Lawrence Berkeley National Laboratory
Recent Work

Title
THE STRUCTURE OF THE OXYHYPONITRITE ION

Permalink
https://escholarship.org/uc/item/71c8w0z3

Authors
Hendrickson, David N.
Jolly, William L.

Publication Date
1968-09-01
THE STRUCTURE OF THE OXYHYPNITRITE ION

David N. Hendrickson and William L. Jolly

September 1968

AEC Contract No. W-7405-eng-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
The structure of the anion of Angeli's salt\(^1\) (Na\(_2\)N\(_2\)O\(_3\)) has never been unequivocally determined. Three structures have been considered:

\[
\begin{align*}
\text{I} & \quad \text{II} & \quad \text{III} \\
\text{O} &= \text{N}-\text{N}<\text{O}^- & \quad \text{O} &= \text{N}-\text{O}-\text{N}=\text{O}^- & \quad \text{"O} &= \text{N}=\text{N}-\text{O}^- \\
\end{align*}
\]

The ultraviolet spectrum\(^2\), the infrared spectrum\(^3\), the heat of formation\(^4\), and the pK values\(^5\) have all been interpreted as favoring structure I. In this study, we have obtained further evidence for structure I by asymmetrically labelling the N\(_2\)O\(_3\)^{2-} ion with \(^{15}\)N, and by then isotopically analyzing the products of an asymmetric decomposition of the ion.

We prepared \(^{15}\)N-labelled Na\(_2\)N\(_2\)O\(_3\) by the reaction of labelled ethyl nitrate with ordinary hydroxylamine:\(^1,2\)

\[
\text{EtO}^{15}\text{NO}_2 + \text{NH}_2\text{OH} + 2\text{OH}^- \rightarrow 0_2^{15}\text{NNO}^{2-} + \text{EtOH} + 2\text{H}_2\text{O} \quad (1)
\]
The salt was decomposed by treatment with aqueous silver ion:

\[\text{O}_2\text{NO}^{15\text{N}} + \text{Ag}^+ \rightarrow \text{NO} + \text{NO}_2^{15\text{N}} + \text{Ag} \] (2)

Essentially all the 15N ended up in the nitrite. The lack of scrambling of the nitrogen atoms during the synthesis and decomposition proves that the two nitrogen atoms in N$_2$O$_3^{2-}$ are structurally distinguishable. Therefore structure II is unequivocally eliminated. The fact that the 15N was introduced in the form of an -NO$_2$ group and finally appeared in the form of an NO$_2^-$ ion is persuasive evidence that the 15N atom in the N$_2$O$_3^{2-}$ ion was attached to at least two oxygen atoms. Therefore we eliminate structure III.

Plausible mechanisms for the synthesis and decomposition reactions, based on structure I, can be written:

\[\text{NHOH}^- + \text{EtO}^{15\text{N}} \rightarrow \text{EtO}^- + \text{HONH}^{15\text{N}} \] (3)

\[\text{ON}^{15\text{N}} + \text{Ag}^+ \rightarrow 15\text{NO}_2^- + \text{[AgNO]} \] (4)

Experimental Section

Syntheses.- Sodium oxyhyponitrite was prepared by the reaction of hydroxylamine with ethyl nitrate, as described by Addison et al. The compound was labelled asymmetrically with 15N in a reduced-scale synthesis.
by using 15N-labelled ethyl nitrate which had been synthesized by the following procedure. An aqueous solution of 2.47 g. of ordinary potassium nitrate and 0.511 g. of 95% 15N potassium nitrate (a total of 2.94 mmoles) was passed through a column of AG 50W-X8 cation exchange resin (200-400 mesh) to give, upon evaporation of the eluate, 4.94 g. (2.91 mmoles) of labelled silver nitrate. This AgNO$_3$ was treated with 3.4 mmole of ethyl iodide in 10 ml. of absolute ethanol at room temperature for 30 minutes. The resulting ethanol solution of labelled ethyl nitrate was then vacuum-distilled at room temperature from the silver iodide precipitate and was treated with an ethoxide-ethanol solution of 4.30 mmole of hydroxylamine, as per Addison et al. The 15N-labelled Na$_2$N$_2$O$_3$ was twice recrystallized by dissolving in a minimum of water and adding an excess of absolute ethanol, and was then washed with ether and vacuum-dried. A yield of 0.224 g. (6.2%, based on KNO$_3$) was obtained.

The unlabelled and labelled products were characterized by hydrogen and nitrogen analyses and by the u.v. spectra of their aqueous solutions. These data indicated that the samples were hydrated mixtures containing approximately 85% Na$_2$N$_2$O$_3$ and 5% NaN$_2$O$_2$. Sodium oxyhyponitrite is known to be very hygroscopic and is usually contaminated with sodium nitrite.

Unlabelled material: Anal. Calcd. for Na$_2$N$_2$O$_3$: N, 22.98. Found: H, 0.67; N, 20.04. Labelled material: Anal. Calcd. for Na$_2$N$_2$O$_3$: N, 23.08. Found: H, 0.65; N, 19.22. The nitrite impurity explains why more nitrite than nitric oxide was obtained from the reactions with silver ion (see below). Its presence did not affect the validity of the results; the lack of appreciable labelling of the nitric oxide in reaction 2 is the principal evidence for an asymmetric N$_2$O$_3^-$ ion.
Decomposition Reaction.- Reaction 2 was effected by tipping 0.3-0.4 mmole of Na$_2$N$_2$O$_3$ from a side-arm during 5 min. into excess of a degassed aqueous AgClO$_4$ solution maintained at 0° while Toepler-pumping the evolved gas through a -112° trap into a gas buret. The gas was measured and then analyzed mass-spectrometrically. The remaining solution was then frozen at -78°; 1 ml. of 60% H$_2$SO$_4$ was added, and the mixture was warmed and held at 70° for 12 hr. This procedure converted the nitrite to nitric oxide, which was pumped off and analyzed as described above.

\[2H^+ + NO_2^- + Ag \rightarrow NO + Ag^+ + H_2O \]

(5)

Four samples of the unlabelled compound and three samples of the labelled compound were decomposed and analyzed by the above procedures. The total nitric oxide formed in reactions 2 and 5 corresponded within 5% to the nitrogen contents of the samples. The amount of nitric oxide from reaction 5 was generally 5-15% greater than that from reaction 2.

Isotopic Analysis.- The nitric oxide samples were analyzed with a Consolidated Engineering Corp. mass spectrometer (Model 21-620). The samples were found to contain 0-5% nitrous oxide. In the runs with labelled Na$_2$N$_2$O$_3$, the NO from reaction 2 was found to contain 1.1-1.5% atom % 15N, and the NO from reaction 5 was found to contain 14.2-15.0 atom % 15N.

Acknowledgement.- This research was supported by the U.S. Atomic Energy Commission.
References

(6) Bio-Rad Laboratories, Richmond, Calif.
(7) Based on the reported2 extinction coefficients for $N_2O_3^{2-}$ and NO_2^- at 250 and 365 μμ.
(8) Corrected for the presence of N_2O.
(9) Ordinary nitrogen contains 0.36 atom % ^{15}N.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.