerical calculations for the potential component of the velocity 

were carried out in the circle plane, and Routh's theorem was applied 

to obtain the corresponding velocity in the airfoil plane. The 

creation of vorticity and the random walk components of the algorithm 

were calculated in the airfoil plane. 
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The numerical parameters for the airfoil problem were chosen to be 

the same as for the case of the problem of flow past a circular 

cylinder. The parameters that varied in the problem of flow past an 
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.airfoil are a and a. The parameter a changes the thickness of the 

airfoil and the parameter a changes the angle of attack. In each case, 

the boundary of the circle was divided into M=20 pieces, each of length 

h=2w/M. Under the conformal mapping, the airfoil was therefore also 

divided into M=20 pieces each of length hi=h·lf'(z1) 1. When a 

vortex sheet flowed out of the boundarY layer, it became a vortex blob 

of strength equa 1 to h;" ~i. Once again, ~max""l. 0, R:1000 and 

llt:::0.2. 

b) Development of the Flow 

Case I: i) a = 0.50 

ii) a=0.25 

a = 0.00 

a = 0.00 

R = 1000 

R = 1000 

i) An airfoil is started impulsively from rest in an infinite pool of 

fluid of density 1. The flow at infinity relative to the moving air­

foil is (-1,0). Initially, we have a potential flow where the stream­

lines close to the body closely follow the boundary, and separate at 

the rear stagnation point. Immediately afterwards, a vortex sheet is 

formed around the airfoil. This vorticity diffuses and is washed 

downstream by convection. As in the case of the circular cylinder, 

there will eventually be more vorticity at the rear end than is needed 

to satisfy the boundary conditions there, and backflovl develops. This 

happens sometime before time t=2 (see Figure 13). By time t=3, a vortex 

bubble is seen to be forming at the bottom of the rear stagnation 



point. The points of separation have moved forward toward the front 

half of the airfoil, and are separating asymmetrically about the 

airfoil. This corresponds to the oscillatory pattern at the wake of 

the airfoil. At this time, we note that the velocity magnitude of the 

vortices are stronger on the top of the airfoil than on the bottom side 

of the airfoil (see Figure 14). At time t=5, the circular vortex 

bubble, visible at the bottom side of the rear stagnation point, has 

become quite strong. The velocity magnitude of the vorticies are now 

stronger at the bottom side of the airfoil than at the top. This 

faster velocity will eventually carry the eddy downstream, away from 

the airfoil. When this happens, the velocity on the top will become 

stronger and the points of separation will shift positions. At this 

time, the points of separation are asymmetric, separating in the front 

half of the airfoil. The streamlines leave the body tangentially from 

these points. The velocity magnitude of the vortices in the wake of 

the airfoil is on the average close to 1, which is the freestream 

velocity. This observation holds true for all the numerical experi­

ments (see Figure 15). 

ii) We now change the parameter a to 0.25 while keeping all other 

values fixed. For this problem, we see that a similar flrnv development 

occurs (see Figures 16 and 18). The points of separation begin to move 

forward shortly after impulsive start and separate asymmetrically about 

the airfoil. An oscillatory pattern at the wake of the airfoil 

develops and is seen to have started before time t=2. 
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FIGURE 13 TI11: T = 1 

TIM: T = 2 
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For this run we computed the drag and lift coefficients using 

formula (30). Figure 19 shows the development of the drag coefficient. 

It starts at zero at time t=O, climbs up rapidly because of the impul­

sive start of the airfoil, and oscillates between 0 and 1.5, leaving 

an average of 0.78. The lift coefficient starts at zero, stays 

essentially zero until time t=0.6, then oscillates about zero staying 

always between :1. The lift coefficient averages to -0.09 after time 

t=5. This is only slightly different from the theoretical value of 

CL=O.O (see Figure 20). 

This run and each of the subsequent runs took on the average 68 

CP-seconds on the CDC-7600 at Lawrence Berkeley Laboratory. At time 

t=S, the flow was modeled by approximately 70 sheets and 300 points. 

Case II: i) a = 0.25 a = -rr/12 R = 1000 

ii) a= 0.25 R = 5000 

i) In this numerical calculation, an airfoil tilted at an angle of 

-rr/12 radians is started impulsively from rest. The Reynolds number 

is 1000, and the fluid density is 1. 

The flow is initially potential and without circulation, where the 

point of separation on the top of the airfoil does not coincide with 

the trailing edge. Immediately after the impulsive start, the top 

point of separation moves to the rear. The velocity as an average is 

greater above the body than below it. Therefore, different amounts of 

vorticity are created and shed from the top and from the bottom. As a 

result circulation is produced around any contour surrounding the body. 
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When the motion is started from rest, thin vortex layers of unequal 

strength leave the top and ~he bottom, thus causing circulation to 

grow. The vortex layers unite at the tail end of the airfoil. 

Backflow develops almost immediately after the point of separation 

coincides with the trailing edge. Consequently the point of separation 

is pushed back up towards the front of the airfoil. At time t=l, the 

top separation point is half way up the airfoil (see Figure 21). The 

bottom point of separation is very close to the rear and remains there. 

The streamlines leave the points of separation tangentially. The flow 

at the trailing edge behaves very smoothly and leaves the body 

tangentially there. 

The vorticity created at the boundary first diffuses, then is 

carried downstream by convection and finally is shed from the edge by 

the fluid. So, continual generation of vorticity at the boundary is 

necessary to satisfy the no-slip condition. The deceleration of the 

fluid close to the body, and the acceleration of the fluid above, cause 

the fluid to collect into circular patterns in the area downstream from 

the top separation point (see Figures 22 to 25). These circular 

patterns get larger and stronger as they roll down the airfoil. 

Eventually the vorticity in these circular eddies is shed off the tail 

end of the airfoil into the wake. There is not a continuous shedding 

of these eddies. The concentration of the vorticity in the wake is 

therefore not uniform. 

At time t=5.4 we see that the flow on the top of the airfoil 

separates very close to the leading edge of the airfoil. The vorticity 
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in the flow downstream from this point causes the formation of circular 

eddies. The eddies are larger farther downstream. The flow in the 

bottom part of the airfoil separates at the trailing edge. The 

vorticity in the wake is not uniform and generates an oscillatory 

pattern (see Figure 25). 

The flow due to an impulsive start of an airfoil at an angle of 

attack equal to -n/12 radians, in a fluid of Reynolds number 1000, has 

been previously studied by Metha and Lavan [34] and by Wu, Sampath and 

Sankar [56]. The former solved the problem numerically using a finite 

difference method while the latter used an integra-differential 

formulation. There are several differences between their calculations 

and those in this study. Besides the obvious differences in numerical 

methods used, the conformal map used is also different, and their 

calculations were carried out to a longer distance past the airfoil. 

Their figures of the flow development were traced using streamlines. 

Thus, it is difficult to compare the creation, diffusion and convection 

of the vorticity. However, interpolation from the graphs exhibited in 

their papers, we see that the flow pattern and the functionals of our 

calculations agree, though I ran my calculations out only to time 

t=5.4. 

The lift and drag coefficients in this study were calculated using 

formula (30). The results corresponding to this problem are plotted 

in Figures 26 and 27. The drag coefficient starts at zero, oscillates 

up and down giving an average of 0.49 after time t=5.2. Similarly the 

lift coefficient oscillates up and down. The average lift coefficient 

approaches the value 1.5 after time t=5.2. 
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FIGrnE 21 TitlE T = 1 
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ii) The program was re-run with the Reynolds number changed to 5000. 

The flow realization corresponding to this run is plotted in Figures 28 

to 31. The development of the flow is very close to the previous case 

with the bottom flow passing the tail end tangentially and the top flow 

separating close to the front of the airfoil. The circular eddies are 

seen quite clearly and are very strong by time t=5. Note that the 

behavior at the tail end of the airfoil is not singular. The flow 

passes this point tangentially and smoothly. The velocity magnitude 

of the flow in the vicinity of this point and in the wake of the 

airfoil is around 1. 

Case III: a = 0.25 a = -n/6 R = 1000 

In this final numerical experiment, the airfoil is tilted at an 

angle of -n/6 radians. Again, the motion of the airfoil is started 

impulsively from rest in a fluid of density 1. 

Initially the flow is potential and without circulation. The top 

point of separation does not coincide with the trailing edge. Soon 

after impulsive start, the top point of separation moves down and 

coincides with the rear of the airfoil. The flow in the first moments 

after starting actually shows a high velocity around the sharp trailing 

edge. However, a vortex of finite dimensions is formed at once~ 

The velocity above the airfoil is on the average larger than the 

velocity below the airfoil. Thus, uneven amounts of vorticity are 

being created, and different amounts of vorticity are shed from the top 

and from the bottom. As a result a circulation is produced. To 

satisfy the condition of conservation of circulation and the no-slip 

boundary condition, vorticity is created on the boundary. 
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Almost immediately after impulsive start, the development of back­

flow occurs in the boundary layer and the top point of separation moves 

up the airfoil toward the leading edge (see Figure 32). The decelera­

tion of the fluid close to the body and the acceleration of the fluid 

above causes the flow in the boundary layer to curl up into circular 

patterns (see Figure 33). Downstream from the top separation point, 

the circular bubbles grow as they move down the airfoil. Eventually, 

they will be shed off the trailing edge. At time t=4, we see that the 

original circular bubble has moved downstream while a new circular 

bubble forms above the original one. The point of separation is now 

close to the leading edge of the airfoil (see Figure 35). 

Following the development from time t=4 to time t=5, we see that 

the original bubble and the second bubble increase in size as they move 

farther down towards the tail end of the airfoil. Comparing this to 

Figure 2.19a, on page 37 of Schlichting [45], we see that our flow 

realization follows the development obtained from physical experiments 

(see Figures 36 and 37). For discussions· on different numerical 

methods to solve flow past blunt bodies and airfoils, see Shen [47], 

Painkker and Lavan [40] and Orszag [39]. 
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FIGI.RE 32 TwE r = 1 

FIGI.RE 33 Tlrv£ T = 2 
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CONCLUSIONS 

In the previous sections, we have introduced both the vortex-blobs 

and vortex-sheets methods. We then developed a hybrid algorithm by 

coupling these two methods. This hybrid algorithm was used to simulate 

flow past a circular cylinder, and flow past a Joukowski airfoil at 

varying angles of attack. We have seen that random-vortex methods for 

modeling the fluid flmv past a circular cylinder yield results that are 

very accurate when compared to experimental data. Similarly, good 

results are obtained for flow past conformal transformation airfoils. 

This hybrid method is grid-free and can easily be adapted to give flow 

past objects of arbitrary shape. 

Note that in our calculations no special assumption is made about 

the point of separation, no lower limit on the thickness of the 

boundary layer is imposed, there is no evidence of blow-up at the cusp 

end of the airfoil, and new computational elements are introduced only 

to satisfy the tangential boundary conditions. For a discussion of 

other vortex methods used for flo\11/ simulation, see A. Leonard [27], 

Kuwahara [24], and Sarpkaya and Schoaff [44]. 

There is hope that the algorithm presented in this paper can be 

expanded to study oscillating airfoils, three-dimensional flows and 

turbulence. Some existing results in this area, both numerical and 

experimental can be found in references [12], [29] to [33], and [52]. 

However, much more work in this area is required. 
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