Title
Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations

Permalink
https://escholarship.org/uc/item/723982fv

Journal
Proceedings of the National Academy of Sciences, 109(46)

ISSN
0027-8424 1091-6490

Authors
Dawson, M. L
Varner, M. E
Perraud, V.
et al.

Publication Date
2012-10-22

DOI
10.1073/pnas.1211878109

Peer reviewed
Airborne particles affect human health and significantly influence visibility and climate. A major fraction of these particles result from the reactions of gaseous precursors to generate low-volatility products such as sulfuric acid and high-molecular weight organics that nucleate to form new particles. Ammonia and, more recently, amines, both of which are ubiquitous in the environment, have also been recognized as important contributors. However, accurately predicting new particle formation in both laboratory systems and in air has been problematic. During the oxidation of organosulfur compounds, gas-phase methanesulfonic acid is formed simultaneously with sulfuric acid, and both are found in particles in coastal regions as well as inland. We show here that: (i) Amines form particles on reaction with methanesulfonic acid; (ii) water vapor is required, and (iii) particle formation can be quantitatively reproduced by a semiempirical kinetics model supported by insights from quantum chemical calculations of likely intermediate clusters. Such an approach may be more broadly applicable in models of outdoor, indoor, and industrial settings where particles are formed, and where accurate modeling is essential for predicting their impact on health, visibility, and climate.

Understanding how gas phase precursors lead to the formation and growth of new particles that are important for scattering light, for serving as cloud condensation or ice nuclei, and for transport deep into the lung, is one of the most pressing scientific problems (1–5). The most studied system is the conversion of gas-phase SO$_2$ to sulfuric acid and sulfate particles, but even in this case, models typically underestimate particle formation by an order of magnitude or more (3, 4, 6). However, an accurate predictive capability based on molecular-level understanding is critical for projecting the impacts of particles and developing optimal control strategies.

Classical nucleation theory (CNT) has been used for almost a century (7, 8) to predict new particle formation. At its heart, CNT is a thermodynamics approach that assumes that the precursor clusters have bulk liquid properties such as surface tension, and that addition to and evaporation from the clusters occurs via monomers. Modifications to CNT using kinetics approaches have been described (9, 10). More recently, dynamical nucleation theory (11–13) examined intermolecular interactions and used them to obtain rate constants for the individual steps through variational transition-state theory. This theory has been applied to particle formation in relatively simple systems and clusters of relatively few molecules. Recent data from field and laboratory studies, however, suggest that multicomponent systems with multiple reaction steps are likely involved in new particle formation in the atmosphere (14–22).

We report here a combination of experimental and theoretical studies of new particle formation from mixtures of methanesulfonic acid (MSA), amines, and water. We show that a simple kinetic model based on theoretical calculations of structures of molecular clusters that are likely to play central roles in new particle formation can reproduce the experimentally measured formation of new particles quite well. This approach is promising because it has minimal computational demands, and hence is suitable for inclusion in large-scale models, yet still reflects the basic underlying chemistry.

This particular system was chosen because organosulfur compounds, generated from biological processes in the oceans and from agricultural, industrial, and domestic activities (23–27), form MSA alongside sulfuric acid when oxidized in air (3, 28). Although it is known that ammonia and amines enhance particle formation from sulfuric acid (14–19, 29, 30), the effect of amines on MSA chemistry has not been reported. Their impact on atmospheric particle formation could be important, given that there are many sources of amines in air (31) and gas-phase MSA is typically 10–100% of that of gas-phase H$_2$SO$_4$ in the coastal marine boundary layer (32, 33). MSA is commonly detected in atmospheric particles (34–36), and particulate methanesulfonate, dimethylamine (DMA), and cloud condensation nuclei (CCN) activity have been observed to be highly correlated (36). Several field studies have shown enhanced MSA concentrations in small particles when ammonia or amines are present (37, 38), supporting a role for MSA and amines in new particle formation. The impact of MSA and amines on new particle formation may be especially important in the remote marine atmosphere, particularly in polar regions (39–41). However, mechanisms of particle formation in such areas remain unclear.

Results

Flow Tube Experiments. Experiments were performed in an aerosol flow reactor (42) at atmospheric pressure and 25°C where measured gas-phase MSA, water, and trimethylamine (TMA) or DMA were mixed, and number concentrations of the new particles were determined using a scanning mobility particle sizer (SMPS) whose lower detection limit of 3 nm defined what was modeled using the kinetics scheme discussed below. (Potential effects of particle coagulation and wall losses, discussed in SI Text, are shown not to alter the conclusions.)

Fig. 1 shows the number concentrations of new particles formed after 4.2-min reaction time when MSA reacts with water, an amine, or a combination of the two (initial concentrations used...
in these experiments are summarized in Table S1). In agreement with previous studies (43–45), the MSA/water combination does not efficiently form particles compared to sulfuric acid/water. Surprisingly, even mixtures of the strong acid MSA with the basic amines do not lead to significant particle formation; the presence of both the amine and water vapor is required.

The particle number concentrations clearly depend on the concentrations of MSA and the amine. In excess TMA, there is no significant dependence of particle formation on relative humidity (RH), although water is required for particle formation (Fig. 1A). However, there is always a dependence on RH in the case of DMA (Fig. 1B). In both cases, the number concentration increases with RH in the presence of excess MSA.

Theoretical Calculations. To elucidate the mechanisms of particle formation, quantum chemical calculations were carried out to determine equilibrium structures and enthalpy as well as free energy changes for formation of complexes and small clusters that could lead to particle formation. Structural features of these early-stage species were considered in evaluating their potential for particle formation, particularly “dangling” –NH or –OH groups (Fig. 2) that may be especially efficient in additional hydrogen-bond formation and, we propose, continued particle growth. In addition to the number of hydrogen-bond donor sites, a steric factor was used to consider qualitatively the geometric accessibility of potential hydrogen-bond acceptor sites. A diagram of the enthalpy changes (Fig. 3) for the plausible initial steps was used to ensure that the proposed intermediates are energetically stable. The goal was not to provide an exhaustive list of potential contributing processes, but to use the above criteria to consider feasible routes to particle formation to aid in the development of the kinetics model.

MSA is known to form hydrates in the gas phase (43–45). Although hydrates of amines have also been observed (46, 47), the binding energies for DMA and TMA with water are several kcal mol\(^{-1}\) (1 kcal = 4.18 kJ) less than for MSA\(\cdot\)H\(_2\)O (see Fig. 3 and refs. 48–50). As a result, only reaction of MSA hydrates is included in our simplified reaction scheme. Addition of TMA or DMA to a MSA\(\cdot\)H\(_2\)O complex (Fig. 2A) yields the stable MSA\(\cdot\)amine\(\cdot\)H\(_2\)O cluster (Figs. 2B and E and 3). Both clusters have hydrogen-bonding sites that are sterically available for further addition of MSA, amine, or water (Fig. 2C and F), all of which are exothermic processes (Fig. 3).

The MSA\(\cdot\)amine\(\cdot\)H\(_2\)O clusters could be expected to lose water reversibly, producing the MSA\(\cdot\)amine complexes (Fig. 2D and G). Although it is not included in Fig. 3, the entropic contribution to the relative stabilities caused by the vibrational density of states makes this process less unfavorable than it

Fig. 1. Total particle concentrations at 4.2-min reaction time for (A) TMA and (B) DMA with various precursor concentrations and relative humidities. Initial gas-phase concentrations ranged from 2–34 ppb MSA, 0–8 ppb TMA and DMA, and 0–21% RH. Specific experimental conditions are summarized in Table S1.

Fig. 2. Structures for (A) MSA\(\cdot\)H\(_2\)O, (B) MSA\(\cdot\)TMA\(\cdot\)H\(_2\)O, (C) MSA\(\cdot\)TMA\(\cdot\)H\(_2\)O\(_2\), (D) MSA\(\cdot\)TMA, (E) MSA\(\cdot\)DMA\(\cdot\)H\(_2\)O, (F) MSA\(\cdot\)DMA\(\cdot\)H\(_2\)O\(_2\), and (G) MSA\(\cdot\)DMA. MSA in red, TMA and DMA in green, H\(_2\)O in blue, and transferred proton in pink.
appears from a strictly energetic perspective. The MSA•amine complexes have accessible hydrogen-bond acceptor sites that make further growth by addition of gas-phase species possible.

Kinetics Model. Fig. 4 summarizes a reaction scheme for this system that treats particle formation as a simple gas-phase kinetics problem. The clusters included in the kinetics model were chosen based on their computed structures, energetics, expected ability to form hydrogen bonds, and the empirical observation that significant new particle formation requires all three gas-phase species.

The model assumes that after the formation of the MSA•H₂O complex, the intermediates that are stable relative to the gas-phase species and have the ability to hydrogen bond to new species play a key role in the formation of new particles. The formation of MSA•H₂O and MSA•amine•H₂O was assumed to be diffusion-controlled. Second-order rate constants (k₁, k₂, and k₋₃) were calculated (3) according to Eq. 1:

\[k = \frac{8k_B T}{\pi \mu} \left(r_1 + r_2\right)^2 \]

Here, \(\mu \) is the reduced mass of the colliding species, \(k_B \) is the Boltzmann constant and \(T \) is temperature. Eq. 1 assumes clusters and gas-phase species act as hard spheres of radius \(r \). These radii were estimated from the largest distance between atomic nuclei for the corresponding structures shown in Fig. 2. Although some error is associated with this estimate of cluster size, small changes in the assumed radii have been shown not to affect cluster formation rates significantly (51). The rate constants for the first-order reactions \((k_{-1}, k_{-2}, \text{and } k_3) \) were calculated (3) using the forward rate constants and the calculated \(\Delta G \) values (Table 1).

![Diagram](image)

Fig. 4. Proposed reaction scheme for particle formation from the MSA/amine/H₂O system. Species labeled “Particle” are assumed to continue to grow to sizes detectable using our SMPS (≥3 nm).

Table 1. Rate constants* used to model nucleation from MSA/TMA/H₂O and MSA/DMA/H₂O systems using Fig. 4 reaction scheme and \(\Delta G \) values under standard conditions

<table>
<thead>
<tr>
<th>TMA</th>
<th>(\Delta G) (kcal mol(^{-1}))</th>
<th>DMA</th>
<th>(\Delta G) (kcal mol(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_1)</td>
<td>6.58 (10)(^{-1})</td>
<td>(k_1)</td>
<td>6.58 (10)(^{-1})</td>
</tr>
<tr>
<td>(k_{-1})</td>
<td>5.53 (8)(^{10})</td>
<td>(k_{-1})</td>
<td>5.53 (8)(^{10})</td>
</tr>
<tr>
<td>(k_2)</td>
<td>1.32 (9)(^{10})</td>
<td>(k_2)</td>
<td>1.44 (9)(^{10})</td>
</tr>
<tr>
<td>(k_{-2})</td>
<td>3.09 (1)(^{10})</td>
<td>(k_{-2})</td>
<td>5.29 (0)(^{10})</td>
</tr>
<tr>
<td>(k_3)</td>
<td>9.96 (8)(^{10})</td>
<td>(k_3)</td>
<td>7.91 (6)(^{10})</td>
</tr>
<tr>
<td>(k_{-3})</td>
<td>1.66 (9)(^{10})</td>
<td>(k_{-3})</td>
<td>1.49 (9)(^{10})</td>
</tr>
<tr>
<td>(k_4)</td>
<td>6.00 (19)</td>
<td>(k_4)</td>
<td>3.00 (20)</td>
</tr>
<tr>
<td>(k_5)</td>
<td>5.00 (19)</td>
<td>(k_5)</td>
<td>1.00 (20)</td>
</tr>
<tr>
<td>(k_6)</td>
<td>2.00 (25)</td>
<td>(k_6)</td>
<td>3.00 (25)</td>
</tr>
<tr>
<td>(k_7)</td>
<td>5.00 (20)</td>
<td>(k_7)</td>
<td>1.00 (20)</td>
</tr>
<tr>
<td>(k_8)</td>
<td>4.00 (19)</td>
<td>(k_8)</td>
<td>7.00 (20)</td>
</tr>
</tbody>
</table>

*First-order rate constants in units of s\(^{-1}\) and second-order rate constants in units of cm\(^3\) molecules\(^{-1}\) s\(^{-1}\). Also, 1.65 (10) = 1.65 \times 10\(^{-10}\).

†Assumed to be diffusion-controlled and calculated using hard-sphere collision theory with activation energies of zero.

‡Calculated from \(\Delta G \) of formation for intermediates, the relationship between \(\Delta G \) and the equilibrium constant and the value of the forward rate constant.

§Positive values indicate that loss of water from MSA•H₂O \((k_{-3}) \) and MSA•amine•H₂O \((k_{-3}) \) and loss of amine from MSA•amine•H₂O \((k_{-2}) \) are endergonic.
reaction of the MSA
tral role of the MSA hydrate as a particle precursor; and (ii) between the MSA is rooted in the structures and calculated free energy differences increase with RH (although water vapor is required; Fig. 1). DMA and TMA is for the case of excess amine, where, surpris-
6, to form particles. The major difference experimentally between
plex, whereas for DMA, does have a dependence on RH. The difference is rooted in the structures and calculated free energy differences between the MSA•amine•H\(_2\)O complex with water, reaction 6, to form particles. The major difference experimentally between DMA and TMA is for the case of excess amine, where, surprisingly, the number of new particles formed from TMA does not increase with RH (although water vapor is required; Fig. 1). DMA, however, does have a dependence on RH. The difference is rooted in the structures and calculated free energy differences between the MSA•amine•H\(_2\)O and MSA•amine complexes (Fig. 2 and Table 1). For the TMA case, \(\Delta G = +2.2\) kcal mol\(^{-1}\) for conversion of MSA•amine•H\(_2\)O to the MSA•amine complex, whereas for DMA, \(\Delta G = +5.0\) kcal mol\(^{-1}\) under standard conditions (Table 1). Thus the MSA•amine intermediate contributes to new particle formation for TMA, whereas for DMA, MSA•amine•H\(_2\)O is more important. This shunts some of the chemistry through the MSA•amine complex for TMA, and under conditions of excess TMA, reaction 8 becomes the dominant source of particles. Although TMA cannot hydrogen bond to the MSA•TMA complex, it is predicted to form a stable MSA•(TMA)\(_n\) cluster (Fig. 3A). Because water vapor is in great excess, the reaction is limited by the amount of MSA, which is completely titrated by the excess TMA in forming the MSA•TMA•H\(_2\)O complex. As a result, there is little increase in new particle formation with increasing RH, although water is required because the MSA hydrate is the reactive precursor. In the case of DMA, particle formation occurs primarily through the MSA•amine•H\(_2\)O complex where the reaction with a second water molecule gives an additional water vapor dependence.

Interpretation of the experimental data in terms of classical nucleation theory is complicated by the multicomponent and multistep nature of the system. Detailed kinetics mechanisms have been used to describe cluster and particle formation in other systems, including those formed from sulfuric acid, water, and ammonia or amines (51, 54, 55), but without a direct comparison to experimental data. The approach presented here is based on an integration of quantum chemical calculations with experimental data and kinetics modeling. It provides a framework for incorporating new particle formation into atmospheric models in a relatively straightforward, semiempirical manner with minimal computational cost that still reflects the fundamental molecular interactions that are key to the process.

In several field studies in marine areas, the concentration of MSA in the smallest particles was similar to that of non-sea salt sulfate (37, 38). This suggests that in coastal areas, MSA can contribute to new particle formation at levels similar to that of sulfuric acid. The results presented here are consistent with these field observations. Gas-phase sulfuric acid concentrations in air are typically in the range of 10\(^5\) to 10\(^7\) molecules cm\(^{-3}\) in both marine and midcontinental regions (33, 56), and MSA is approximately 10–100% of that of H\(_2\)SO\(_4\) (32, 33). Ammonia concentrations in air are not well-known, particularly for coastal areas, but for rural areas, total amine concentrations of a few tens to hundreds of parts per trillion (ppt) have been reported (31). Close to sources, the concentrations can be parts per billion (ppb) or greater (31). Facchini et al. (38) show that amines are found in marine particles with MSA and propose that there is a marine source of gas-phase amines. The kinetics model was run with MSA at 10\(^8\) molecules cm\(^{-3}\), TMA or DMA at 500 ppt, and RH of 30%. Under these conditions, particles are predicted to be formed at rates of approximately 0.004–0.02 particles cm\(^{-3}\) s\(^{-1}\) for TMA and DMA, respectively. For comparison, using the parameterization of field measurement data of Kuang et al. (57) that was collected under a variety of conditions (which would include the presence of ammonia and amines), sulfuric acid at 10\(^8\) molecules cm\(^{-3}\) forms particles at a rate of 0.01–10 particles cm\(^{-3}\) s\(^{-1}\). Thus our model predicts that under some atmospheric conditions, particle formation from MSA should be similar in magnitude to that from sulfuric acid, as indicated by the field measurements (37, 38). It is noteworthy that this consistency between the model predictions and field results arises even though atmospheric concentrations of MSA are typically ppt (28, 32), as assumed in the model calculations, rather than ppb, which is experimentally accessible in our system. Once new particles have been formed from MSA, they can then grow by uptake of low and semivolatile gases formed in other atmospheric processes.

In summary, our experiments clearly show that MSA and amines form particles and that water plays a key role in the process. Using theoretical calculations of possible important
intermediates to guide the development of a relatively simple mechanistic scheme gave good agreement with the experimentally measured dependence of new particle formation on the concentrations of the precursors in this complex, multicomponent system. Although the specific case described here involves MSA and amines, the role of water and the kinetics formulation based on the structures and thermodynamics of key intermediates integrated with experimental data are expected to be applicable in other important multicomponent systems, such as sulfuric or organic acids with amines. (Indeed, an analogous approach recently applied to atmospheric field measurements was much more successful than traditional analyses for predicting new particle formation from sulfuric acid in air; see ref. 22.) It is noteworthy that our results suggest that rates of new particle formation can be a complex function of not only the nature and concentration of the precursors, including water, but also which precursor specifically is the “limiting reagent.” This approach may be broadly useful for calculating new particle formation wherever it occurs, including outdoors, indoors, and in industrial settings.

Materials and Methods

Gas-phase DMA (1.4 ppm in N2; Airgas) or TMA (13.4 ppm in N2; Matheson) was introduced into the aerosol flow reactor (University of California, Irvine) (42) in a stream of 40 Lpm dry compressed air purified by passing through a particle-free nitrogen generator (Model 75-62; Parker Balston), carbon/alumina media (Perma Pure, LLC), and a 0.1-μm filter (DIFF-N70; Headline Filters). In experiments with RH > 0%, some of the air stream was diverted through a humidifier (Model FC125-240-SMP, Perma Pure, LLC) before entering the flow reactor to achieve the desired RH. Downstream of the amine/water vapor inlet, at a distance corresponding to a mixing time of 4.3 min, gas-phase MSA was introduced into the flow reactor, and then, after an additional 4.2-min reaction time, particles were sampled. The gas-phase MSA was generated by flowing dry purified air over pure liquid MSA (99.0%; Aldrich). The gas-phase concentration of MSA in the flow reactor was varied by adjusting the flow of air over the liquid MSA from 1.5 to 3.0 Lpm.

Gas-phase MSA concentrations were measured by sampling from the flow reactor for 30 min at 1 Lpm onto 25-mm by 0.45-μm Durapore filters (Millipore). The filters were washed with 20 mL of water (Model 7146; Thermo Scientific) and analysis by ultraperformance liquid chromatography MS (Waters). The filter collection method of measuring gas-phase MSA concentrations used in these experiments was tested by collection using two filters in series, and by performing two extractions on a single filter. No MSA was detected on the second inline filter or in the second extraction of a filter sample, even at approximately 10 μg of MSA detected on the second inline filter or in the second extraction of a filter sample.