Title
The Low Power Energy Aware Processing (LEAP) Software Applications

Permalink
https://escholarship.org/uc/item/71h8q1gk

Authors
McIntire, Dustin
Au, Lawrence
Chow, Timothy
et al.

Publication Date
2007-10-10
The Low Power Energy Aware Processing (LEAP) Software Applications

Dustin McIntire¹, Timothy Chow¹, Karthik Dantu², Mansi Shah², Thanos Stathopoulos¹, Gaurav Sukhatme², William J. Kaiser¹

NSF ITR Networked Infomechanical Systems (NIMS) Program
¹UCLA Electrical Engineering Department ²University of Southern California

Introduction: Adaptive Sensing with Energy Agile Platforms

New Requirements
• Measurement and detection in complex environments
• Requires high performance sensing, computing, networking
• Requires on demand actuation

Fundamental Challenges
• Must maintain low energy operation
• Must enable adaptation to environmental change

Research Goals
• Harness highest energy efficiency components
• Introduce new multiprocessor platform
• Hardware/software support for new scheduling methods
• Autonomous adaptation to maximize sensing fidelity.

Application Goals
• Distributed sensing in natural and civil environments

Solution: etop & Energy-Aware Operating Systems for Microservers

etop: Real-time Per-process Energy Accounting
• Based on “top” Unix utility
 – Real-time display of per-subsystem current/power/energy consumption
 – Real-time display of per-process energy information
• Capabilities
 – Measures energy consumption during system/user time per scheduler tick
 – Provides information in /proc/<pid>/chrg
• Planned extensions
 – Per-process per-subsystem display
 – Asynchronous operation support

Energy-Aware OS for Microservers
• Scheduling
 – Dynamic energy scheduler
• Application design
 – Resource usage: processor, memory, storage, network interfaces
• Automatic energy profiling
 – Selecting the optimal operating points for a particular task

Other LEAP2 Applications

Graphical User Interface – LabVIEW

TinyOS Port
• Sensor-network specific OS
• Tightly coupled I2C interface with PXA
• Capability to power up/down PXA
• Similar abstractions between MP and SMP on ENS Box
• Design energy aware features for TinyOS

UCLA – UCR – Caltech – USC – UC Merced