Title
Transverse spatiotemporal variability of lowland river properties and effects on metabolic rate estimates

Permalink
https://escholarship.org/uc/item/72640774

Journal
Water Resources Research, 50(1)

ISSN
1944-7973

Authors
Villamizar, Sandra R
Pai, Henry
Butler, Christopher A
et al.

Publication Date
2014

DOI
10.1002/2013WR014245

Peer reviewed
Transverse spatio-temporal variability of lowland river properties and effects on metabolic rates estimates

Sandra R. Villamizar*, Henry Pai, Christopher A. Butler, and Thomas C. Harmon

*Corresponding author:
Sandra R. Villamizar
School of Engineering
University of California, Merced
5200 North Lake Road
Merced, CA 95343
svillamizar_amaya@ucmerced.edu
(209) 349-1521

Environmental Systems Program & Sierra Nevada Research Institute
University of California, Merced

Final version published in

Water Resources Research

January, 2014
Abstract

Variability of river properties such as temperature, velocity, dissolved oxygen (DO) and light at small scales (centimeters to meters) can play an important part in determining ecosystem structure and function. We hypothesize that significant transverse cross-sectional DO variation is observable within a river. Such variation may influence conventional single-station metabolic rate (primary production and respiration) estimates with respect to DO probe location, and reveal important connections between physical and biogeochemical processes and their drivers in rivers. Using a mobile sensor system, we measured river properties across a bend in the lower Merced River in Central California under stationary flow conditions in April and September. Cross-sectional temperature, DO and chlorophyll-\textit{a} concentrations exhibited modest but significant gradients which varied in magnitude and direction on a diel basis. The spatiotemporal variation was consistent with reach geomorphology and incident light patterns. Gross primary production (\textit{GPP}), community respiration (\textit{CR}_{24}) and net ecosystem production (\textit{NEP}) rates estimates derived from local DO and temperature time series varied by 3 to 10\% over the river cross-section, with greater variation in late summer. The presence of transverse metabolic rate gradients in this relatively simple reach implies the existence of substantial gradients in more complex river regimes, such as those spanning distinctively different microhabitats, transient storage zones and related distributed biogeochemical zones.
1. Introduction

Small-scale spatial variability (centimeters to meters) of river properties such as temperature, velocity, dissolved oxygen (DO) and light, plays an important role in determining local ecosystem structure and function [Brooks et al., 2005; Reid et al., 2006]. This physicochemical variability results in microhabitats affecting and being affected by aquatic plants and benthic algae [Biggs, 1996; Biggs et al., 1998], invertebrates [Brooks et al., 2005] and fish [Finstad et al., 2007]. In this work, we examine small-scale spatiotemporal variation in river temperature and dissolved oxygen, as well as ecosystem metabolism estimates (primary production and respiration) derived from these observations.

Metabolism metrics derived from DO cycling behavior, such as gross primary production (GPP), ecosystem respiration (CR24), and net ecosystem production (NEP, where \(\text{NEP} = \text{GPP} - \text{CR24} \)) have long been used to characterize aquatic ecosystem dynamics [Odum, 1956; Mulholland et al., 2001]. GPP, CR24 and NEP (referred to as stream metabolism or metabolic rates) are typically estimated as reach-averaged values using the single or two-station open water method based on diel DO and water temperature observations [Odum, 1956; McCutchan Jr. et al., 1998; Mulholland et al., 2001; McCutchan Jr. et al., 2002; Hall Jr. and Tank, 2005]. These methods assume that the stream is well mixed in the vertical and transverse dimensions. Here, we test the assumption of complete transverse mixing by examining DO cycling and metabolism estimates locally over small scales.

The occurrence and drivers of spatial heterogeneity of metabolic rates have been investigated in lakes [Van de Bogert et al., 2007]. In some cases metabolism drivers are
clear. For example, we know that lakes tend to stratify by temperature, leading to vertical
DO, light, nutrient and biomass gradients, and that productivity decreases with depth.
However, it is unclear why lake respiration appears to be unaffected by depth [Coloso et
al., 2008]. In another example, seasonally averaged metabolic drivers have been linked to
total phosphorous and dissolved organic carbon levels [Hanson et al., 2003; Sand-Jensen
and Staehr, 2007]. However, driver identification over shorter time-scales remains an
elusive goal due to the spatio-temporal heterogeneity of the potential drivers [Coloso et
al., 2011]. The shorter-term heterogeneities result from wind conditions relative to site-
specific morphologic features and the lake’s spatial complexity, including the division
between the open water (pelagic) and the benthically-influenced littoral zone [Van de
Bogert et al., 2007; Vadeboncoeur et al., 2008; Van de Bogert et al., 2012].

River ecosystems exhibit DO patterns similar to those of lakes, suggesting that some
findings about net NEP in lakes may be relevant to rivers. Like lakes, rivers exhibit
spatially heterogeneous DO and temperature distributions in spite of their state of
continual mixing (relative to lakes). Longitudinal changes in the metabolism within a
river, and differences between rivers, are driven by temperature, nutrient loading, and
light availability (e.g., [Hoellein et al., 2007; Von Schiller et al., 2008; Griffiths et al.,
2013]). Vertical mixing in rivers is rapid compared to longitudinal mixing, yet vertical
gradients in DO, temperature and nutrients are observable [Lorke et al., 2012; Berg et al.,
2013]. Transverse mixing timescales for rivers are intermediate to those for longitudinal
and vertical mixing for a given river [Fisher et al., 1979; Rutherford, 1994]. More recent
studies underscore the importance of transverse heterogeneity of biogeochemical
constituents due to exchange processes between the main channel and transient storage
zones [Ensign and Doyle, 2005; Gooseff et al., 2011] and/or the hyporheic zone [Haggerty et al., 2002; Bencala, 2005; Cardenas et al., 2008]. These exchange processes, along with morphology- and light-related spatial distributions of pelagic and the benthic communities (as noted above for lakes), support the existence of small-scale variability of riverine metabolic rates.

In this work we employ a high-frequency spatiotemporal monitoring approach to study small-scale spatial variations in cross-sectional river temperature, DO, and light. We estimate local metabolic rate parameters using local times series data generated at the multiple monitoring stations. Our goals are to (1) identify spatial trends in temperature, DO, chlorophyll-\(a\) (as a proxy for biomass), and light, and (2) connect those trends to small-scale variation in river metabolism estimates.

2. Methods
To assess transverse spatial-temporal variation in river DO, temperature and metabolic rate estimates, we deployed two multi-parameter water quality sensors in a cross-section of a partially shaded reach of the Lower Merced River (section 2.1). One sensor was the stationary control and collected data continuously following the conventional single-station approach [Odum, 1956; Mulholland et al., 2001]. We simultaneously deployed a mobile sensor to scan the DO, temperature, and chlorophyll-\(a\) spatial distributions repetitively over the cross-section. We also monitored light availability at several locations across the same transect. We analyzed the observed distributed water quality properties, local velocities and light conditions to identify spatial patterns (section 2.2). Then, we assessed daily metabolic rate parameters (GPP, CR\(_{54}\),
and NEP) using local DO and temperature time series data from the mobile sensor (section 2.3).

2.1. Site Description and Experimental Setup

The study site is located at river km 26 of the lower Merced River, an agriculturally dominated, impounded river in Central California (Figure 1). We conducted sampling campaigns in April and September under base flow conditions, before and after irrigation season, respectively. For these time periods, the study reach was a single-thread meandering river with a narrow channel width ranging between 20 and 40 meters. The reach-averaged slope was 0.0003 and the bed sediment was predominantly sand [Stillwater Sciences, 2002]. At the time of the study, patches of large woody debris were present in upstream areas of the study reach, creating localized low velocity zones on the left side and forcing the channel to the right (downstream view). We installed the experimental setup (described below) downstream of the debris, at a bend, where the main channel crossed over to the left side. The bar (right) side of the transect and upstream segment hosted a macrophyte stand which provided observable resistance to flow within 1 to 2 m of the right bank. The riparian canopy on the right side was relatively open. The river thalweg on the left was bounded by a riparian zone characterized by riprap revetment and approximately one tree-width of native vegetation. Given the reach orientation (Figure 1) the canopy (roughly 7-10 m in height) shaded the left side of the river from dawn to late afternoon during the experiments.

Figure 1. Satellite image of the Merced River study reach (source: Google Earth).

Under spring (April 20-25) and late summer (September 7-12) 2009 baseflow conditions, we deployed the stationary and mobile monitoring systems to test for
spatiotemporal variation of DO and temperature. We installed a multi-parameter sonde (Hach Hydrolab Model DS5) near the center of the river, 9.5 m from the right bank (Figure 2). With this sonde (the fixed station), we continuously monitored water temperature (Temp, ±0.01 °C), luminescent dissolved oxygen (DO, ±0.01 mg L⁻¹), and photosynthetically active radiation (PAR, ±1 µmol m⁻² s⁻¹). Two meters upstream of the fixed station, we deployed a tethered robotic sensor platform [Harmon et al., 2007] (the mobile station) to monitor the transverse spatial distribution of local velocity (Sontek ADV, Vel, ±0.0001 m s⁻¹) and water quality using a similar multi-parameter sonde (Hach Hydrolab Model DS5) that collected water temperature (Temp, ±0.01 °C), luminescent dissolved oxygen (DO, ±0.01 mg L⁻¹) and Chlorophyll-α by means of a fluorescence sensor (Chl, ±0.01 µg L⁻¹, Turner Design). All the water-quality sensors were previously calibrated according to vendor specifications, but the DO sensor responses were more extensively characterized (see below).

The mobile station initiated each robotic scan at position $x = 1.5$ m from the right bank of the river (point 1) because locations closer than 1.5 m were too shallow to provide adequate probe clearance. The scan continued along the transect sampling at two-meter intervals until reaching the left bank (with the exception of the final point which was only 1 m from the prior location). The system performed repetitive scans, dwelling for 60 s at each sampling point. The data collection strategy for the fixed and mobile systems is summarized in (Table 1). Occasional nighttime power depletion interrupted the robotic sampling routine, necessitating data gap-filling (see below). We estimated metabolic rate parameters by integrating DO observations over 24-hour cycles (section 2.3). Thus, the 93 and 114 raster scans completed during the spring and late summer
experiments yielded spatiotemporal metabolic rate estimates for three and four diel cycles, respectively.

We monitored local light availability across the experimental transect to support the interpretation of the metabolic estimates. We placed three self-logging sensors (5-min intervals, Hobo Temp/Light Pendants, Onset Computer) sampling temperature (±0.10 °C) and irradiance (0 to 320,000 lux), at three distances from the right bank in fully exposed, partially shaded and fully shaded areas (L-1, -2, and -3, respectively, Figure 2). We monitored local meteorological conditions using a weather station (Davis Wireless Vantage Pro2™) positioned 1 m above the river surface, recording air temperature (±0.1 °C), solar radiation (±1 W m⁻²), and other parameters. We obtained open-canopy solar radiation conditions from a California Irrigation Management Information System (CIMIS) station located 18 km southwest of the experimental site.

Table 1. Summary of the sampling plans for the fixed and mobile systems.

In order to establish the signal-to-noise ratio for our cross-sectional analysis, we characterized the DO sensors relative to one another and with respect to potential signal drift. In a controlled laboratory set up, we confirmed the factory-reported precision of ±0.01 mg L⁻¹. The two sensors exhibited an absolute difference of 0.03±0.04 (±2 SD) mg L⁻¹. No DO signal drift occurred for either sensor in an experiment spanning 7 days. For each scan by the mobile sensor, we used the ratio of the cross-sectional coefficient of variation (\(CV_{exp}\), the ratio of the standard deviation to the mean value of the readings for a
given raster scan) to that of the DO sensor (CV_{std}, the ratio of the sensor’s standard
deviation under controlled conditions (±0.01 mg L$^{-1}$) to the mean sensor reading) to
identify meaningful spatial DO variations. In doing so, we assumed that temporal
changes in DO and temperature over one spatial sampling cycle were negligible
(approximately 20 min per scan).

We used a spline interpolation scheme to fill the aforementioned DO and temperature
data gaps at a 1-min interval for each of the sampling positions. The plots in (Figure 3)
demonstrate the consistency in the temporal trends for the high resolution single-station
data and the interpolated data from nearby stations within the transect, verifying that the
interpolation scheme did not bias the gap-filled data. One exception was noted for the
latter part of the April time series, where the data loss happened near the minimum of the
DO curve. In this case, the interpolation was deemed unreliable and the data set was
truncated at midnight April 25.

Figure 3. Example of the interpolation scheme for dissolved oxygen (top) and water
temperature (bottom) for the April data set. The continuous (grey) line represents the fixed-
station data used for comparison, and the symbols and black line represent the observations
and 1-min spline-interpolation, respectively, for the nearest sampling point ($x = 9.5$ m) of
the distributed data set.

2.2. Spatial Analysis

We calculated the spatial autocorrelation statistic (global Moran’s I) to test for
statistically significant spatial patterns in the cross-sectional water quality observations,
[Moran, 1950]. The I statistic is calculated as

$$I = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} (x_i - \bar{x})(x_j - \bar{x})}{\sum_{i=1}^{n} \sum_{j=1}^{n} W_{ij} (x_i - \bar{x})^2}$$ \hspace{1cm} (1)
where \(n \) is the number of spatially distributed observations, \(W_{ij} \) is the spatial weight matrix, \(x_i \) and \(x_j \) are the values of variable \(x \) at positions \(i \) and \(j \), and \(\bar{x} \) is the mean value of the spatially distributed observations. The inter-locality weights \(W_{ij} \) used in the spatial weight matrix are the inverse of the square of the spatial separation between the sampling points [Wartenberg, 1985].

For the \(I \) statistic, the null hypothesis states that there is no spatial clustering, i.e., there is a random spatial distribution of the parameter values in a given study area \((I \approx 0) \); \(I \) values approaching 1 suggest a clustered organization of the parameter of interest; and \(I \) values approaching -1 describe a perfectly dispersed pattern. To test for the significance of \(I \), we calculate \(T \) based on the Randomization Null Hypothesis [Cliff and Ord, 1973]

\[
T = \frac{(I - E[I])}{\sqrt{Var[I]}}
\] (2)

where \(T \) is the t-score because of our relatively small number of sampling points, \(E[I] \) is the expected value of \(I \) under the null hypothesis of no spatial autocorrelation

\[
E[I] = \frac{-1}{n-1}
\] (3)

and \(Var[I] \) is the variance, calculated as

\[
Var[I] = E[I^2] - E[I]^2
\] (4)

The calculation of \(E[I^2] \) is explained elsewhere [Cliff and Ord, 1973].

2.3. Whole-Stream Metabolism Estimation

To link the cross-sectional DO and temperature observations to ecosystem metabolism, we estimated daily \(GPP \), \(CR_{24} \) and \(NEP \), at each sampling station. We used the single-
station approach [Bott, 2007]. The single-station method assumes that a point
measurement reflects a cross-sectional average of DO conditions developed over a
relatively homogeneous upstream reach. The intent here is to test that assumption by
applying the method to an array of single-stations a cross-section. In the single-station
method, the instantaneous change of DO is modeled as

\[
\frac{dC}{dt} = p(t) - r + K_2(C_s - C) \tag{5}
\]

where \(C \) is the DO concentration \([ML^{-3}]\), \(p(t) \) is the time-variant rate of primary
production \([ML^{-3}T^{-1}]\), \(r \) is the community respiration rate \([ML^{-3}T^{-1}]\), and the last term
describes stream reaeration in terms of \(K_2 \), the reaeration rate constant \([T^{-1}]\), and \((C_s - C)\),
the DO deficit \([ML^{-3}]\), where \(C_s \) \([ML^{-3}] \) is the DO saturation value at the current
temperature. Whole-stream metabolism is then estimated by integrating (5) over a 24-h
period, as described below, to yield a daily DO balance

\[
Q_{24} = GPP - CR_{24} + D \tag{6}
\]

where \(Q_{24} \), the 24-h net rate of change of DO, is a function of the average daily gross
primary production \((GPP)\), community respiration \((CR_{24})\) and stream reaeration rates \((D)\)
\([ML^{-3}T^{-1}]\). Equation (5) can be modified to account for groundwater input which can
affect DO levels and hence metabolism estimates [McCutchan Jr. et al., 2002; Hall Jr.
and Tank, 2005]. For the river stage and location of this study, we estimated that
groundwater discharge constituted less than one percent of the overall flow [Zamora,
2007; Butler, 2009] and therefore neglected this input.
We estimated daily GPP values by integrating the observed DO change \((dC/dt)\) over each diel cycle, while adjusting for the temperature-corrected photoperiod respiration rate \((r_T)\) and reaeration coefficient \((K_{2,T})\):

\[
GPP = \int_{\phi} \left(\frac{dC}{dt} - K_{2,T} (C_s - C) + r_T \right) dt; \quad \phi = \text{photoperiod}
\]

(7)

Similarly, we obtained daily community respiration rate \((CR_{24})\) by integrating the instantaneous temperature-corrected respiration rates over the 24-h period:

\[
CR_{24} = \int_{24 \text{ h}} r_T dt
\]

(8)

For equations (7) and (8), the instantaneous respiration rate \((r_T)\) is an average of the reaeration-corrected rates of DO change during dark hours [Marzolf et al., 1994], corrected for the diel temperature variations as [Erlandsen and Thyssen, 1983]

\[
r_T = r_{20} \theta_r^{(T-20)}, \quad \theta_r = 1.07
\]

(9)

Among the various methods for estimating stream reaeration [Covar, 1976; Wilcock, 1982; Thyssen et al., 1987; Genereux and Hmond, 1992; McBride, 2002; Aristegi et al., 2009], we selected the energy dissipation model EDM [Tsivoglou and Neal, 1976]. This method has been found to be reliable in comparison with results from tracer studies [Wilcock, 1988] and offered low mathematical uncertainty for the calculation of the reaeration rates. The EDM uses the reach-averaged properties to calculate a single value

\[
K_{2,20} = K' S U
\]

(10)

where \(K_{2,20} \text{ (d}^{-1}\) is the reaeration rate constant at 20°C, \(K'\) is 15300 s m\(^{-1}\) d\(^{-1}\) for flows above 0.56 m\(^3\) s\(^{-1}\) [Hein, 2005], \(S\) is the reach slope (m m\(^{-1}\)), and \(U\) is the mean reach
velocity \((m \cdot s^{-1})\). This daily rate \((K_{2,20})\) was applied at both the stationary and the
distributed sampling locations with the appropriate correction for temperature variations
[Elmore and West, 1961]

\[K_{2,r} = K_{2,20} \theta_K^{(T-20)}, \quad \theta_K = 1.0241 \]

Lastly, we used the \(GPP\) and \(CR_{24}\) estimates to calculate net ecosystem productivity
\((NEP=GPP-CR_{24})\), which is used to evaluate the overall functioning of the ecosystem.
Positive or negative \(NEP\) values indicate the autotrophic or heterotrophic character of the
system, respectively. These rates may be expressed in either areal \((g \cdot O_2 \cdot m^{-2} \cdot day^{-1})\) or
volumetric units \((g \cdot O_2 \cdot m^{-3} \cdot day^{-1})\).

3. Results and Discussion

3.1. Site Conditions during the Experiment Periods

Flow stationarity was verified by the reasonably constant cross-sectional velocity
distributions during each of the two study periods (Figure 4). Mean daily flow and water
temperature during the April and September periods were \(6 \ m^3 \cdot s^{-1}, 21 ^\circ C\) and \(3.7 \ m^3 \cdot s^{-1}, 23 \ ^\circ C\), respectively. The lower flows correspond with slightly lower velocities during
September \((5 \text{ to } 50 \ cm \cdot s^{-1})\) compared to April \((5 \text{ to } 60 \ cm \cdot s^{-1})\). For both experiments, the
lowest velocities occurred, as expected, near the river banks. Bed movement during the
interceding period is evident from the cross-sectional bed elevation lines.

Figure 4. Profiles of daily-average velocities across the river transect during April (top) and
September (bottom). Dashed lines with symbols represent velocities for day 1 (diamonds –
September only), day 2 (black circles), day 3 (triangles), and day 4 (squares). The gray
circles indicate the position of the sampling points for the distributed system [vertical scale
exaggerated].

The weather conditions were less stable during the April time period (Figure 5).
Sampling days 1 and 2 were characterized by warm days and cool nights followed by a
change in regional weather with marked effects on days 3 and 4, as reflected by the
temperature (Figure 5a) and solar radiation data (Figure 5b-c). In September, more stable
conditions with warmer temperatures relative to April occurred for all four days. Times
for maximum and minimum air temperatures were similar for both periods (5 pm and
6:30-7:00 am, respectively) and the days were about 40 to 60 min longer during the April
experiment. The incident maximum solar radiation values occurred between noon and 1
pm for both periods, reaching 900 W m\(^{-2}\) in April and 850 W m\(^{-2}\) in September (Figure
5b-c). The influence of cloud cover was evident on days 1 and 4 in April, and on day 4 in
September, based on the open-canopy radiation data (Figure 5c).

Figure 5. Time series of (a) air temperature, (b) on-site solar radiation, and (c) open-canopy
radiation (CIMIS weather station) (black line: April data; grey line: September data).

The normalized light intensity data was representative of the light conditions
upstream of the experimental cross-section (Figure 6). In general, the left, deeper side of
the reach received 10-20% of the incident light received at the right side (daily average)
due to the shading pattern produced by the northeast to southwest reach orientation and
the riparian vegetation structure. The exception was the morning of April 24, when the
cloudy conditions produced a more diffuse pattern resulting in an increase to 50% of the
daily average incident light reaching the left side with respect to that of the right side.

Figure 6. Incident light patterns represented by the normalized light intensity for three
different positions across the river transect. (Top: April 21-24; bottom: September 08-11).
The observations (lux) were normalized by the maximum observed value for the two
experiments (200,000 lux).

3.2. Transverse Water Quality Gradients

In this section, we present and validate the hypothesized transverse gradients in water
quality properties, and discuss their causes. The comprehensive water quality data set
Figure 7 demonstrated the expected diel cycling of water temperature, DO, and chlorophyll-a. In general, the river was cooler with higher DO concentrations in April, and the warmer and slower water of September appeared to support a greater standing phytoplankton biomass, based on the chlorophyll-a data. Careful inspection of the individual transect sampling events of (Figure 7) suggested the presence of transverse gradients (Figure 8).

Figure 7. Temperature (Temp), dissolved oxygen (DO) and chlorophyll-a (Chl), spatiotemporal behavior observed using the mobile sensor platform. For each panel, the horizontal axis represents position within a raster scan from the right to the left river bank (downstream view), the vertical axis represents the average sampling time for each raster scan (intervals are non-uniform in time), and the colored cells represent the value of each sampled parameter (DO, Temp, Chl) for the corresponding position and time (note differences in scale).

We use the Moran’s I test to confirm the existence of significant cross-sectional spatial clustering (hereafter referred to as gradients) of temperature, DO and chlorophyll-a observations (Figure 8). The emergence and dispersal of significant gradients (I approaching 1.0) exhibited diel patterns. Significant temperature gradients occurred for most of the sampling events during the day and at night (Figure 8a). Gradients consistently dissipated for a brief period in the early afternoon. Similar to temperature, DO gradients emerged during the day and dissipated overnight (Figure 8b) as expected from diurnal photosynthetic processes. These gradients also dissipated in the early afternoon suggesting a connection to the temperature gradient change. Significant chlorophyll-a gradients in September (Figure 8c) mainly coincided with those for DO. April chlorophyll-a observations generally exhibited similar but slightly stronger gradients. Neither the April nor the September chlorophyll-a observations exhibited the consistent midday gradient dispersal that was prominent in the temperature and DO data.
Figure 8. Time series of the calculated Moran’s I statistic for the two experiment periods. Black symbols refer to the April results and grey symbols to those of September. The filled dots indicate the transect runs with significant gradients ($p<0.05$; for April: 81 (Temp), 67 (DO), and 62 (Chl) out of 90 transect runs; for September: 100 (DO), 77 (Temp), and 54 (Chl) out of 105 transect runs).

For DO, the temporal trends of the coefficient of variation ratio (CV_{exp}/CV_{std}) (Figure 9) clarified the diel patterns suggested by the Moran’s I statistic (Figure 8). Overall, variability over the sampling transect was greater in September, which is consistent with the greater chlorophyll-a concentrations of that period (using chlorophyll-a as a proxy for biomass concentrations). Cross-sectional DO variation peaked in late morning and late afternoon for both experiments. The April ratios ranged from about 2 to 6, and their temporal trend was repeated for days 1 through 3. The trend was less noticeable during day 4, likely due to the different weather conditions (lower temperatures and incident radiation) of that day. CV ratios for September ranged from 2 to 12. One anomalously high CV ratio occurred for unknown reasons around 18:00 on the third day of the September sampling period. Otherwise, a second rise of CV ratios occurred in the late afternoon similar in magnitude but earlier relative to the April results. The two apparent peaks in the CV ratio for DO were likely indicative of daily productivity with the midday pattern dissipation caused by the temperature gradient reversal, as suggested in the context of the Moran’s I results above.

Figure 9. Time series for April (top) and September (bottom) of normalized coefficients of variation (CV) for spatially distributed DO concentrations at the times shown (each symbol represents the variability of one cross-sectional sampling event).

Daytime cross-sectional raster scans of temperature, DO and chlorophyll-a were selected to demonstrate the representative gradient changes that occurred each day (Figure 10). Transverse temperature variability (Figure 10a) was consistent with river
reach geomorphology and orientation with respect to incident radiation (Figures 1 and 6). Morning temperatures were cooler in the main channel (left side) relative to the bar (right) side. In the afternoon, the temperature gradient was reversed as the main channel side became warmer. The afternoon reversal was likely driven by the primary channel which transitioned from the sunnier (right) side of the reach to the left side as it entered the sampling transect (Figure 1). During the daytime, secondary flow in the bend would have also contributed to the gradient reversal by conveying warmer water from the slow moving, sunny bar (right) to the channel (left). For April, and to a lesser extent September, the right-most sampling point exhibited markedly greater temperatures compared to adjacent points. The higher incident radiation upon the shallow, slow-moving water within the previously noted macrophyte stand on this side probably caused this localized temperature increase.

The DO gradients were more definite in September, probably due to a larger phytoplankton population during this time (Figure 10b). The steepest DO gradients occurred in the morning hours with higher DO values towards the main channel and decreasing to the right (shallow) side. The behavior of the right-most sampling point during April (and to a lesser extent, September) is marked by an increase of the observed DO concentrations during the day. As with temperature, increased DO levels at this location appeared to have been the result of the macrophyte stand since macrophytes exert considerable influence on water quality by modifying local flow patterns and DO dynamics [Wilcock et al., 1999; Desmet et al., 2011].

Daytime chlorophyll-a gradients for April and September were similar to those for DO, with concentrations higher in the main channel (left) and lower near the right bank.
Variability was greater for the September period. In contrast to the DO data, locally elevated chlorophyll-a concentrations did not occur near the right bank. This discrepancy suggests that the aforementioned macrophyte stand may have enhanced temperature and DO concentrations, but did not affect local chlorophyll-a concentrations.

Figure 10. Deviation of local (a) temperature, (b) DO and (c) chlorophyll-a concentrations from the cross-sectional average for selected morning and afternoon sampling events in April (left) and September (right).

3.3. Implications of the Observed Transverse Gradients on the Distributed Metabolic Rate Estimates

Spatial distributions for the metabolic rate estimates exhibited modest but discernible gradients over the experimental transect (Figure 11). This finding is not surprising given the aforementioned variability in the spatiotemporal DO distributions underlying these metabolism calculations (see Figure 9 and Figure 10). To better visualize the patterns, the distributed daily metabolic rates were normalized by the estimates obtained at the thalweg, point 10 (Figure 4), for their respective day. For reference, (Table 2) presents the reach-averaged metabolic rate estimates based on the fixed station observations which are in agreement with other studies developed for lowland, heterotrophic rivers [Wilcock et al., 1998; Oliver and Merrick, 2006].

Table 2. Areal metabolic rate estimates based on DO and temperature observations from the fixed setup using average reach velocity and depth (the error bars are based on propagation of velocity and depth uncertainty through the reaeration and metabolism calculations).

Driven by the daily cycling of DO (Figure 9), GPP estimates exhibited more variation in September than in April (Figure 11a). April GPP values increased slightly from left to right, changing by less than about 3% over the cross-section (Figure 11a, left). In contrast, the September GPP distributions varied in a non-monotonic manner, and
changed by 5% to 10% over the cross-section, depending on the specific date (Figure 11a, right). An approximate estimate of the transverse mixing length [Fisher et al., 1979] based on the average properties of the study reach suggests transverse mixing time scales on the order of 1 to 4 hours. Because of the physiological responses of phytoplankton to changes in light intensity and temperature occur at different time scales, ranging from minutes to a few hours [Falkowski, 1984; Neale and Marra, 1985; Pahl-Wostl and Imboden, 1990; MacIntyre et al., 2000], it is likely that these gradients in metabolic rate estimates were real, the result of contrasting mixing and biological processes time scales.

Like GPP, the respiration rate estimates are based on DO variation and similar trends happened for the normalized distribution of CR24 (Figure 11b). The resulting NEP estimates (the difference of GPP and CR24) were consistent for the two sampling periods, and varied by about 20% over the cross-section, generally increasing from left to right (more heterotrophic toward the right side). For April, the NEP variation was driven primarily by the respiration rates, while the September NEP variation was more of a function of both the production and respiration estimates (Figure 11c).

Figure 11. River cross-sectional distributions for (a) GPP, (b) CR24, and (c) NEP, for April (left) and September (right). Values are normalized with respect to the estimates obtained at point 10 (thalweg position) of the sampling transect. Error bars are based on the propagation of velocity and depth uncertainty through the reaeration and metabolism calculations.

4. Summary and Conclusions

To assess the potential for small scale metabolic rate variability over a river cross-section, we examined the temperature and constituent concentrations (DO and chlorophyll-a). For DO, the primary variable for metabolism estimates, we observed gradients developing and dissipating daily in both April and September experiments, with
more prominent gradients being exhibited during September. The DO gradients consistently increased during morning hours, in accordance with incident light patterns and channel geometry within the upstream reach. The observed gradients of DO resulted in spatially distributed metabolic rate estimates, supporting our hypothesis of the existence of small-scale, transverse heterogeneities of these river ecosystem metrics.

For this experiment on a channelized river bend, the spatial variability in metabolism estimates was minor. In effect, location of a sampling station within a few meters of the thalweg would yield representative metabolism estimates for the river reach. Nevertheless, the presence of small scale gradients in metabolic rates in this relatively simple reach implies the existence of substantial gradients in geomorphically complex cross-sections, such as those with more distinctive microhabitats and/or transient storage zones. In this study, the observed contrast between the macrophyte stand environment and the main channel exemplified this point.

Lastly, it is important to note that although using DO as a proxy for metabolism is a well-established method, it is an indirect assessment. Hence, additional data pertaining to local nutrient cycling and direct biomass assessments are needed to better clarify the interrelation between hydrodynamic and metabolic processes and time scales.

Acknowledgments – This work was supported by the National Science Foundation (Awards CCF-0120778, and EAR-0854566), and by the Inter-American Institute for Global Change Research (IAI) CRN3038 (under US NSF Award GEO-1128040). We thank Patrick Barnes and Alex Rat’ko for their valuable support during the field campaigns.
References

Aristegi, L., O. Izagirre, and A. Elosegi (2009), Comparison of several methods to calculate reaeration in streams, and their effects on estimation of metabolism, *Hydrobiologia*, 635, 113-124.

Butler, C. A. (2009), A rapid method for measuring local groundwater-surface water interactions and identifying potential non-point source pollution inputs to rivers., 43.

Mulholland, P. J. et al. (2001), Inter-biome comparison of factors controlling stream metabolism, *Freshwater Biology, 46*, 1503-1517.

Stillwater Sciences (2002), Merced River corridor restoration plan, 245.

Table 1

FIXED SYSTEM

<table>
<thead>
<tr>
<th></th>
<th>Spring of 2009</th>
<th>Summer of 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>20/04/2009 14:11</td>
<td>07/09/2009 12:00</td>
</tr>
<tr>
<td>End</td>
<td>25/04/2009 09:58</td>
<td>12/09/2009 01:00</td>
</tr>
<tr>
<td>Sampling strategy</td>
<td>Continuous at 5-min intervals</td>
<td>Continuous at 10-min intervals</td>
</tr>
<tr>
<td>Data collected</td>
<td>Temp, DO, PAR</td>
<td>Temp, DO, PAR</td>
</tr>
<tr>
<td>Diel cycles</td>
<td>4 (days 1 through 4)</td>
<td>4 (days 1 through 4)</td>
</tr>
</tbody>
</table>

MOBILE SYSTEM

<table>
<thead>
<tr>
<th></th>
<th>Spring of 2009</th>
<th>Summer of 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>21/04/2009 10:26</td>
<td>07/09/2009 18:31</td>
</tr>
<tr>
<td>End</td>
<td>25/04/2009 10:10</td>
<td>12/09/2009 04:56</td>
</tr>
<tr>
<td>Sampling strategy</td>
<td>Raster plan, 11 locations, 93 cycles at variable intervals</td>
<td>Raster plan, 10 locations, 114 cycles at variable intervals</td>
</tr>
<tr>
<td>Data collected</td>
<td>Temp, DO, Chl, Vel</td>
<td>Temp, DO, Chl, Vel</td>
</tr>
<tr>
<td>Complete diel cycles</td>
<td>3 (days 2 through 4)</td>
<td>4 (days 1 through 4)</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th></th>
<th>04/2009</th>
<th></th>
<th>CR<sub>24</sub></th>
<th>GPP</th>
<th>NEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>day 1</td>
<td>1.97±0.09</td>
<td>4.16±0.00</td>
<td>3.59±0.02</td>
<td>-0.57±0.02</td>
</tr>
<tr>
<td>22</td>
<td>day 2</td>
<td>2.02±0.05</td>
<td>4.29±0.00</td>
<td>3.64±0.02</td>
<td>-0.64±0.02</td>
</tr>
<tr>
<td>23</td>
<td>day 3</td>
<td>1.93±0.09</td>
<td>4.06±0.00</td>
<td>3.54±0.03</td>
<td>-0.51±0.03</td>
</tr>
<tr>
<td>24</td>
<td>day 4</td>
<td>1.97±0.05</td>
<td>3.61±0.00</td>
<td>2.77±0.02</td>
<td>-0.83±0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>09/2009</th>
<th></th>
<th>CR<sub>24</sub></th>
<th>GPP</th>
<th>NEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>day 1</td>
<td>1.58±0.05</td>
<td>3.18±0.00</td>
<td>2.44±0.01</td>
<td>-0.73±0.01</td>
</tr>
<tr>
<td>09</td>
<td>day 2</td>
<td>1.46±0.05</td>
<td>3.23±0.00</td>
<td>2.52±0.01</td>
<td>-0.71±0.01</td>
</tr>
<tr>
<td>10</td>
<td>day 3</td>
<td>1.45±0.04</td>
<td>3.30±0.00</td>
<td>2.64±0.01</td>
<td>-0.67±0.01</td>
</tr>
<tr>
<td>11</td>
<td>day 4</td>
<td>1.49±0.07</td>
<td>3.21±0.00</td>
<td>2.47±0.01</td>
<td>-0.74±0.01</td>
</tr>
</tbody>
</table>

List of Figures

Figure 1. Study site. Satellite image of the Merced River reach under investigation (source: Google Earth) with water flowing from north-east to south-west.

Figure 2. Photograph of the experimental set up. (A) mobile sampling unit (water quality and velocity); (B) fixed sampling unit (water quality and PAR); (WS) weather station; (L-1, L-2, L-3) light intensity sensors. The image captures the predominant shading pattern along the left bank of the river.

Figure 3. Example of the interpolation scheme for water temperature (top) and dissolved oxygen (bottom) for the April data set. The continuous (grey) line represents the fixed-station data and the symbols and black line represent the observations and 1-min spline-interpolation, respectively, for the nearest sampling point (x = 9.5 m) of the distributed data set.

Figure 4. Profiles of daily-average velocities across the river transect during April (top) and September (bottom). Dashed lines with symbols represent velocities for day 1 (grey diamond – September only), day 2 (black circles), day 3 (open triangles), and day 4 (gray squares). The gray circular symbols indicate the position of the sampling points for the distributed system [vertical scale exaggerated].

Figure 5. Time series of (a) air temperature, (b, c) solar radiation on-site and CIMIS weather station, and (d) PAR at the experimental site (black line: April data; grey line: September data).
Figure 6. Incident light patterns at the study site represented by the normalized light intensity for three different positions across the river transect. (Top: April 21-24; bottom: September 08-11). The observations (lux) were normalized by the maximum observed value for the two experiments (200,000 lux).

Figure 7. Temperature (Temp), dissolved oxygen (DO) and chlorophyll-α (Chl), spatiotemporal behavior observed using the mobile sensor platform. For each panel, the horizontal axis represents position within a raster scan from the right to the left river bank (downstream look), the vertical axis represents the average sampling time for each raster scan (intervals are not uniform), and the colored cells represent the value of each sampled parameter (DO, Temp, Chl) for the corresponding position and time (note differences in scale).

Figure 8. Time series of the calculated Moran’s I statistic for the two experiment periods. Black symbols refer to the April results and grey symbols to those of September. The filled dots indicate the transect runs for which significant ($p<0.05$) gradients were identified by the Moran’s I statistic. For April, out of the 90 transects collected between days 1 and 4, there were 81 (Temp), 67 (DO), and 62 (Chl) transects in which Moran’s I was significant. For September, 100 (Temp), 77 (DO), and 54 (Chl) out of 105 transects had significant Moran’s I.

Figure 9. Time series of the normalized distribution of the coefficients of variation (CV) of the measured DO concentrations, for the April (top) and September (bottom) raw data. Each symbol represents the variability of one raster scan.

Figure 10. Representative morning and afternoon raster scans showing the spatial distribution of raw temperature (a), DO (b) and chlorophyll-α (c) data for April (left) and September (right). The figure shows the deviation of the measured value at each sampling point with respect to the average for the raster scan.

Figure 11. River cross-sectional distributions for (a) GPP, (b) CR_{24}, (c) NEP, and (d) P/R ratios for April (left) and September (right). All results are normalized with respect to the estimates obtained at point 10 (thalweg position) of the sampling transect (The error bars are based on the propagation of velocity and depth uncertainty through the reaeration and metabolism calculations).
Figure 12. Satellite image of the Merced River study reach (source: Google Earth) with sampling transect location and approximate channel delineation.
Figure 13. Photograph of the experimental set up. (A) mobile sampling unit (water quality and velocity); (B) fixed sampling unit (water quality and PAR); (WS) weather station; (L-1, L-2, L-3) light intensity sensors. The image captures the predominant shading pattern along the left bank of the river.
Figure 14. Example of the interpolation scheme for water temperature (bottom) and dissolved oxygen (top) for the April data set. The continuous (grey) line represents the fixed-station data for comparison, and the symbols and black line represent the observations and 1-min spline-interpolation, respectively, for the nearest sampling point ($x = 9.5$ m) of the distributed data set.
Figure 15. Profiles of daily-average velocities across the river transect during April (top) and September (bottom). Dashed lines with symbols represent velocities for day 1 (diamonds – September only), day 2 (black circles), day 3 (triangles), and day 4 (squares). The gray circles indicate the position of the sampling points for the distributed system [vertical scale exaggerated].
Figure 16. Time series of (a) air temperature, (b, c) solar radiation on-site and CIMIS weather station, and (f) PAR at the experimental site (black line: April data; gray line: September data).
Figure 17. Incident light patterns represented by the normalized light intensity for three different positions across the river transect. (Top: April 21-24; bottom: September 08-11). The observations (lux) were normalized by the maximum observed value for the two experiments (200,000 lux).
Figure 18. Temperature, dissolved oxygen (DO) and chlorophyll-α (Chl), spatiotemporal behavior observed using the mobile sensor platform. For each panel, the horizontal axis represents position within a raster scan from the right to the left river bank (downstream view), the vertical axis represents the average sampling time for each raster scan (intervals are nonuniform in time), and the colored cells represent the value of each sampled parameter (DO, Temp, Chl) for the corresponding position and time (note differences in scale).
Figure 19. Time series of the calculated Moran’s I statistic for all cross-sectional sampling events during the two experiment periods. Black symbols refer to the April results and gray symbols to those of September (solid symbols denote sampling events with statistically significant patterns, \(p < 0.05 \)).
Figure 20. Time series for April (top) and September (bottom) normalized coefficients of variation (CV) for spatially distributed DO concentrations at the time shown (each symbol represents the variability of one cross-sectional sampling event).
Figure 21. Deviation of local (a) temperature, (b) DO and (c) chlorophyll-a measurements from the cross-sectional average for selected morning and afternoon sampling events in April (left) and September (right).
Figure 22. River cross-sectional distributions for (a) GPP, (b) CR\textsubscript{24}, (c) NEP, and (d) P/R ratios for April (left) and September (right); values are normalized with respect to the thalweg sampling position (point 10). Error bars are based on the propagation of velocity and depth uncertainty through the reaeration and metabolism calculations.