Title
ANALYSIS OF REACTIVE SCATTERING IN CROSSED MOLECULAR BEAMS

Permalink
https://escholarship.org/uc/item/71t2w2jw

Author
Herschbach, Dudley R.

Publication Date
1960-08-01
Ernest O. Lawrence

Radiation Laboratory

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ANALYSIS OF REACTIVE SCATTERING IN CROSSED MOLECULAR BEAMS

Dudley R. Herschbach

August 1960
In their recent paper, "Variation of a Chemical Reaction Cross Section with Energy," Greene, Roberts, and Ross\(^1\) report a study of the \(\text{K} + \text{HBr} \rightarrow \text{H} + \text{KBr}\) reaction in crossed molecular beams. This is the first reaction study in which the blurring due to velocity distributions has been substantially reduced, as the K velocity was selected mechanically and the HBr velocity spread diminished by holding the source at a low temperature. The ratio of the scattered intensity of KBr to elastically scattered K, observed at a laboratory angle of 35°, appeared to rise sharply above the background at a relative initial kinetic energy (RIKE, in kcal/mole) of 1.4, reach a maximum at 3.3, and thereafter decline. Several discussions\(^1,2\) of these results have interpreted them as a rather direct measurement of the variation of the reaction probability with relative energy. Therefore it seems necessary to point out that such information cannot be obtained from this experiment.

We consider three effects, the first two of which appear even if the intersecting beams are regarded as entirely monochromatic in speed and direction. The reaction probability as expressed in the differential cross section, \(\sigma(v,v',\chi)\), depends upon\(^3\) the magnitude of the initial and final relative velocity vectors, \(v\) and \(v'\), and the angle between them, \(\chi\). If the collision yield is measured at a fixed laboratory angle while the speed of one of the beams is varied, the

* Support received from the Alfred P. Sloan Foundation and the U.S. Atomic Energy Commission is gratefully acknowledged.
orientation of χ and the center of mass vector \mathbf{c} with respect to the
direction of observation will be continually changing. This causes
the dependence on v and the dependence on χ to be superposed in the
results ("Problem I"). Calculations show the effect is quite serious:
for the example of Fig. 1a, the two values of χ that contribute to the
yield at 35° in the laboratory undergo large changes, to 38° and
123°, when the RIKE is raised 25% by increasing v_K.

The recoil velocity of KBr relative to the center of mass is
small: $(M_H/M)v' \approx (1/120)v'$. From energy balance, $v' = [2(E+Q)/\mu']^{1/2}$,
where E is the RIKE and Q is the internal energy converted into trans-
lational energy of separation of the products. The maximum possible
value of Q is only about 6 kcal/mole in this reaction. Thus one finds
that the recoil velocity vector of the KBr is confined within the small
sphere indicated in Fig. 1a. Even for completely specified initial
conditions there will always be some distribution of internal excita-
tion in the product molecules (i.e., distribution of Q-values), and
a corresponding distribution in values of χ that contribute at a given
laboratory angle ("Problem II"). However, if the strong correlation
between v and χ introduced by "Problem I" could be eliminated (using
observations at other laboratory angles), it would be feasible to
derive the energy dependence of the cross section averaged over a range
of χ (and Q), because it turns out this range would not vary much as
RIKE is changed.

Figs. 1b,c,d and Table I demonstrate that the RIKE scale used in
Ref. 1 must be modified ("Problem III"). This scale ("nominal" in
Table I) was calculated for perpendicular collisions, using the most
probable v_{HBr} at $152^\circ K$ and v_K at the center of the triangular intensity
distribution transmitted by the selector. As shown by the diagrams,
KBr from such collisions could not appear at 35° in the laboratory
when RIKE is above about 3 (since then spheres for $Q \geq 6$ no longer intercept the 35° line). The shaded areas (single shading for $Q = 6$; double for $Q = 0$) indicate the range of v_{HBr} vectors which could yield KBr at 35°. Conservation of momentum and energy requires v_{HBr} to fall between lines roughly parallel to the 35° line; the areas are further delimited by the partial collimation of the HBr ($\pm 30°$, a rather wide spray1) and by the 1% intensity level. The contour lines give the percentage of the peak intensity as computed from the Maxwellian and the cosine distributions. Table I lists the derived ranges in RIKE. These are conservative estimates, based on the 10% contour and $Q = 0$ rather than the maximal $Q = 6$; allowance is made for the remaining spread in v_K and the contribution of out-of-plane scattering (not included in Fig. 1). It will be noted that at a nominal RIKE of 1.4, a substantial number of collisions have RIKE as high as 2.8, near the activation energy determined from the temperature variation,5 so the appearance of the threshold in this experiment at a low nominal RIKE is perhaps not surprising. Furthermore, the systematic shift of the shaded areas relative to the contour lines shows that as RIKE increases, the yield at 35° must be increasingly attenuated and eventually will disappear, regardless of the actual form of the energy dependence of the cross section.

We wish to thank E. F. Greene, R. W. Roberts, and J. Ross for helpful correspondence.
Footnotes

4. Obtained from the difference in dissociation energies of KBr and HBr, \(D^0 = 4.2 \pm 1.1 \) kcal/mole [A. G. Gaydon, Dissociation Energies (Chapman and Hall, London, 1953)] plus three times the most probable rotational energy of HBr, 0.15 kcal/mole at 152°K.

Table I. Analysis of energy variation

<table>
<thead>
<tr>
<th>Nominal RIKE</th>
<th>Central $v_K \times 10^4$ cm/sec</th>
<th>KBr Recoil Velocity $Q = 0$</th>
<th>KBr Recoil Velocity $Q = 6$</th>
<th>Range and Most Probable RIKE, $Q = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>3.65</td>
<td>0.18</td>
<td>0.62</td>
<td>0.2 - 1.0; 0.4</td>
</tr>
<tr>
<td>1.4</td>
<td>6.48</td>
<td>0.29</td>
<td>0.66</td>
<td>0.6 - 2.8; 1.6</td>
</tr>
<tr>
<td>3.3</td>
<td>10.21</td>
<td>0.44</td>
<td>0.75</td>
<td>2.7 - 5.7; 4.2</td>
</tr>
<tr>
<td>5.0</td>
<td>12.48</td>
<td>0.54</td>
<td>0.81</td>
<td>3.9 - 7.7; 6.1</td>
</tr>
<tr>
<td>7.0</td>
<td>14.73</td>
<td>0.65</td>
<td>0.88</td>
<td>6.0 - 10.6; 8.1</td>
</tr>
</tbody>
</table>
Fig. 1. Constructions to find (a) \(x \) values that contribute to 35° yield for given \(Q \) (radius of sphere); (b,c,d) effect of remaining spread in beam speeds and intersection angles.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.