Title
AN INEQUALITY FROM A THEORY OF CURRENT

Permalink
https://escholarship.org/uc/item/7227n6tc

Author
Nussinov, Shmuel N.

Publication Date
1968-08-01
University of California

Ernest O. Lawrence Radiation Laboratory

AN INEQUALITY FROM A THEORY OF CURRENT

Shmuel N. Nussinov

August 7, 1968

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
AN INEQUALITY FROM A THEORY OF CURRENT
Shmuel N. Nussinov
August 7, 1968
AN INEQUALITY FROM A THEORY OF CURRENT*

Shmuel N. Nussinov

Lawrence Radiation Laboratory
University of California
Berkeley, California

August 7, 1968

Using Sugawara theory and a universal current x current N.L. Hamiltonian an upper bound on non-leptonic transition is obtained.

There has been recently considerable interest in "dynamical current theories". Such theories not only utilize postulated current algebras but are completely based on currents as the basic variables.\(^1\)

The following expression for the energy momentum tensor in terms of axial and vector SU(3) x SU(3) currents

\[\theta_{\mu \nu}^S = \frac{1}{2C} \sum_{a=1}^{8} \left([V^a_\mu(x), V^a_\nu(x)] - g_{\mu \nu} [V^a_\mu(x) \gamma^\mu(x)] \right) + (V \leftrightarrow A), \]

(1)

was shown by Sugawara\(^2\) to be consistent with, and almost uniquely determined by, covariance requirements and the algebra of fields commutation relations.\(^3\)

The parameter C appears in these commutation relations as the coefficient of the Schwinger term:
\[[V_0^a(x), V_k^b(y)] \delta(x^0 - y^0) = i f_{abc} V_k^c(x) \delta^b(x - y) \]
\[+ i C \delta_{a,b} \partial_k \delta^h(x - y) \] \hspace{1cm} (2)

and therefore satisfies the spectral function sum rule:
\[\int \frac{d(m^2)}{m^2} = C \] \hspace{1cm} (3)

In the following we show that if the non-leptonic Hamiltonian has the universal (Cabibbo current) x (Cabibbo current) form:
\[H_{PC}^{\Delta S = 1} = \frac{G \sin \theta \cos \theta}{2 \sqrt{2}} [V_{\mu}^{\pi^+}(x), V_{\mu}^{K^-}(x)]_{+} + (V \leftrightarrow A) \] \hspace{1cm} (4)
then Eq. (1) implies the "universal bound" on all non-leptonic matrix elements:
\[C \geq \frac{|\langle \alpha | H_{PC}^W |\beta \rangle|}{G \sqrt{2 \sin \theta \cos \theta} \bar{m}} \] \hspace{1cm} (5)

where \(|\alpha\rangle, |\beta\rangle\) belong to an SU(3) multiplet with a common mass \(m\), \(G = 10^{-5}/m^2_p\), and \(\sin \theta \sim 0, 24\). Since the Suzuki-Sugawara analysis relates the matrix elements of the parity conserving weak Hamiltonian to the \(S\) wave part of the non-leptonic decays and \(C\) is given by Eq. (3) the inequality (5) can in principle be confronted with experiment.

In order to derive the inequality we use the fact that
\[m = \langle \alpha | \delta_{\alpha 0} | \alpha \rangle - \langle \phi \rangle_0 \]

\[= \frac{1}{\mathcal{N}_0} \langle \alpha | [V_\mu^k, V_\mu^k]_+ + [V_\mu^\pi^+, V_\mu^\pi^-]_+ + [V_\mu^k_0, V_\mu^k_0]_+ \]

\[+ 2 V_\mu^\eta_0 V_\mu^\eta_0 + 2 V_\mu^\pi_0 V_\mu^\pi_0 \langle \alpha \rangle + (V \leftrightarrow A) - \langle \phi \rangle_0, \]

(6)

where \(|\alpha\rangle \) is a rest state of the multiplet considered.

For simplicity neglect first the subtraction of the vacuum expectation value \(\langle \phi \rangle_0 \) required in (6). The diagonal matrix elements \(N_{\alpha \alpha} \) of:

\[N = (V_\mu^k_+ + V_\mu^\pi^+) \left(V_\mu^k_+ \pm V_\mu^\pi_+ \right)^* + (V \leftrightarrow A) \]

are proportional to the contribution of the charged currents \([k^+ k^-] + [\pi^+ \pi^-]\) to the mass \(m \) in Eq. 6. Nondiagonal elements \(N_{\alpha \beta} \) between states of equal charge and one unit difference in strangeness are proportional to \(\langle \alpha | H_{\text{PC}} | \beta \rangle \). Since \(N \) is positive definite \(N_{\alpha \alpha} N_{\beta \beta} \geq |N_{\alpha \beta}|^2 \) and we obtain the inequality (5).

Returning to the vacuum expectation value \(\langle \phi \rangle_0 \) in Eq. (6), we realize that its subtraction amounts to the omission of all disconnected contributions in which one current creates an intermediate state from the vacuum and the other current annihilates it with the initial hadron \(\alpha \) passing uneffected:

\[\langle \alpha | J J | \beta \rangle_{\text{disconnected}} = \delta_{\alpha \beta} \langle 0 | J J | 0 \rangle. \]
If we omit from the completion sum
\[\langle \alpha | J | \beta \rangle = \sum_n \langle \alpha | J | n \rangle \langle n | J | \beta \rangle , \]
the corresponding "disconnected" intermediate states \(|n\rangle\) which contain a hadron \(|\alpha\rangle \ (= \beta\rangle\) at rest, we achieve the required subtraction of \(\langle \cdot \rangle_0\) while keeping the \(J\) product positive definite within the subspace spanned by the rest states \(|\alpha\rangle\), and the derivation of Eq. (5) still goes through.

Our result (5) is not restricted to theories in which \(\vartheta_{\mu \nu}\) has the form (1) but holds whenever
\[\vartheta_{\mu \nu} = \vartheta_{\mu \nu}^S + R_{\mu \nu} , \]
where \(\vartheta^S\) is given in Eq. (1) and \(R_{00}\) is positive definite. In such a case there will be an additional contribution \(\langle \alpha | R_{00} | \alpha \rangle\) to the masses which could make the inequality stronger. Only when we appeal to the spectral function sum rule (3) in order to evaluate \(C\) do we make use of the detailed features of Sugawara's model. For the purpose of checking the inequality (5) let us assume "vector dominance" namely that the sum rule (3) is saturated by the \(\rho^0\) contribution:
\[C = \frac{g_{\rho^0}^2}{m_{\rho^2}} = 0.025 \text{ or } 0.018 \text{ BeV}^2 . \]

We consider here only hyperon decays where the Suzuki-Sugawara analysis is most successful and ambiguities due to mass differences are smallest. The fit yields the following value of the non-leptonic matrix elements:
\[\langle \alpha | H_W | \beta \rangle = f_{60}^\alpha F + d_{60}^\beta D \]

\[F = 3.6 \times 10^{-8} \text{ BeV} \quad D = -1.6 \times 10^{-8} \text{ BeV}. \]

It is most advantageous to choose \(|\alpha\rangle = \Sigma^+ \quad |\beta\rangle = p \) in which case we obtain the large matrix element \(|\langle \Sigma^+ | H_W^{PC} | p \rangle| = |D - F| = 5.2 \times 10^{-8} \text{ BeV}. \)

Using this value and \(m = 1.1 \text{ BeV} \) in (5) we find \(C \geq 0.0115 \text{ (BeV)}^2 \) consistent with (8).

This result may be interpreted as indicative of the possible consistency of the various ingredients used in deriving Eq. (6) - including the vector dominance assumption. In view of the fact that the contribution of the four neutral currents in Eq. (6)
\[n^+ n^- + n^- n^+ + k^0 + k^0 \]
was ignored in deriving (5) and only the four charged currents retained we find the margin by which (5) is satisfied rather slim.

More direct tests of Sugawara's model involving a consistency sum rule or inequalities for integrated electroproduction cross sections were recently derived by Gross10 and by Gross and Callan11. These tests do not involve \(C \) or any assumptions on the non-leptonic Hamiltonian. The practical evaluation of those sum rules is rather difficult, whereas our inequality which [neglecting the saturation problem in (3)] involves directly complete matrix elements.

This work was begun while the author was visiting at La Jolla. I would like to thank Professor Norman Kroll and Professor William Frazer for their hospitality. I am indebted to Dr. J. Dabul for a helpful discussion and would like to express my gratitude to Dr. David Gross for many discussions and reading of the manuscript.
FOOTNOTES AND REFERENCES

* This work supported in part by the U.S. Atomic Energy Commission.

1. For a general discussion of such theories see papers by Sharp and Dashen and Sharp, Phys. Rev. 165, 1857-1881 (1968).

6. In particular the extension of Sugawara's theory to include PCAC suggested by K. Bardakci, Y. Frishman, and M. B. Halpern, Phys. Rev. 170, 1353 (1968) results in such modifications of $\Theta_{\mu\nu}$.

7. Such vector dominance assumptions are often used in hard pion calculations and in analysis of various photoproduction experiments so that the assumption could be independently checked.

8. The two values of g_p correspond to the experimental values quoted in S. G. Asbury et al., Phys. Rev. Letters 20, 227 (1968) and to the value obtained by using the K.S.F.R. relation.

9. Since the "m" appearing in the denominator of (5) is actually $(m_Q m_B)^{\frac{1}{3}}$ one is tempted to consider $\langle k | H_w | \pi \rangle$. The symmetry breaking effects in this case are large and difficult to assess.

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.