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ABSTRACT

Accurate occupancy prediction can improve building control and energy efficiency.

In recent years, WiFi signals inside buildings have been widely adopted in occupancy

and building energy studies. However, WiFi signals are easily disturbed by building

components  and  the  connections  between  users  and  WiFi  signals  are  unstable.

Meanwhile,  occupancy information is  often characterized stochastically  and varies

with time. To overcome such limitations, this study utilizes WiFi probe technology to

actively  scan  the  WiFi  connection  request  and response  between WiFi  signal  and

smart  devices  in  existing  network  infrastructures.   The  Markov  based  feedback

recurrent  neural  network  (M-FRNN)  algorithm  is  proposed  in  modeling  and

predicting the occupancy profiles. One on-site experiment was conducted to collect

ground truth data using camera-based occupancy sensors, which were used to validate

the M-FRNN occupancy prediction model over a 9-day measurement period. From

the  results,  the  M-FRNN  based  occupancy  model  using  WiFi  probes  shows best

accuracy with a  tolerance of 2,  3,  and 4 occupants can reach 80.9%, 89.6%, and

93.9%,  respectively.  This  study  demonstrated  WiFi  data  coupled  with  machine

learning methods can provide valuable people count information to building control

systems and thus improve building energy efficiency.

Keywords: building energy efficiency, occupancy prediction, WiFi probe, data 

analytics, M-FRNN algorithm, machine learning
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1. INTRODUCTION

 Buildings have  received increasing attentions in  recent  years for their  energy-

saving  potential.  Building  energy  conservation  requires  effective  facility  system

management and a good understanding of occupants’ energy demand and buildings’

capacity  [1,2]. The energy consumption during the operation stage of a building is

expected to be highly dependent on its estimated performance during the design stage.

However,  many  studies  suggested  that  actual  energy  performances  of  buildings

severely deviates from their original design conditions due to incorrect assumption or

estimation of occupancy behavior [3–6]. Significant discrepancies have been observed

[7,8] due to complicated interrelationship of energy consumption in building facilities

and  occupancy  behavior  [9–11].  Masoso  and  Grobler  studied  the  electricity

consumption in an office building and found 56% was consumed during non-working

hours due to leaving on lightings or other devices when offices were unoccupied [12].

Dong and Andrews  [13] implemented sensor-based occupancy behavior model and

prediction  method  in  building  energy  and  comfort  management  systems  and

simulations  suggested potential  energy saving of  30% when compared with other

basic energy savings by HVAC control strategies. Wood and Newborough [14] found

an  energy  reduction  of  10%  to  20%  when  studying  the  effect  on  real  energy

consumption by occupant feedback method. The International Energy Agency (IEA)

Energy in Building and Community (EBC) Programme Annex 66 has highlighted and

concluded the significant roles of  occupant behavior in building performance study

[15]. It emphasizes that occupant behavior is a key factor in evaluation of energy-

saving  technology  by  observing  how  occupants  understand  and  interact  with  the

technology when building is in use.

Therefore, researchers have developed various occupancy approaches to model and

predict occupancy patterns of building. As the most widely implemented approach,

CO2 concentration based occupancy estimations have been used in some studies [16–

18]. However, those approaches yield to some limitations, such as low sensitivity to

large  areas,  latency  in  prediction  and  potentially  high  initial  investment  for

installation.  Developed  in  recent  years,  an  alternative  approach  utilizes  WiFi

technology to automatically sense occupancy information based on existing network

infrastructures  [19,20].  However,  WiFi  signal  is  unstable  and  various  building

components, such as metal separations or concrete walls, can interfere with the signal.

In  addition,  the  occupancy information is usually  stochastic  and varies with time,

which also cause the variation of WiFi signal utilization from the occupant side. For

3



example, different occupants can carry different number of WiFi devices, which can

also  change  between  time  of  the  day  or  day  of  the  week.  The  connection  and

disconnection  between occupants  and WiFi  devices  is  also  changing due  to  sleep

mode of devices. Therefore, there is a challenge to use WiFi signal to directly infer

occupancy information. To enhance the application of WiFi technology in low-cost

and  high-resolution  occupancy  estimation,  this  study  proposes  an  occupancy

prediction model using the Markov based feedforward artificial neural network (M-

FRNN) algorithm to derive occupancy profiles in office buildings. To evaluate the

performance of the proposed approach, an on-site experiment was conducted for nine

days. During the experiment, a CO2 concentration based occupancy approach was also

implemented  for  comparison.  Ground  truth  occupancy  data  was  acquired  from

camera-based occupancy sensors.

2. BACKGROUND

In recent years, researchers recognized that building occupancy information played

a  critical  role  in  energy  consumption  as  well  as  the  discrepancies  between  the

designed/simulated energy performance and actual building energy consumption [8].

The  occupant  behavior  in  a  building  is  closely  related  to  its  actual  energy

consumption during its operation stage [20–22]. Occupants can influence a building’s

energy  consumption  in  three  ways  [21]:  (1)  the  participating  heat  balance  of  the

building  through  occupants’  body  heat  release;  (2)  occupancy-based  demand

including thermal comfort and indoor air quality [19,23–25]; (3) occupant interactions

with  building  systems  and  building  controls  [26–28].  Based  on  the  occupancy

assessment, Kim et al. developed a method to improve building energy simulation and

significantly  reduced  the  deviated  plug-load  estimation  [29].  Chen  et  al.  utilized

occupancy  information  to  visualize  the  impact  of  occupants’ behavior  on  office

buildings in the EnergyPlus simulation model [30]. Occupancy information can also

be embedded into model predictive control (MPC) to save energy  [10]. Occupancy

information  can  be  extended  to  more  complicated  energy-using  behaviors  of

occupants.  For  example,  Chen  et  al.  [31] emulates  occupants’ energy  consuming

behaviors under peer pressure through peer network simulations. Lu et al. investigated

the occupants’ relapse behavior to assist decision-making in building retrofit projects

[32]. Anna et al. proposed new human-based energy retrofits in residential buildings

to integrate the post-occupancy information in the simulation  [33]. Anna et al. also

investigated the occupants’ attitudes, education background, and perception in some

thermal and energy need studies [34,35].
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Therefore,  an  accurate  prediction  of  occupancy in a  building is  the  premise  to

improving building energy efficiency in the future [9]. American Society of Heating,

Refrigerating  and  Air-Conditioning  Engineers  (ASHRAE)  recommends  fixed

occupancy  diversity  factors  in  Standard  90.1-2007  [36] when  actual  occupancy

information  is  unavailable.  However,  significant  discrepancies  were  found  given

uncertainties in occupants’ behaviors and occupancy patterns, which can result in an

estimation  error  of  up  to  40%  [37].  The  book,  Exploring  Occupant  Behaviors  in

Buildings, has concluded occupancy studies in terms of sensing and data acquisition,

survey  and  laboratory  approaches,  and  validations  [38].  Passive  infrared  (PIR)

sensors,  movement  sensors,  and  lighting  sensors  can  respond  to  occupants’

presence/absence within their field-of-view. PIR occupancy sensors is one of the most

popular  application  in  lighting  controls,  but  these  sensors  are  not  able  to  predict

stationary  occupant  [39].  Using  movement  sensors,  the  study  [40] considered

occupant presence as an inhomogeneous Markov chain and generated a time series of

presence (absent or present) of each of a zone’s occupants insides buildings. Studies

also employ cameras to  record building or room presence information and predict

people count information [41–43]. Ahn and Park built an occupancy estimator using a

camera to  predict  occupancy presence and simulated building energy performance

under ASHRAE, Markov chain, and random walk models [44]. 

Another  one widely  applied medium is carbon dioxide  (CO2) concentration  in

indoor  spaces.  For  example,  Wang  et  al.  developed  several  dynamic  CO2-based

models  to  estimate  and  predict  occupancy  in  commercial  buildings  [16,45,46].

Researchers also proposed the inclusion of sensory data from other environmental

sensors,  such as temperature,  humidity,  lighting,  and acoustic  sensors,  to  improve

occupancy  prediction  accuracy  [47,48]. Yang  and  Becerik-Gerber  formulated

stochastic  processes  based  on  regression,  time-series  modeling,  and  pattern

recognition modeling approaches to improve accuracy in occupancy prediction from a

data analytic perspective [49]. Jiang et al. proposed a feature scaled extreme learning

machine  (FS-ELM)  approach  on  CO2 concentration  to  predict  occupancy  [17].

However, CO2-based approaches have several constraints, such as low sensitivity to

occupant mobility and slow response to drastic occupancy changes  [50].  Diaz and

Jimenez conducted an  experiment  on  the  power consumption  of  computers  under

occupancy  variation  estimated  by  CO2 and  the  results  suggested  that  CO2

concentration is informative and expected to serve as a good indicator of occupancy

[11].  Another  popular  stream of  occupancy-sensing  methods  focuses  on  terminal-

based wireless positioning sensors, such as radio-frequency identification (RFID). For
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example, Li et al. [51] reported an average positioning accuracy of 88% for stationary

occupants and 62% for mobile occupants when using active RFID systems. However,

RFID systems require occupants carry a dedicated receiver tag which needs additional

investment in implementation in supporting facilities and infrastructures. There is also

concern of privacy with such wearable devices.

Alternatively, WiFi signal is a popular medium to predict occupancy information

since WiFi signal is more efficient, affordable, and convenient inside buildings. Many

researchers  have  proposed  effective  WiFi  based  occupancy  approaches  to  adjust

HVAC operation  [52–55]. Because multiple WiFi networks are usually installed in

most  of  modern  buildings,  the  setup  cost  for  the  positioning  network  is  low.

Additionally,  occupants’ mobile  phones can serve as signal tags by measuring the

signal  strength  indicator  (RSSI)  and  MAC  address.  For  example,  Balaji  utilized

existing WiFi infrastructure and smartphones to adjust  HVAC operation, achieving

17.8%  electricity  savings  [56].  Some  researchers  used  WiFi  data  for  occupancy

sensing  by  directly  counting  connections  between  users  and  WiFi  signals  [57].

However,  WiFi  based  occupancy  prediction  is  subject  to  unstable  signal  due  to

building  geometry  and  various  interferences.  The  connection  from  users  is  also

unstable as some users might not connect to WiFi signals since sleep mode of their

devices, as well as users carry different number of mobile devices during a day. 

To apply WiFi signal in improving occupancy prediction, this study conducted one

on-site experiment in an office testbed to collect the WiFi signal connections through

WiFi probe and proposed one occupancy prediction approach using the WiFi signal.

One novel Markov-based feedback recurrent neural network (M-FRNN) algorithm is

proposed  to  predict  the  occupancy  information.  The  time-series,  statistic,  and

stochastic  characteristics,  and  the  two-status  of  occupancy  information  are  fully

considered in  the prediction model.  Cameras were used to  obtain ground truth of

occupancy  to  assess  the  results  of  the  M-FRNN approach.  In  addition,  the  CO2

concentration based occupancy prediction was used to benchmark the performance of

the proposed M-FRNN algorithm. 

Main contributions of this study can be illustrated as:

(1) It proposed and validated a high-resolution and -accuracy occupancy prediction

model,  based on a  machine  learning algorithm M-FRNN,  using the  low-cost  and

widely available WiFi utilization data in an office field.
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(2) It provides a reference of how we can utilize more occupancy characteristics in

occupancy prediction model and improve accuracy.

(3)It  provides  insights  for  occupancy  study  through  comparison  of  the  CO2

concentration based approach and the WiFi data approach.

3. METHODOLOGY

3.1 WiFi network infrastructure 

Inside buildings, WiFi access points (APs) are installed to provide Internet services

for building occupants by broadcasting WiFi signal around. When an occupant arrives

in a building, smart devices carried by the occupant will scan the WiFi APs to look for

the signal. The scanning has two types, active scanning (including direct scanning and

broadcast scanning) and passive scanning [58]. During direct scanning, clients send a

probe  request  intending to  connect  to  a  designated  AP with  a  certain  service  set

identifier (SSID). Under such settings, only the requested SSID AP can response to

the probe request. During broadcast scanning, clients broadcast a probe request with a

null  SSID,  which allows all  APs in the zone to receive and respond to the probe

request.  During  passive  scanning,  available  APs  act  like  a  beacon  and  broadcast

signals,  and  clients  will  decide  whether  to  send  a  connection  request.  Under  all

scanning approaches, the request and response will be captured by the WiFi probe

with a timestamp and the MAC address of each client. If the request log shows a

client’s device sent a connection request to one AP, the system infers that the client is

within the range of WiFi probe sensing. Each MAC address is assumed to represent

one  unique  client.  Figure  1 shows a typical  workflow of  cooperative  WiFi  probe

devices in the process of occupancy sensing.
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Figure 1. Workflow of occupancy sensing through cooperative WiFi probe devices.

As  occupants  may  use  multiple  WiFi  enabled  devices,  such  as  smart  phones,

laptops,  wireless  printers and other  wearable  devices,  one MAC address  does  not

imply one valid occupant. Therefore, to filter out invalid MAC addresses based on the

signal  patterns  of  the  connection  request,  previous  study  adopted  duration  time

functions to pre-process the raw connection data [19] to figure out the raw occupant

data from computers and other devices, which can be adopted in this study. However,

the details about filtration will not be discussed in this study for brevity.

3.2 Characteristics of occupancy data 

As  a  presentation  of  the  utilization  of  building  functions,  occupancy  contains

unique features. Researchers have discussed and summarized these features into five

characteristics  [17,59–61].  (1)  Time  series  characteristic.  Occupancy  is  associated

with time of a day and shows a periodic pattern. (2) Statistic characteristic. Historical

occupancy data can infer the current occupancy pattern. (3) Stochastic characteristic.

Current occupancy status is determined probabilistically according to  the previous

status. (4) Limited occupancy statuses. The occupancy status is simple and commonly

contains two types, occupied or unoccupied (in or out). (5) Chronological distribution.

The probability  of occupant presence varies at  different times of day.  In  addition,

when occupants have interrelationships, such as being co-workers, the probability of

their presence is a joint probability or conditional probability. Figure 2 illustrates the

typical  data  format  of  the  occupancy transfer  probability  matrix  for  the  proposed

model. In Figure 2, t m  and dn  stand for the m th and n th day in the dataset. The
V m , n  means the occupancy information at time interval  m and day n and P2,n

stands for the transfer probability from time interval t2 to t3 in n th day.
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Figure 2. A typical probability correlation matrix of the proposed occupancy model

3.3 Markov-based Feedback Recurrent Neural Network (M-FRNN)

Artificial  Neural  Network  (ANN)  machine  learning  algorithms  are  a  set  of

computational  methods  that  mimic  the  human  brain’s  problem-solving process  to

predict system outcomes through training and pattern learning. A typical ANN model

has three network layers: The Input layer, the Hidden layer, and the Output layer. For

occupancy prediction settings, the Input layer includes the captured MAC address of

the  current  time  interval.  An  input  vector  for  MAC  addresses  at  time  t  can  be

formatted as

X (t )={x1 , x2, …, x i , …. , xk } (1)

where, X (t )  is the collection of all MAC addresses at current time t.

   k  is the total number of all MAC addresses at current time t.

x i  means the i th detected MAC address.

The Hidden layer neutrons are calculated through input and network weights. 

H (t )=W 1
T
∗X (t )+b (2)

The Output layer converts the outcomes of Hidden layer and aggregates the results.
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W 2
T
∗H (t )

W
¿=g (W 2

T
∗(¿¿1T

∗X (t )+b))

Y (t )=g¿

(3)

where, H (t )  and Y (t )  stand for the output of the Hidden layer and Output layer,

respectively. W 1
T

 and  W 2
T

 stand for  the  weights  from the  Input  layer  to  the

Hidden layer and from the Hidden layer to the Output layer, respectively. g(∙)  is

the activation function of the Output layer and b is the random bias.

Classic  ANN  algorithms  can  effectively  represent  the  time  series  and  statistic

characteristics of occupancy information, but are constrained regarding its stochastic,

chronologically interdependent characteristics. Due to the unique electronic features

of WiFi receivers, the outcome of occupancy prediction is subject to large and random

fluctuations.  For  example,  during  WiFi  probe  sensing,  discontinuous  connection

randomly appears  as  most  mobile  phones will  activate  sleep mode once  they are

without  internet  services.  Short-term  or  one-time,  unexpected  visitors  could  also

distort the prediction outcome with random bump ups. Such noises lead to latency in

occupancy recognitions and deteriorate the prediction accuracy. 

To  solve  such  problems,  this  study  developed  a  multi-variable  Markov  based

Recurrent Neural  Networks algorithm to build the occupancy behaviors prediction

model.  Figure 3 shows the structure of the proposed  M-FRNN  algorithm. In  the

proposed algorithm, an additional Context layer is added to capture the feedback and

learn occupancy information from network iterations at a certain time interval. M-

FRNN improves the classic ANN occupancy prediction model in three major areas.
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Figure 3. The structure of M-FRNN algorithm 

First, the Feature layer is added between the Input layer and the Hidden layer to

calculate the transfer probabilities of one MAC address in the Markov process. Since

current  occupancy  status  depends  on  previous  occupancy  status,  the  transfer

probability and transfer probability matrix can be used to quantify such processes.

Assuming there are only two statuses of an occupant in a space, which is “in” or

“out”, the transfer matrix can be defined as:

TPM|xk
=[ xk

i−o xk
i−i

xk
o−o xk

o−i ]
(4)

where TPM|x k  represents the transition probability matrix of one occupant xk .

In the transfer matrix,  xk
i−o

 and  xk
i−i

 denote the observed probability that one

occupant whose status is “in” at the current time would still be “out” and “in” at the

next time, respectively,  at  the next time. xk
o−o

 and  xk
o−i

  denote the observed

probability that one occupant whose status is “out” at the current time interval would
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be “out” and “in” in the next time interval. The probability could be calculated by the

observed conditional probability based on Bayesian models. For example, 

xk
i−i

=P ( observed state=i|observed state=i¿  
(5)

Therefore, the occupied probability of one MAC address is

xk
i−i

=
∑ N1−1

∑ N1−1+∑ N1−0

xk
o−o

=
∑ N0−0

∑ N 0−0+∑ N0−1
 

(6)

where N i−i  is the frequency in which the occupancy status transitioned from “in”

to “in” and N i−o is the frequencies in which the occupancy status transitioned from

“in” to “out” respectively. Similarly, No−o  and N o−i represent the frequencies in

which the occupancy status transitioned from “out” to “out” and from “out” to “in”

respectively. 

Secondly, the training dataset in occupancy will be automatically updated, making

the calculated frequency dynamic. When the training dataset is updated, the transfer

probabilities  are  also  updated  in  the  following  assessment. With  an  assigned

probability for each MAC address in the room, each MAC address can be formatted

as

xk={xk
Mac , xk

o−i , xk
i−i }

(7)

Then, the input vector will be updated as

X (t )={x1
Mac , x1

o−i , x1
i−i , x2

Mac , x2
o−i , x2

i−i ,…, xk
Mac , xk

o−i , xk
i−i }

(8)

Third, time windows are applied for dynamic modelling, as illustrated in Figure 4.

The feature layer can then be formatted as 

F( t)={ X (t ) , X (t−1 ) , X (t−2 ) ,…. , X (t−∆ t)}
(9)
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where,  ∆ t  is the length of time window ( ∆ t=5  in this study) and F( t)  is

the vector of the Feature layer at time t . Supposing the number of MAC addresses

in the time window is K , then

F( t)={x1
Mac , x1

o−i , x1
i−i , x2

Mac , x2
o−i , x2

i−i ,… ,xK
Mac , x K

o−i , xK
i−i }

(10)

Figure 4. The illustration of time window method in occupancy model.

As the Context layer stores the feedback signals for the Hidden layer in the next

interval, it serves as a short-term memory to highlight occupancy interdependencies.

Then, the output of the Hidden layer can be formatted as

H (t )=f (ω1C (t−1 )+ω2 ( F ( t ) )) (11)

The output of the Context layer is

C (t−1 )=α C (t−2 )+H (t−1) (12)

Where H (t )  is the output vector of the Hidden layer at time interval t , and C is

the output vector of Context layer. ω1
 is the connection weight from the Context

layer to the Hidden layer, and ω2
 is the connection weight from the Feature layer

to the Hidden layer. α  is the self-connected feedback gain factor ( α=0  in this

study).  f (∙)  is  the  activation  function  of  the  Hidden  layer.  In  this  study,  the

function is selected as

f ( x )=
1

1+e−x
(13)
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Signal transition from the Hidden layer to the Output layer could be formatted as:

y (t )=ω3 H (t )=ω3
∗f (ω1C (t−1 )+ω2 ( F (t ) )) (14)

Where, the y(t) is the output variable at time t, which is the predicted occupancy in

this study. ω3
 is the connection weight from the Hidden layer to the Output layer.

The cost function to update and learn the connection weights is formulated as

E=∑
t=1

N

[ y (t )−d (t)]
2

 
(15)

Where N is the size of training time samples and  d (t)  is the actual occupancy

output.

4. ON-SITE EXPERIMENT 

4.1 Experiment testbed

To  validate  the  proposed  occupancy  prediction  method,  the  research  team

conducted a two-week experiment using a graduate student office room located in

City University of Hong Kong. The office has an area of about 200 m2 and 25 long-

term  residents  during  the  experiment  period.  Fig.  5  shows  the  space  layout  and

equipment setup of the testbed. The office has two entrances but no window. Inside

the room, the dedicated outdoor air system (DOAS) is equipped to ventilate outdoor

air  to  indoor  area  without  air  handling  process  through  24  hours.  Indoor  air  is

conditioned by the fan coil unit (FCU) with variable refrigerant flow and therefore,

indoor air circulation is driven by positive pressure. On the other hand, this office is

covered  by  several  university  WiFi  signals  installed  by  City  University  of  Hong

Kong, which contributes to WiFi utilization data collection in this office room.

4.2 Sensors installation and data collection

During  the  experiment,  TA465-X  (environmental  sensors  produced  by  TSI

Company) were utilized to monitor and record the indoor air temperature, relative

humidity, and CO2 concentration, as shown in Fig. 5. Since DOAS and FCU systems

constitute the indoor air circulation and conditioning, the CO2 concentration of return

air of FCU can be approximately represented by CO2 concentration of the indoor air
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after air mixing. To eliminate the uneven air mixing, we installed three environmental

sensors, which are evenly distributed insides this office room. Air flow meters were

installed near outdoor inlets to monitor the air flow rate of the ventilation system.

Ground truth of occupancy data is acquired by two overhead cameras installed to

record the entrance and exit events of occupants. Table 1 shows the specifications of

the installed sensors, which include cost for purchase, measurement variables, data

storage types, sensing intervals, range, accuracy, and resolution of each sensor during

experiment. The measurement duration is  from 09 Sep 2017 to 23 Sep 2017. The

occupancy prediction model is scheduled from 09:00 to 18:30. 

Figure 5. Space layout and equipment setup

Table 1. Sensors used in the experiment.

Sensors Camera WiFi

Probe

Environmental Sensors

CO2

Sensors

Temperature

Sensors

Humidity

Sensors

Other

Sensors

Cost (USD) 45 30 400

Recorded

Variables

Time,

Actual

occupancy

Time,

MAC

address,

RSSIs

Time, Temperature, Relative humidity,

CO2, Air flow rate, Air pressure, CO
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Data Storage Online Online Local

Sensing

interval

30s 1min 1min 1min

Range 0 – 5k

ppm

14 - 140 °F

-10 – 60 ℃

0 to

95%

Accuracy ±3% or

±50

ppm

±0.5°F

(±0.3℃)

< 3%

Resolution 1 ppm 0.1°F

(0.1℃)

0.10%

4.4 Data processing

4.3.1 Ground truth

In this study, two cameras were installed. Since sensing time intervals of sensors

were different, two steps were applied in this study to keep sensing data and ground

truth consistent. Firstly, we need to obtain the entrance and exit of two doors from

videos at any time and generate the occupancy ground truth for a day. Secondly, the

WiFi and environmental sensors can be synchronized in one-minute raw data and then

we calculate the number of occupants from ground truth at same sample time as the

WiFi probe and CO2 concentration.

4.3.2 CO2-based occupancy model for comparison

A CO2-based occupant accounting approach was adopted as a comparison. Based

on the ASHRAE standard’s recommendation, this study assumes that (1) CO2 is only

generated  by  occupants’ metabolism and outdoor  air  ventilation,  (2)  the  occupant

generated CO2 (S) at a constant speed, and (3) the air supplied to the space is assumed

to be well-mixed. The time variation of CO2 concentration levels in one zone can be

calculated with a mass balance equation

V room

∂C z(t )
∂ t

=V saC sa+Pz∗S−V raCra−V oaC ra  (16)

While in the air-handling unit (AHU), mass balance of CO2 yields to

V oaC o+V ra Cra=V saC sa  
(17)

Where, V room  is  the  volume of  room.  C z is  the  indoor  CO2 concentration,
C sa  is the CO2 concentration of supply air, and Cra  is the CO2 concentration at

the return duct level. V sa  is the supply air volume, V ra  is the return air volume,
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and V oa  is the outdoor air volume. Pz  is the number of occupants and S  is

the CO2 generation rate of per occupant. When the CO2 concentration at the return air

duct is assumed to be the same as the CO2 concentration of the indoor air at breathing

level, then

V room

∂ C z(t )
∂ t

=V oaC0+ Pz∗S−V oa∗C z   (18)

Therefore, we could calculate:

Pz=
(V oa

k
+V oa

k−1 )∗(C ra
k
−Co

k
)

2S
+

V∗(C ra
k
−C ra

k−1
)

S∗∆ t
(19)

The superscript k  denotes the index of the time interval and Δt  is the data

resolution of time. Since the air in the room is well-mixed and occupants generate

CO2 at a constant speed, CO2 concentration is an obvious indicator of human presence

and the number of occupants in a space. 

After measurement, interpolation was used to make up default value of outdoor air

flow rate and indoor air CO2 concentration by averaging the around two sample data.

For Eq.19, the generation rate (S) of an occupant can refer to ASHARE Standard 62

[62]. The CO2 concentration of return air ( Cra ) was replaced by indoor air CO2

concentration measurement and was inputted by averaging measurement data from

three CO2 sensors. For brevity,  the CO2 concentration sources from filtration were

ignored in this study since filtration is difficult to measure. The office room does not

have windows so infiltration is expected to be low.

4.3.3 Model configuration

Fig.  6  shows an  overview of  this  study.  In  the  proposed occupancy prediction

model, the raw data of Mac address of occupants’ smart devices can be illustrated

using the duration time filter method  [19]. Since the core of this study focused on

occupancy prediction method with WiFi  data,  the details  about how to filter  Mac

addresses were not investigated in this study. In M-FRNN, for the data in input layer,

Eq. 4 to 7 were the key step to excavate the features of raw data of Mac addresses and

calculate the occupancy frequencies from “out” to “in” and from “in” to “in”. The 30-

min moving time window method adapted to time series characteristic of occupancy

and generated  feature  layer  dataset.  The  final  occupancy prediction  profiles  were

illustrated by 5-min resolution. Therefore, each time window includes 6 occupancy
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data. In results, Markov chain model based on Eq. 4, 5, and 6 was used to compare M-

FRNN model by summing the transfer probabilities from “out” and “in” to “in”. On

the  other  hand,  results  from CO2-based  occupancy  profiles  were  also  applied  to

compare the results.  However,  during the experiment,  outdoor air  system operates

during the 24 hours before the first arriving of the office.  To eliminate such error,

some researchers  use  CO2 concentration  increase,  such as  50ppm,  as  an  effective

indicator  of  human  presence  [13].  Therefore,  this  study  assumes  the  presence  of

occupants if the CO2 concentration of indoor air is 50ppm higher than that of the

outdoor air. Finally, two types of CO2 concentration based occupancy profiles were

used as comparisons. First type was to use measured CO2 concentration to calculate

occupancy profile and second type considered the first arriving time of occupancy

information by calculating occupancy when CO2 concentration is over 450 ppm (CO2

concentration  of  outdoor  air  was  set  as  400  ppm).  For  each  occupancy  profile,

performance  criteria  were  whether  the  predicted  occupancy  profile  successfully

matches the occupancy profile of ground truth evaluated by four assessment indices.

4.4 Assessment of occupancy prediction

During the experiment, the actual occupancy of the room was acquired through

manual video analysis of the camera recordings. To assess the occupancy prediction,

four indices were used to compare the results with actual occupancy. 

(1) Mean Absolute Error (MAE) compares the mean error between the occupant

counts in a zone and can be defined as

MAE (O p )= 1
N
∑
i=1

N

|Oi
ob−Oi

p|   
(20)

(2) Mean Absolute Percentage Error (MAPE) shows the mean percentage error

between the predicted occupant count and the actual number of occupants.

MAPE ( O p )= 1
N
∑
i=1

N

|(Oi
ob
−Oi

p
)/Oi

ob|  
(21)

(3) Root Mean Squared Error (RMSE) shows the magnitude of the estimation

error.
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CVRMSE (O p ) :=
√∑n=1

N

(Oob
−Op

)
2
/N

∑
n=1

N

Oob
/ N

 

(22)

(4) X-accuracy presents the accuracy when a tolerance x is allowed between the

predicted occupancy and actual occupancy. The tolerance x allows for wrong

estimation of the number of occupants. For example, the 2-accuracy (x=2)

tolerance means that when the number of wrongly estimated occupants is

less than 2, the estimation is regarded as correct. 

τ (Op , x )=
∑
i=1

N

X (|Oi
ob
−Oi

p|, x)

N
  

(23)

Where,

X (|Oi
ob−Oi

p|, x )={1,∧if |Oi
ob
−Oi

p|<x
0,∧otherwise .

  

(24)
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Figure. 6. The flowchart of this study.

5. RESULTS AND VALIDATION

5.1 Data analysis

Figures 7 to 9 show the raw results of the experiment. There are 4 outdoor air inlets

and 8 supply air outlets in the experiment. It could be found from Figure 7 that the

outdoor air supply flow rate is 180 cfm for each outdoor air inlet consistently, while

the supply air flow rate for each supply air inlet is over 300 but less than 400 cfm

most  of  the  time.  During  the  experiment,  outdoor  air  was  supplied  uninterrupted

during the night even if the cooling services from supply air terminals were closed by

users. 
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Figure 7. The flow rate of outdoor air and supply air over one day.

Figure 8 shows the CO2 concentration variation of outdoor air and indoor air. It

shows the CO2 concentration of outdoor air is constant around 400 ppm, which is

used  in  the  CO2  concentration  based  occupancy  model.  The  indoor  air’s  CO2

concentration is averaged from data measured by all CO2 sensors. Figure 8 shows that

the  pattern  of  CO2  concentration  varies  similar  to  the  occupancy  pattern

recommended  in  ASHRAE  standard  90.1-2007  [36].  At  noon,  the  value  drops

dramatically due to occupants’ lunch break. Since MAC addresses were taken as the

identities of occupants, Figure 9 shows the total number of MAC addresses during

experiment period from 09/10/2017 to 09/23/2017 based on the WiFi probe sensing

results.  In  the  experiment,  the  MAC  addresses  mainly  belong  to  phones  and

computers.  To filter  the  results,  only  MAC address  with a  duration  time  over  30

minutes were taken into consideration  [19]. The figure shows the number of MAC

addresses appearing in the experiment filed in weekdays was more than on weekend

days. 

Figure 8. The CO2 concentration of outdoor air and supply air in one day.
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Figure 9. The total number of MAC addresses for each day.

5.2 Results for occupancy prediction and comparison

This section summarizes the occupancy profile results using both the WiFi probe

and CO2 concentration approaches. During the experiment, the sensors, including the

WiFi probes and cameras, required internet connectivity to upload the data in real

time,  while  the  data  from  the  environmental  sensors  needed  to  be  downloaded

manually.  Since  then,  the  processed  results  excluded  the  experiment  days  with

discontinuous  monitoring  and  unqualified  results.  Moreover,  WiFi  probes,  CO2

sensors  and  cameras  have  different  measurement  timesteps.  Finally,  to  compare

results,  the  valid  experiment  period  includes  9  days  and  the  5-min  resolution

occupancy profiles during office hours (from 09:00 am to 18:30 pm) were estimated.

The results beyond the decimal point have been dealt and shows using integer points

as count of occupants should be integer. Figures 10-12 show the occupancy profiles

based on camera footage, CO2 concentrations, and the WiFi probe.

In  the  CO2-based  occupancy  prediction,  the  outcomes  were  significantly

influenced by the CO2 concentration of indoor air and the flow rate of outdoor air. As

the outdoor air was constantly supplied through the whole day, the CO2 concentration

of indoor air was close to that of outdoor air at the beginning of a day. Therefore, the

occupancy counts based on CO2 concentration method were unreasonably high at the

beginning of the day. It can be seen from Figures 10-12 that the occupancy measured

with CO2 concentration methods (Occupancy_CO2, the orange line) is very high at

the start of all nine days, even when the room was unoccupied around 9:00 am. The

results  with  the  improved  CO2  concentration  based  occupancy  model

(Occupancy_CO2_50ppm, the blue line) are presented in Figures 10-12. Based on the
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results, it could be found that the accuracy of the occupancy model at the beginning of

each day was greatly improved. 

In WiFi probe based occupancy results, two occupancy models were compared: the

classic  Markov  model  and  the  Markov-based  FRNN  model.  The  classic  Markov

model  introduced  stochastic  characteristics  of  occupancy  and  recognized  the

occupancy information using transfer probabilities. The Markov-based FRNN model

also  considered the  time series characteristics  and interdependency.  Figures  10-12

present the WiFi probe based occupancy prediction results, including results from the

classic  Markov model  (Occupancy_WiFi_Markov,  the  grey line) and the  Markov-

based FRNN model (Occupancy_WiFi_M-FRNN, the red line). Since the results of

Occupancy_WiFi_Markov  is  more  undulatory  than  that  of  Occupancy_WiFi_M-

FRNN, the proposed is more preferable as the input for building facility systems, such

as HVAC systems, lighting systems, etc.

Figure 10. The occupancy results found using each approach from day 1 to day 3.
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Figure 11. The occupancy results found using each approach from day 4 to day 6.

Figure 12. The occupancy results found using each approach from day 7 to day 9.

Figure 13 shows the x-accuracy of all three occupancy models. The x-accuracy of

improved CO2-based occupancy model shows over 80% accuracy on 5 days (x=4), 2
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days (x=5), 1 day (x=6), and 1 day (x=7). The best performance appears on day 5 and

the maximum number of occupants is 11, while the accuracy can still be 93.9% if 4

error count is allowed.

The WiFi probe based Markov models is  over 80% of accuracy for x=3 (1 day),

x=4 (5 days), x=5 (1 day), and x=6 (2 days). Similar to the CO2 model, the accuracy

on day 5 can reach 94.8% if 4 error count is tolerant. The results also reveal that the

M-FRNN model can greatly improve the prediction accuracy,  80% of accuracy on

x=2 (1 day), x=3 (4 days), x=4 (2 days) and x=5 (2 days). 

Figure 13. The results of x-accuracy for each approach over 9 days

Table 2 summaries the assessment indices of each occupancy approach during the

experiment  period,  including  the  max  number  of  occupants,  MAE,  MAPE,  and

CVRMSE. It shows that days 5 has the worst prediction performance for all three

occupancy  models.  The  proposed  WiFi  based  M-FRNN  occupancy  model  shows

higher accuracy in terms of MAE, MAPE, and CVRMSE when compared with CO2-

based occupancy model. When compared with the classic Markov model using WiFi

probe sensing, the proposed M-FRNN also has a better performance in terms of the

MAE,  MAPE  and  CVRMSE.  The  mean  error  average  of  proposed  occupancy

prediction with WiFi data is lowest among the occupancy models. For example, in

day1, the MAE of M-FRNN model is only 1.82 (the number of maximum occupants

is 17) while MAE results of CO2 based method and Markov chain based method are
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3.99 and 2.3, respectively. Considering MAPE and CVRMSE, the M-FRNN model

has the lowest results implying the proposed predicted model can achieve more stable

occupancy profiles results when compared to the ground truth.

Table 2. Results of the MAE, MAPE, and CVRMSE of each approach over 9 days.

Occupancy_CO2_50ppm Occupancy_WiFi_Markov Occupancy_WiFi_M-FRNN

Inde

x

Max MA

E

MAP

E

CVRMS

E

MA

E

MAPE CVRMS

E

MA

E

MAPE CVRMS

E

day1 17 3.99 44% 51.17% 2.3 25.20

%

29.22% 1.82 22.14% 24.70%

day2 14 2.97 43.1% 44.2% 2.61 34% 41.9% 1.88 48.3% 29.3%

day3 17 2.64 25.3% 28.1% 2.57 22.8% 29.8% 2.4 25.9% 29.6%

day4 17 2.8 45.7% 42.8% 2.61 32.8% 36.9% 2.23 28.4% 34.6%

day5 11 2.23 78.4% 61.7% 1.72 45.4% 53.6% 1.72 48.2% 57.5%

day6 19 3.22 27.3% 30.8% 2.87 33.4% 27.9 2.66 33.5% 25.2%

day7 14 2.13 34.1% 35.3% 2.23 30% 31.8% 1.94 26.3% 29%

day8 19 3.63 50.5% 42.3% 3.48 40% 43.3% 3.78 46.5% 42.2%

day9 14 3.55 44.2% 46.5% 3.37 38.2% 47.9% 3.47 44.8% 33%

6. DISCUSSIONS

The conventional CO2-based occupancy prediction methods have been thoroughly

investigated  over  years  regarding  the  occupant  counting  and  demand  controlled

ventilation systems. As CO2 concentration is a direct indicator of indoor air quality, it

effectively improves the wide application of CO2 concentration methods in current

HVAC systems. However, high data-resolution CO2 sensors are far more expensive

than WiFi probe sensors. The readings of CO2 sensors are usually undulatory, and the

CO2 concentration of indoor air will change depending on the status of doors and

windows.  The  ambiguous  relationship  between  CO2  concentration  and  occupant

number  potentially  results  in  energy  wastes.  WiFi  probe  approach  is  a  good

supplement to the existing CO2 method, given the ease and affordability of system

deployment.  WiFi  probe  can  provide  high-resolution  occupancy data  to  assist  the

CO2-based indoor air quality control. In addition, WiFi networks can greatly improve

the prediction accuracy in large multi-zone spaces, where the slow CO2 dilution can

potential cause significant error.   

In term of prediction accuracy and efficiency, this study compared several popular

prediction approaches. The popular occupancy prediction indicator, x-accuracy, shows

that the proposed M-FRNN method can significantly improve the prediction accuracy
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with a tolerance of 2, 3, and 4 occupants to reach 80.9%, 89.6%, and 93.9%, while the

CO2-based methods have accuracy of 74.8%, 79.1%, and 93.9%. WiFi networks are

installed in most modern buildings, with advances in technologies, WiFi can interplay

a  more  significant  role  in  building  control.  For  example,  the  Internet-of-Things

technologies allows small appliances and facilities connected via WiFi network and

can be predicted and operated. More complicated prediction method can be used to

not only prdict the occupants’ presence but also actives.  In addition, the predicted

occupancy also can be extended to intelligent building management. For example, the

building energy management can estimation cooling,  heating,  and ventilation load

based on occupancy information (such as occupant number and energy consumption

schedule and profiles) to automatically adjust the building service systems, which is

one key feature of the grid-interactive efficient buildings [ref]. 

The WiFi probe-based occupancy prediction method in this study also yields some

limitations. The first limitation is privacy concern, since the device MAC address is

often associated with occupant’s identification. In IEA EBC Annex 66, it recommends

that ethics conduct should be concerned by assuring scientific validity and minimum

potential  harm to  participants during occupancy study.  Secondly,  this  study didn’t

validate  the  occupancy  model  in  different  experiment  fields  and  different  time

resolutions.  For  example,  the  proposed  occupancy  model  can  be  an  acceptable

solution in smaller spaces or at finer temporal (e.g., 1-minute) resolution. As building

energy control system might vary with types of spaces and different measurement

timestep  of  occupancy,  occupancy  validation  in  multi-type  buildings  and  multi

resolutions  should  be  prioritized  in  future.  Thirdly,  the  proposed  method  is  only

applicable in WiFi covered areas. Its application may be constrained in very small

room with few occupants and the areas with insufficient or no WiFi services. The

results also show a mobile phone might turn to sleep mode when the phone is not in

use for a long time [56]. Once the mobile phone turns to sleep mode, communication

with the WiFi signal is low-frequency and may mislead the prediction algorithm. In

the  simulation,  occupancy  data  are  generated  from experiment  and  model  results

while other variables were kept identically. Building performance simulation results

under different occupancy results may be optimistic. 

7. CONCLUSIONS 
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This study employed the WiFi probe technology to capture the connection requests

and  responses  to  dynamically  diagnose  and  assess  a  building’s  occupancy

information. For comparison, CO2 concentrations based occupancy sensing method

was  applied  while  camera  based  occupancy  count  was  taken  as  ground  truth.

Considering the unique characteristics of occupancy data, the Markov-based feedback

recurrent neural network M-FRNN approach was developed. The on-site experiment

during nine days  demonstrated that  M-FRNN based occupancy model  using WiFi

probes shows the best accuracy with a tolerance of 2, 3, and 4 occupants can reach

80.9%, 89.6%, and 93.9%, respectively. As WiFi signal is popularly used in buildings,

the occupancy sensing with WiFi signal enables building control systems to adjust

services  based on people  count,  which will  lead to  energy savings  and improved

occupant comfort. This study provide insights for WiFi based occupancy studies and

occupant-related studies to improve building energy efficiency. 
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Sensor Camera WiFi Probe Environment Sensors

CO2

Sensors

Temperature

Sensors

Humidity

Sensors

Other

Sensors

Cost

(USD)

45 30 400

Recorded

Variables

Time,

Actual

occupancy

Time, MAC

address,

RSSIs

Time, Temperature, Relative humidity, CO2, Air

flow rate, Air pressure, CO

Data

Storage

Online Online Local

Frequency 30s 1min 1min 1min

Range 0 – 5k ppm 14 - 140 °F

-10 – 60

℃

0 to 95%

Accuracy ±3% or

±50 ppm

±0.5°F

(±0.3℃)

< 3%

Resolution 1 ppm 0.1°F

(0.1℃)

0.10%
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Occupancy_CO2_50ppm Occupancy_WiFi_Markov Occupancy_WiFi_M-FRNN

Inde

x

Max MA

E

MAP

E

CVRMS

E

MA

E

MAPE CVRMS

E

MA

E

MAPE CVRMS

E

day1 17 3.99 44% 51.17% 2.3 25.20

%

29.22% 1.82 22.14% 24.70%

day2 14 2.97 43.1% 44.2% 2.61 34% 41.9% 1.88 48.3% 29.3

day3 17 2.64 25.3% 28.1% 2.57 22.8% 29.8% 2.4 25.9% 29.6

day4 17 2.8 45.7% 42.8% 2.61 32.8% 36.9% 2.23 28.4% 34.6%

day5 11 2.23 78.4% 61.7% 1.72 45.4% 53.6% 1.72 48.2% 57.5%

day6 19 3.22 27.3% 30.8% 2.87 33.4% 27.9 2.66 33.5% 25.2%

day7 14 2.13 34.1% 35.3% 2.23 30% 31.8% 1.94 26.3% 29%

day8 19 3.63 50.5% 42.3% 3.48 40% 43.3% 3.78 46.5% 42.2%

day9 14 3.55 44.2% 46.5% 3.37 38.2% 47.9% 3.47 44.8% 33%
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