Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

The ecoresponsive genome of Daphnia pulex

Permalink

https://escholarship.org/uc/item/72r3k7s9

Author

Colbourne, John K.
Publication Date
2011-02-04

The Ecoresponsive Genome of Daphnia pulex

John K. Colbourne ${ }^{1 \ddagger}$, Michael E. Pfrender ${ }^{2,25}$, Donald Gilbert ${ }^{1,3}$, W. Kelley Thomas ${ }^{4}$, Abraham Tucker ${ }^{3,4}$, Todd H. Oakley ${ }^{5}$, Shinichi Tokishita ${ }^{6}$, Andrea Aerts ${ }^{7}$, Georg J. Arnold ${ }^{8}$, Malay Kumar Basu 9,26, Darren J. Bauer ${ }^{4}$, Carla E. Cáceres ${ }^{10}$, Liran Carmel ${ }^{9,27}$, Claudio Casola ${ }^{3}$, Jeong-Hyeon Choi ${ }^{1}$, John C. Detter ${ }^{7}$, Qunfeng Dong ${ }^{1,28}$, Serge Dusheyko ${ }^{7}$, Brian D. Eads ${ }^{1,3}$, Thomas Fröhlich ${ }^{8}$, Kerry A. Geiler-Samerotte ${ }^{5,29}$, Daniel Gerlach ${ }^{11,30}$, Phil Hatcher ${ }^{4}$, Sanjuro Jogde ${ }^{4,31}$, Jeroen Krijgsveld ${ }^{12,32}$, Evgenia V Kriventseva ${ }^{11}$, Dietmar Kültz ${ }^{13}$, Christian Laforsch ${ }^{14}$, Erika Lindquist ${ }^{7}$, Jacqueline Lopez ${ }^{1}$, J. Robert Manak ${ }^{15,33}$, Jean Muller ${ }^{16,34}$, Jasmyn Pangilinan ${ }^{7}$, Rupali P. Patwardhan ${ }^{1,35}$, Samuel Pitluck ${ }^{7}$, Ellen J. Pritham ${ }^{17}$, Andreas Rechtsteiner ${ }^{1,36}$, Mina Rho ${ }^{18}$, Igor B. Rogozin ${ }^{9}$, Onur Sakarya ${ }^{5,37}$, Asaf Salamov ${ }^{7}$, Sarah Schaack ${ }^{3,17}$, Harris Shapiro ${ }^{7}$, Yasuhiro Shiga ${ }^{6}$, Courtney Skalitzky ${ }^{15}$, Zachary Smith ${ }^{1}$, Alexander Souvorov ${ }^{9}$, Way Sung ${ }^{4}$, Zuojian Tang ${ }^{1,38}$, Dai Tsuchiya ${ }^{1}$, Hank Tu ${ }^{7,37}$, Harmjan Vos ${ }^{12,39}$, Mei Wang ${ }^{7}$, Yuri I. Wolf ${ }^{9}$, Hideo Yamagata ${ }^{6}$, Takuji Yamada ${ }^{16}$, Yuzhen Ye ${ }^{18}$, Joseph R. Shaw ${ }^{1,19}$, Justen Andrews ${ }^{1,3}$, Teresa J. Crease ${ }^{20}$, Haixu Tang ${ }^{1,18}$, Susan M. Lucas ${ }^{7}$, Hugh M. Robertson ${ }^{21}$, Peer Bork ${ }^{16}$, Eugene V. Koonin ${ }^{9}$, Evgeny M. Zdobnov ${ }^{11,22}$, Igor V. Grigoriev ${ }^{7}$, Michael Lynch ${ }^{3}$ and Jeffrey L. Boore ${ }^{7,23,24}$
${ }^{1}$ The Center for Genomics and Bioinformatics, Indiana University, 915 East Third Street, Bloomington, Indiana 47405 USA
${ }^{2}$ Department of Biology, Utah State University, 5305 Old Main Hill Road, Logan, UT 84322-5205 USA
${ }^{3}$ Department of Biology, Indiana University, 1001 East Third Street, Bloomington, Indiana 47405 USA
${ }^{4}$ Hubbard Center for Genome Studies, University of New Hampshire, 35 Colovos Road, Durham, New Hampshire 03824 USA
${ }^{5}$ Ecology Evolution and Marine Biology, University of California-Santa Barbara, Santa Barbara, CA 93106 USA
${ }^{6}$ Laboratory of Environmental and Molecular Biology, Environmental Sciences Division, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachiouji, Tokyo, 192-0392, Japan
${ }^{7}$ DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
${ }^{8}$ Laboratory for Functional Genome Analysis LAFUGA, Gene Center, Ludwig-Maximilians-Universität München, Germany
${ }^{9}$ National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda Maryland 20894 USA
${ }^{10}$ School of Integrative Biology, University of Illinois, 515 Morril Hall, Urbana, Illinois 61801 USA
${ }^{11}$ University of Geneva Medical School, 1 rue Michel-Servet, 1211 Geneva, Switzerland; Swiss Institute of Bioinformatics, 1 rue Michel-Servet, 1211 Geneva, Switzerland
${ }^{12}$ Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, and Netherlands Proteomics Center, Utrecht University, Sorbonnelaan 16, 3584 CA, Utrecht, The Netherlands
${ }^{13}$ Department of Animal Science, University of California, Davis, Meyer Hall, One Shields Avenue, Davis, California 95616 USA
${ }^{14}$ Department of Biology II and GeoBio Center Munich, Ludwig-Maximilians-University Munich, Großhadernerstr.2, 82152 Planegg-Martinsried, Germany
${ }^{15}$ Gene Expression, Roche NimbleGen Inc., 504 S. Rosa Rd, Madison WI 53719 USA
${ }^{16}$ Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
${ }^{17}$ Department of Biology, University of Texas, Arlington, Box 19498, Arlington, Texas 76019 USA
${ }^{18}$ School of Informatics and Computing, Indiana University, Informatics Building, 901 E. 10th Street, Bloomington IN 47408-3912 USA

The Ecoresponsive Genome of Daphnia pulex

${ }^{19}$ The School of Public and Environmental Affairs, Indiana University, 1315 East Tenth Street, Bloomington, Indiana 47405 USA
${ }^{20}$ Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1 Canada
${ }^{21}$ Department of Entomology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL 61801 USA
${ }^{22}$ Imperial College London, South Kensington Campus, SW7 2AZ London, UK
${ }^{23}$ Genome Project Solutions, 1024 Promenade Street, Hercules, CA 94547 USA
${ }^{24}$ Department of Integrative Biology, University of California, Berkeley, CA 94720 USA
${ }^{25}$ Present address: Department of Biological Sciences, University of Notre Dame, 109B Galvin Life Sciences, Notre Dame, IN 46556 USA
${ }^{26}$ Present address: J. Craig Venter Institute, 9704 Medical Center Drive, Rockville, MD 20850 USA
${ }^{27}$ Present address: Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904 Israel
${ }^{28}$ Present address: Departments of Biological Sciences, Computer Science and Engineering, University of North Texas, Denton, TX 76203 USA
${ }^{29}$ Present address: Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138 USA
${ }^{30}$ Present address: Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
${ }^{31}$ Present address: Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331 USA
${ }^{32}$ Present address: Genome Biology Unit, EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
${ }^{33}$ Present address: Department of Biology and the Roy J. Carver Center for Genomics, University of Iowa, Iowa City, IA 52242 USA
${ }^{34}$ Present address: Laboratoire de Diagnostic Génétique, CHU Strasbourg Nouvel Hôpital Civil, 1 place de l’hôpital, 67000 Strasbourg, France [IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), CNRS/INSERM/Université de Strasbourg, 67404 Illkirch cedex, France]
${ }^{35}$ Present address: Department of Genome Sciences, University of Washington, Seattle, WA 98195 USA
${ }^{36}$ Present address: Department of MCD Biology, University of California, Santa Cruz, Santa Cruz, CA 95064 USA
${ }^{37}$ Present address: Life Technologies Corporation, Foster City, CA USA
${ }^{38}$ Present address: Center for Health Informatics and Bioinformatics, New York University Langone Medical Center, 333 East $38^{\text {th }}$ Street, New York, NY 10016 USA
${ }^{39}$ Present address: Department Molecular Cancer Research, University Medical Center Utrecht, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
${ }^{\ddagger}$ Corresponding email: jcolbour@indiana.edu

Acknowledgements:

We thank Marvin Frazer (JGI), Peter Cherbas (CGB), Roland Green and Tsetska Takova (Roche NimbleGen, Inc.). The work conducted by the U.S. Department of Energy Joint Genome Institute (JGI) was supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and in collaboration with the Daphnia Genomics Consortium (DGC). This project was also supported by major NSF grants 0221837 and 0328516, and NIH grant IR24GM07827401A1. Coordination infrastructure for the DGC is provided by The Center for Genomics and Bioinformatics (CGB) at Indiana

The Ecoresponsive Genome of Daphnia pulex

University, which is supported in part by the METACyt Initiative of Indiana University, funded in part through a major grant from the Lilly Endowment, Inc. Additional contributions and acknowledgements are provided in the SOM. Our work benefits from, and contributes to the Daphnia Genomics Consortium

Disclaimer:

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.

The Ecoresponsive Genome of Daphnia pulex

This file includes:

Contributions and Acknowledgements
Material and Methods I-VIII
Supporting Text 1-4
Supplementary Figures S1-36
Supplementary Tables S1-50
Supplemental References S1-183

CONTRI BUTI ONS AND ACKNOWLEDGEMENTS

Steering Committee

Justen Andrews, Jeffrey Boore, Peer Bork, John Colbourne, Teresa Crease, Qunfeng Dong, Donald Gilbert, Igor Grigoriev, Joshua Hamilton, Eugene Koonin, Michael Lynch, Michael Pfrender, Hugh Robertson, Harris Shapiro, Joseph Shaw, Kelley Thomas, Evgeny Zdobnov DNA Library Construction and Quality Control
Darren Bauer, John Colbourne, Chris Detter, James Haney, Michael Lynch, Michael Pfrender, Sarah Schaack, Kelley Thomas

Genome Sequencing

Jeffrey Boore, Chris Detter, Susan Lucas
cDNA Library Construction, Sequencing and Analysis
Darren Bauer, J effrey Boore, J ohn Colbourne, Qunfeng Dong, Brian Eads, Donald Gilbert, James Haney, Erika Lindquist, Rupali Patwardhan, Michael Pfrender, Joseph Shaw, Zachary Smith, Zuojian Tang, Kelley Thomas, Mei Wang

Chromosomal Organization

John Colbourne, Dai Tsuchiya

Sequence Assembly and Validation

Jeong-Hyeon Choi, John Colbourne, Serge Dusheyko, Donald Gilbert, Sanjuro Jogdeo, Jasmyn Pangilinan, Samuel Pitluck, Hugh Robertson, Harris Shapiro, Haixu Tang, Kelley Thomas, Abraham Tucker, Hank Tu

Protein Coding Gene Prediction

Andrea Aerts, Donald Gilbert, Igor Grigoriev, Yuri Kapustin, Boris Kiryutin, Paul Kitts, Terence Murphy, Asaf Salamov, Victor Sapojnikov, Alexander Souvorov

Non-Coding Gene Prediction

Donald Gilbert, Daniel Gerlach, Michael Lynch, Ellen Pritham, Mina Rho, Sarah Schaack, Way Sung, Haixu Tang, Evgeny Zdobnov

Microarray Experiments and Functional Genomics

Jeong-Hyeon Choi, J ohn Colbourne, Karel De Schamphelaere, Brian Eads, Donald Gilbert, Stephen Glaholt, Roland Green, Noah Greenberg, Christian Laforsch, Zhoa Lai, Leigh Latta, Florian Leese, Jacqueline Lopez, John Manak, Michael Pfrender, Ralph Pirow, Andreas
Rechtsteiner, Joseph Shaw, Courtney Skalitzky, Ralph Tollrian

Proteomics

Georg Arnold, Thomas Frohlich, Jeroen Krijgsveld, Dietmar Kültz, Christian Laforsch, Harmjan

Vos

Comparative Analysis of Genome Organization and of Gene I nventory
Jeffrey Boore, Paramvir Dehal, Donald Gilbert, Igor Grigoriev, Evgenia Kriventseva, Todd Oakley, Asaf Salamov, Onur Sakarya, Yuzhen Ye, Evgeny Zdobnov

Intron Evolution

Malay Kumar Basu, Liran Carmel, Eugene V. Koonin, Igor B. Rogozin, Yuri I. Wolf
Gene Duplication History
Claudio Casola, Donald Gilbert, Matthew Hahn, Phil Hatcher, Kelley Thomas, Abraham Tucker Hemoglobin Gene Family
Shin-ichi Tokishita, Hideo Yamagata

Opsin Gene Family

Carla Cáceres, Kerry Geiler-Samerotte, Todd Oakley, Carolina Peñalva-Arana, Hugh Robertson, Catherine Seul, Kelley Thomas, Kim Walden
Metabolic Pathways
Peer Bork, Jean Muller, Takuji Yamada

Gene Duplication Model

John Colbourne, Donald Gilbert, Mike Pfrender, Kelley Thomas

Manual Annotation Project

Abderrahmane Tagmount, Abe Tucker, Abhigna Polavarapu, Adrian Maximillian Fischl, Ajna Rivera, Alexandra Jauhiainen, Amanda Callaghan, Andrew Schurko, Angela Omilian, Anke Freeman, Anna Syme, Armin Sturm, Austin Elliott, Bastiaan Jansen, Birgit Pils, Brent Hallahan, Brian Eads, Carla Caceres, Carlos Villacorta Martin, Chris Hill, Chris Vulpe, Christian Laforsch, Christoph Mayer, Claire Conlon, Cornelis Grimmelikhuijzen, D. Carolina Penalva-Arana, Darin Hullinger, Darren J. Bauer, David Innes, David Kehoe, David Van Dyken, Dietmar Kültz, Ditlecadet Delphine, Don Gilbert, Elisabeth Stafflinger, Ellen Decaestecker, Erik Kristiansson, Feseha Abebe-Akele, Florian Leese, Florian Raible, Flynn Picardal, France Dufresne, Francis Poulin, Frank Hauser, Frank Nunes, Gary Stuart, Giuseppe Cazzamali, Haleh Ashki, Harald Parzer, Heinrich Dircksen, Helen Poynton, Henri Wintz, Hugh Robertson, Jacqueline Ann Lopez, Jade Carter, James Costello, J asleen Kaur, J effry Dudycha, J eong-Hyeon Choi, J oachim Mergeay, John Colbourne, John Logsdon, Jonathon Stillman, Joseph Shaw, Justen Andrews, Karen Wilson, Kim Rewitz, Krystalynne Morris, Lars Heckmann, Lawrence J. Weider, Lee Bjerregaard, Leigh Latta, Le-Shin Wu, Lev Yampolsky, Loren Probst, Margaret Beaton, Mark Blaxter, Martina Schneider, Mehmet Dalkilic, Melania E. Cristescu, Michael Pfrender, Michael Williamson, Mieke Jansen, Mike Wang, Molly Craxton, Philippe Boucher, Piers Napper, Preeti Misra, Puni Jeyasingh, Qunfeng Dong, Rajesh Gollapudi, Ralph Pirow, Ralph Tollrian, Ramya Sabbineni, Rebecca Klaper, Rick Zuzow, Robert Sterner, Rupali Patwardhan, Sarah Schaack, Seanna McTaggart, Sebastian Becker, Shinichi Tokishita, Shiva Sinha, Shu Shang, Simon Webster, Snaebjorn Palsson, Stephanie Chan, Sumit Middha, Sun Kim, Susan Gordon, Susanne Paland, Timothy S. McClintock, Tiong Khong Loon, Todd Oakley, Tom Little, Toru Miura, Travis Garriott, Tutku Aykanat, W. Kelley Thomas, Way Sung, William Baldwin, Xin Hong, Xinguo Wang, Yang Bai, Yasuhiro Shiga, Yi Zou, Zuojian Tang.

Daphnia pulex genome assembly V1.1 and annotations are deposited at DDBJ/EMBL/GenBank under the accession ACJG00000000. ESTs (FE274839-FE425949) are in GenBank. Microarray platforms GPL11200-GPL11201 and data GSE25823 are deposited at NCBI GEO.

Acknowledgements - We thank Marvin Frazer, then head of U.S. DOE Life Sciences, for the inspiration and commitment to pursue the sequencing of this first crustacean genome. We thank Peter Cherbas, who directs the Center for Genomics and Bioinformatics (CGB), for his support and leadership in creating this new genomic model system. We thank Gregory Werner and his group at JGI for support of gene annotation tools. We also thank Roland Green, Tsetska Takova and their groups at Roche NimbleGen Inc. for providing early access and technical expertise to custom microarray technologies enabling the functional annotation of the genome sequence. The work conducted by the U.S. Department of Energy J oint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, and in collaboration with the Daphnia Genomics Consortium (DGC). This project was also supported by the NSF Biocompolexity grant 0221837 to Joshua Hamilton (and Celia Chen, Carol Folt, J oseph Shaw, Michael Lynch and John Colbourne), and FIBR grant 0328516 to Michael Lynch (and John Colbourne, Justen Andrews, Curtis Lively, Elizabeth Housworth, Miriam Zolan, J effrey Boore, Carla Cáceres, Thomas Little and W. Kelley Thomas). NIH support IR24GM07827401A1 was granted to Michael Pfrender (and John Colbourne, Donald Gilbert, Dieter Ebert and W. Kelley Thomas). Euro Cores/EuroEEFG grant support (through DFG) grant LA 2159/6-1 was provided to Christian Laforsch, Georg Arnold and Thomas Frohlich, in partnership with Luc De Meester (PI; and Luisa Orsini, Ellen Decaestecker, Colin Janssen, Karel De Schamphelaere, Dieter Ebert, Cristoph Haag, Adam Petrusek, Mikko Frilander, John Colbourne, Andrew Beckerman, Thomas Little). Malay Kumar Basu, Liran Carmel, Eugene Koonin, Igor Rogozin, and Yuri Wolf were supported by Intramural funds of the US Department of Health and Human Services (NIH, National Library of Medicine). Todd Oakley was supported
by NSF grant DEB 1027279. Dietmar Kültz was supported by NSF grant IOS0542755 and NIH grant P42ES004699. Thanks to Keithanne Mockaitis and the CGB sequencing team (Jade Carter, James Ford, Zach Smith) for access to an early draft assembly of the Daphnia magna genome sequence. Sequencing infrastructure at the CGB was provided by a major grant from the the Lilly Endowment, Inc. Thanks to Matthew Hahn (Indiana University) for providing critical suggestions. The following people contributed DNA and RNA samples for this research: Jim Haney (University of New Hampshire), Rebecca Klaper (University of Wisconsin-Milwaukee), Thomas Little (University of Edinburgh), Norman Yan (York University), Jarkko Routtu and Dieter Ebert (University of Basel). Analyses, data curation and data distribution are primarily attributed to wFleaBase, developed at the Genome Informatics Lab of Indiana University with support to Don Gilbert from the National Science Foundation and the National Institutes of Health. Specialized shared databases were also created by Mark Blaxter (University of Edinburgh) and Hajime Watanabe (Okazaki National Research Institutes). Coordination infrastructure for the DGC is provided by The Center for Genomics and Bioinformatics at Indiana University, which is supported in part by the METACyt Initiative of Indiana University, funded in part through a major grant from the Lilly Endowment, Inc. Computer support was provided by an allocation TGMCB060059N through the TeraGrid Advanced Support, by the University Information Technology Services (UITS) and by The Center for Genomics and Bioinformatics computing group. We thank the computing group leaders Phillip Steinbachs (CGB), Craig Stewart and Richard Repasky (UITS). Ann Miracle advised on the successful timing for the initial submission of the White Paper proposal to the JGI. Our work benefits from, and contributes to the Daphnia Genomics Consortium. http://daphnia.cgb.indiana.edu

MATERI ALS AND METHODS

I. Genome Sequence, Assembly and Mapping to Chromosomes

1. Strains for genome sequencing
2. Sequencing and assembly
3. Validating the draft genome assembly
4. Comparative genomic hybridization using multiplex microarrays
5. Chromosome studies

II. Gene I nventory

1. Manufacturing gene models and selection of the minimum set
2. Transcriptome sequencing 37 cDNA libraries
3. Proteome sequencing
4. NimbleGen genome tiling microarray experiments
5. Transcription profiling using NimbleGen multiplex microarrays
6. Annotating protein-coding genes
7. Annotating non-coding RNA and transposable elements

III. Attributes of a Compact Genome

1. Comparing genome structures
2. Comparative study of intron evolution

IV. Origin and Preservation of Daphnia pulex Genes

1. Assigning gene homologies
2. Studying the history of gene family expansions and losses
3. Studying the history of gene duplication
4. Measuring the distribution of duplicated genes using Tandy
5. Identifying lineage specific gene family expansions
6. Annotating and tracing the phylogeny of opsins

V. Implications of Daphnia's Genome Structure

1. Finding non-allelic gene conversion events
2. Annotating and tracing the phylogeny of hemoglobins

VI. Evolutionary Diversification of Duplicated Genes

1. Estimating expression-level divergence among paralogs
2. Testing for genome structure effects on expression divergence

VII. Functional Significance of Expanded Gene Families

1. Charting metabolic pathways for co-expanding, interacting genes
2. Uncovering functional diversity of glycosphingolipid biosynthesis genes

VIII. Ecoresponsive Genes

1. Treatment of the transcriptome data with reference to the annotation

SUPPORTI NG TEXT

1. Chromosome Studies
2. Gene Homology among Daphnia Genomes
3. Micro-RNA and Transposable Elements

4. The 46 Daphnia pulex Opsins

SUPPLEMENTARY FI GURES

Figure S1. Reconstruction of the evolutionary history of sequenced arthropods.
Figure S2. Overview of the Daphnia pulex Genome Project.
Figure S3. Distributions of the cumulative scaffold and gap lengths for the JAZZ, Arachne, and PCAP assemblies.

Figure S4. Venn diagram highlighting the number of putative mis-assembled regions by using three different methods.

Figure S5. The number of detected breakpoints by GAV in the scaffolds with different lengths.
Figure S6. The karyotype of Daphnia pulex based on meiotic chromosomes prepared from testis.
Figure S7. Corroborating evidence for the existence of a minimal set of 30,907 predicted protein coding genes.

Figure S8. Cumulative frequency distribution of the ratio of non-synonymous over synonymous nucleotide substitutions among duplicated genes in the genome.

Figure S9. Evidence that genes residing in areas of low read coverage within the draft genome assembly are genuine.

Figure S10. Daphnia pulex reveals arthropod origin of two Hox cluster encoded microRNAs (iab-4 and mir-993).

Figure S11. Distribution of transposon Pokey in the ribosomal DNA of Daphnia pulex.
Figure S12. Age distribution of Daphnia pulex Long Terminal Repeats elements (LTRs).
Figure S13. Size distribution of introns in Daphnia pulex, Caenorhabditis elegans, Drosophila melanogaster, and Mus musculus.

Figure S14. Pair-wise percentage of intron conservation.
Figure S15. Ancestral reconstruction of intron gains and losses for arthropods and three other metazoans.

Figure S16. Estimated independent and parallel gain of introns in Daphnia.
Figure S17. Frequency of pair-wise genetic divergence at silent sites (K_{s}) among the 2-member gene duplicates in the Daphnia pulex, Caenorhabditis elegans and Homo sapiens genomes.

Figure S18. Frequency of pair-wise genetic divergence at silent sites (K_{s}) among gene duplicates in Daphnia pulex.

Figure S19. Position and size of Tandem Duplicated Gene (TDG) clusters within the genome assemblies of four model species.

Figure S20. Physical distances between neighboring members of large duplicated gene families.
Figure S21. Phylogenetic relationships of 39 of the 46 Daphnia pulex opsin genes and representative animal opsins.

Figure S22. Maximum-likelihood phylogenies of Daphnia pulex opsin genes.
Figure S23. Rates of gene conversion and number of intervening genes between duplicates in Daphnia pulex and Drosophila species.

Figure S24. Rates of gene conversion and divergence between duplicates in Daphnia pulex and Drosophila species.

Figure S25. Amino acid sequence alignment of di-domain hemoglobins (Hb) of Daphnia pulex and D. magna.

Figure S26. Nucleotide sequence alignment of di-domain hemoglobins (Hb) in coding regions of genes.

Figure S27. Nucleotide sequence alignment of intergenic regions between the stop codons of upstream genes and the TATA of the downstream genes of all Daphnia pulex (dpul) and D. magna (dmag) di-domain hemoglobins (Hb).

Figure S28. Differential expression (DE) profiles of 37 of the 46 Daphnia pulex opsin genes from eight microarray experiments.

Figure S29. Differential expression (DE) profiles of 11 Daphnia pulex di-domain hemoglobin genes from eight microarray experiments

Figure S30. Thirty-eight expanded and 54 contracted metabolic genes in arthropod genomes compared to vertebrates.

Figure S31. Expanded metabolic genes in the Daphnia pulex genome compared to other arthropods and vertebrates.

Figure S32. Distribution of the number of amplified genes with interactions, derived from 1,000 randomized metabolic networks.

Figure S33. Phylogenetic relationships of the three expanded gene families of the Daphnia pulex glycosphingolipid biosynthesis neo-lactoseries pathway of metabolism.

Figure S34. Differential expression (DE) pattern correlations among the Daphnia pulex genemembers of three lineage-specific gene family expansions from eight microarray experiments.

Figure S35. The phylogeny of duplicated fucosyltransferase genes compared to their differential expression profiles across 8 experimental conditions on microarrays.

Figure S36. Differential transcription of the genome from D. pulex on whole-genome tiling microarrays.

SUPPLEMENTARY TABLES

Table S1. Open-source web-portals for Daphnia pulex genome data, analysis results and bioinformatic tools.

Table S2. Summary of the Daphnia pulex genome assemblies using three assemblers.
Table S3. Analysis of shotgun reads from TCO and TRO derived libraries.
Table S4. Putative super-scaffolds based on focused paired-end read analysis.
Table S5. Scaffolds genetically mapped to chromosomes.
Table S6. Pair-wise comparison of genome assemblies: Arachne versus JAZZ and PCAP versus JAZZ using MUMmer.

Table S7. GAV (Genome Assembly Validator) is a machine learning approach to a combined evidence validation of genome assemblies.

Table S8. Chromosome size measurements.
Table S9. Results from the automated gene annotation procedures.
Table S10. The Daphnia pulex cDNA libraries and EST sequencing effort.
Table S11. Observed homology and transcription evidence for v1.1 annotated gene set of the Daphnia pulex genome.

Table S12. Supporting evidence for additional 7,965 TAR-predicted loci.
Table S13. List of identified proteins.
Table S14. List of identified peptides.
Table S15. List of 716 genes conserved as single-copy othologs across eukaryotic genomes.
Table S16. Fifty predicted Daphnia pulex miRNA genes.
Table S17. Comparative analysis of transposable elements in Daphnia pulex.
Table S18. Classification and distribution of Transposable Elements in Daphnia pulex.
Table S19. Comparison with gene-structure statistics for insects, nematode and mouse.
Table S20. Species used in the study of introns.
Table S21. Number and density of introns for nine species.
Table S22. Conservation of Daphnia introns.

Table S23: Conservation of intron positions between Daphnia pulex and other animals.
Table S24. Maximum Likelihood reconstruction of intron gain and loss events in arthropods and three other metazoans.

Table S25. Similarity of Daphnia pulex genes and 12 other genome-sequenced arthropods to human and other model eukaryote reference proteins.

Table S26. Gene families in Daphnia pulex with recognizable InterPro protein domains that have expanded relative to gene families in insects.

Table S27. Species used in the study of gene family expansions history (see Figure 1C).
Table S28. EvolMap reconstruction of gene gain and loss events in arthropods and four other metazoans.

Table S29. Gene duplication and duplicate gene birth rates in the Daphnia pulex, Caenorhabditis elegans and Homo sapiens genomes.

Table S30. Large fraction of Daphnia pulex duplicated genes.
Table S31. Gene families that are expanded and/or shared between Daphnia pulex and other aquatic (vertebrate) species.

Table S32. Part A. Forty-six Daphnia pulex opsin genes belonging to 6 major clades. Part B. Additional Metazoan Opsins in Figure S20.

Table S33. Summary of gene conversion features as a function of the number of genes within the genomes of Daphnia pulex and Drosophila species.

Table S34. Summary of genome-wide gene conversion features among Daphnia and Drosophila species.

Table S35. Summary of genome-wide gene conversion features as a function of the location of paralogs on scaffolds or Müller elements among Daphnia and Drosophila species.

Table S36. Summary of genome-wide gene conversion features as a function of the size of conversion tracts among Daphnia and Drosophila species.

Table S37. Summary of genome-wide gene conversion features as a function of the size of gene families among Daphnia and Drosophila species.

Table S38. Summary of genome-wide gene conversion features as a function of the distance of intra-element or intra-scaffold paralogs among Daphnia and Drosophila species.

Table S39. Homologous di-domain hemoglobin genes of Daphnia pulex and Daphnia magna.
Table S40. The number of paralog pairs that differ unambiguously in their expression patterns.
Table S41. Chi-square tests for associations between paralogs ($K_{s}<2$) sharing expression patterns across 12 conditions tested on microarrays.

Table S42. The number of paralog pairs that have the same expression patterns and that have different expression patterns among 0 to 12 conditions.

Table S43. Metabolic pathways (classified by KEGG and highlighted in Figure 4) containing expanded metabolic genes in the Daphnia pulex genome compared to insects and vertebrates.

Table S44. Metabolic pathways (classified by KEGG and highlighted in Figure 4) containing expanded metabolic genes in the arthropod genomes compared to vertebrate genomes.

Table S45. Ninety-six (96) Daphnia pulex genes from three lineage-specific gene family expansions that are part of the glycosphingolipid biosynthesis neo-lactoseries metabolic pathway.

Table S46. Alignment of Enzyme 2.4.1.65 Daphnia proteins, with Tribolium castaneum and Ixodes scapularis orthologs, using MUSCLE.

Table S47. Alignment of Enzyme 2.4.1.206 Daphnia proteins, with Tribolium castaneum and Ixodes scapularis orthologs, using MUSCLE.

Table S48. Alignment of Enzyme 2.4.1.152 Daphnia proteins, with Tribolium castaneum and Ixodes scapularis orthologs, using MUSCLE.

Table S49. Counts of unique gene transcripts sampled from cDNA libraries partitioned into three ecological conditions.

Table S50. Differential expression (DE) of the genome of Daphnia pulex with four treatments measured on genome tiling path microarrays.

Supplemental References

MATERIALS AND METHODS

I. Genome Sequence, Assembly and Mapping to Chromosomes

1. Strains for genome sequencing

A natural isolate within the D. pulex species complex was picked for sequencing. The Chosen One (TCO) reproduces by cyclical pathenogenesis (capable of both clonal and sexual reproduction) and is easy to culture. The isolate was sampled from a naturally inbred population inhabiting a permanent pond in the Siuslaw National Forest, near the Pacific coast in Oregon, USA. Slimy-Log pond is situated south of Florence and Dunes City, in Douglas County, on the east side of HWY 101, at milepost marker 201 (GPS coordinates N 43.830013, W-124.148152). Sequences from mitochondrial genes suggest that the isolate belongs to an incipient lineage of D. pulex, endemic to an area west of the Cascade Mountains, called D. arenata [S1]. Allozyme and microsatellite genotyping indicated that gene diversity within this population is $\sim 4 \%$ [S2]. Of eight randomly chosen individuals, TCO possessed the lowest nucleotide heterozygosity $(\sim 0.14 \%)$ at 17 sequenced loci. This level of nucleotide polymorphism is comparable to variation found in the sequenced human genome [S3] and is suitably homozygous for the assembly of shotgun derived sequences into contigs. The actual nucleotide heterozygosity of the genome is 0.1% per site.

A second isolate was also sequenced, albeit at $1 x$ coverage of the genome, to map and study polymorphisms. The Rejected One (TRO) is a hybrid clone of D. pulex found in ponds and of the lacustrine species D. pulicaria. The nucleotide heterozygosity of TRO is 1.44% per site to study molecular evolutionary patterns.

The isoclonal animals were grown to large numbers in filtered culture medium, and then treated with $500 \mathrm{mg} / \mathrm{L}$ of Tetracycline to reduce bacterial contamination and with 4.5 micron copolymer microsphere beads (Duke Scientific cat\# 7505A; Palo Alto, CA) to clear the gut. High molecular weight DNA was isolated by Genomic-tips using the manufacturer's protocol for animal tissues (Qiagen, Valencia, CA).

2. Sequencing and assembly

Three size-specific genomic DNA libraries were created using standard protocols for pairedend shotgun Sanger sequencing on ABI 3730xI and MegaBACE 4000 machines. From a total of $2,711,298$ sequences, $1,225,940$ reads (45%) were obtained from a 2,000-3,000 bp insert plasmid library, $1,272,122$ reads (47%) were obtained from an $6,000-8,000$ bp library and 228,191 reads (8%) were obtained from a $35,000-40,000$ bp insert fosmid library. The total number of sequenced nucleotides used in the assembly is $1,211 \mathrm{Mb}$, of which 95.7% are ascribed to the D. pulex genome. Over 2.4 Mb are ascribed to the Daphnia metagenome [S4]. In addition, there were $1,065,732$ reads that were ultimately not used in the assembly, containing $1,006 \mathrm{Mb}$ of untrimmed sequence.

The draft genome assembly v1.1 was built using the JAZZ assembler [S5] from 1,645,566 quality-filtered sequence reads. The JAZZ assembly is composed of 44,403 contigs and 26,848 scaffolds of which 5,191 belong to the nuclear genome. This assembly includes 17,555 gaps averaging $3,300 \mathrm{bp}$ (ca. 39 Mb in total). Two additional assemblies were created using the ARACHNE [S6] and PCAP [S7] assemblers. The results are reported without filtering. Compared to JAZZ, the ARACHNE assembler produced an equivalent number of scaffolds, yet from twice as many contigs. Although the ARACHNE contigs include only 20 Mb of additional nucleotides, the

ARACHNE scaffolds sum to 396 Mb . This discrepancy is attributed to 3.25 times more gaps, which total an estimated 186.8 Mb of missing data (Table S2). By contrast, the PCAP assembler produced 2.3 times more scaffolds than JAZZ, yet both sets sum to the same length (Figure S3).

We next improved the genome assembly by the manual alignment of trimmed paired-end reads from both TCO and TRO to the sequence scaffolds to build super-scaffolds. Custom scripts identified paired-end reads that aligned uniquely to separate TCO scaffolds. Strict criteria were imposed so to not introduce errors: alignments met a minimum e-value threshold of 1×10^{-100} and scored better that the next best alignment by >50 orders of magnitude. Results after filtering the data are summarized (Table S3).

Remaining mate-pairs located on the same scaffold provided an actual DNA insert length distribution for each gDNA library. We found that some clones measured distances that were much larger than the predicted insert sizes. Therefore, a second filtering step was applied by removing all mate-paired sequences that spanned $>2 x$ their predicted distance. The modified means and standard deviations for each library were then used to determine whether pairedends that aligned to different scaffolds were sufficiently close to the scaffold terminals to serve as bridges. The set threshold was three standard deviations from the modified average read length for each gDNA library. If both paired-end reads were within the set cutoff from the ends of scaffolds, the reads were considered appropriate candidates for bridging scaffolds.

This above strategy identified 151 instances where at least one set of unique paired-end reads joins two scaffolds. After verification of the results, we propose a final set of 118 superscaffolds (Table S4). In 51 cases, a super-scaffold is supported by more than one independent set of paired-end reads. Further support is provided for seven cases where the joined scaffolds are found on the same chromosome, base on independent genetic analysis [S8](see Table S5).

The super-scaffolds represent a significant improvement of the overall assembly (Figure S3). The N50 for the super-scaffold assembly is 83 compared to 103 for the current assembly. Furthermore the number of super-scaffolds longer than 2.5 Mb has nearly tripled (14) compared to the original assembly (5).

3. Validating the draft genome assembly

Eukaryotic draft genome assemblies contain errors that often appear in regions with low read or clone coverage, regions containing chimeric or recombined sequence reads, regions that have compressed distances due to repeated elements or have wrongly oriented paired-end reads [S9]. We validated the overall quality of the D. pulex genome sequence assembly using two methods. First, we compared the assembly created by JAZZ [S5] to competing assemblies built by the ARACHNE [S6] and PCAP [S7] assemblers (Table S2). Comparative results were obtained by matching shared contiguous regions between assemblies using MUMmer [S10]. JAZZ produced 44,403 contigs having a total length of $186,524,647 \mathrm{bp}$. We find that 94% and 98% of the JAZZ contigs matched with the ARACHNE and PCAP contigs, respectively (corresponding to 98% and 95% of their total contig lengths)(Table S6). By contrast, ARACHNE and PCAP produced many more contigs than JAZZ (80,844 and 74,521) with greater total lengths (~ 209 Mb and $\sim 234.5 \mathrm{Mb}$, respectively)(Table S2). To detect inconsistent regions between the JAZZ assembly and the two reference assemblies, blocks of fixed length (e.g. 2,000 bp) in the JAZZ assembly were classified into three categories (Table S6): (1) unmatched blocks without alignments to the contigs in the reference assembly; (2) uniquely matched blocks that align to a unique and contiguous region in the reference assembly; and (3) overlapping blocks containing two overlapping regions matched to two different contigs in the reference assembly. This third
category lists putatively mis-assembled regions, which are called breakpoints in the contigs. Two sets of breakpoints (blocks) were identified by referencing each of the two assemblies, after filtering out imperfect matches within the MUMmer output if they did not have a unique region of a certain number of bases. We used 500 bp and $1,000 \mathrm{bp}$ blocks to define regular and stringent criteria.

Our second method applied machine learning to a combined evidence validation of genome assemblies (called GAV)[S11]. The machine learning model was trained to predict breakpoints within a $2,000 \mathrm{bp}$ block of assembled sequence using features deduced from the placement of reads and mate-pairs that cover this block, such as the read and clone coverage, clone length statistics, and repeat content. The training data sets included blocks that positively contained breakpoints and blocks that were positively error-free (Table S7A). These were confirmed by the EST alignments to the genome sequence. The training procedure follows. (1) ESTs that were not well aligned to the genomic (contig) sequences were filtered out based on the matching length (L), score (S), and e-values (V). By default, we used $L=200, S=100, V=1 \times e^{-10}$. (2) The matepairs (reads from the 5' and 3' ends of cDNA clones) were individually and unambiguously aligned onto the contigs. (3) When the 5' and 3' ESTs from a cDNA clone had incorrect orientation, the corresponding block was classified as a mis-assembled (negative) region of the contig. (4) Otherwise, unaligned regions in the cDNA clone were checked when aligned to the contigs. If the size of an unaligned region was greater than 50 bp , the block covering the boundary of the unaligned region was classified as a mis-assembled (negative) region. (5) We also checked the distances between the location of 5' and 3' ESTs. If the distance was greater than a cutoff ($10,000 \mathrm{bp}$), we classified the block covering the boundary of the EST as a misassembled (negative) sample. (6) The blocks covered by the remaining ESTs were classified as correctly assembled (positive). In total, 116,714 positive blocks and 10,232 negative blocks were obtained, which represent 4,536 contigs and 920 scaffolds (Table S7A).

Since the 5,191 scaffolds of the current JAZZ assembly were chosen for the annotation of the D. pulex genome, these were further validated. Using the procedures described above, a consensus set of likely mis-assembled blocks (of length $2,000 \mathrm{bp}$) was predicted. We identified 1,889 breakpoints when using the ARACHNE assembly as reference, and 3,304 blocks when using PCAP as reference. GAV predicted 3,053 putatively mis-assembled blocks (Table S7B). Shared predicted breakpoints among the three sets are shown in Figure S4. Since each of the genome validation methods have inherently high false positive rates, concordance in their independent results produced a more reliable count of likely assembly errors. For instance, among the predicted mis-assembled regions by GAV, the best performance of the program produced 60% false positives [S11]. Although the program's performance seemed poor, its false negative rate was negligible [S11]; this exercise was therefore helpful to guide the necessary experimental validation. Finally, Figure S5 demonstrates a correlation between the length of scaffolds and the number of break points (i.e., the longer scaffolds tend to contain more breakpoints). Based on these analyses, sequence assembly errors are minimal, ranging between 0.1% and 0.5% of the total assembly (Table S7; Figures S4-5).

We investigated the genomic features residing in the assembly gaps by first identifying 19,733 paired-end sequences that were not included in the assembly (7,652 from 3 kb insert libraries; 8,397 from 7 kb insert libraries; and 3,684 from 35 kb insert libraries) where one end unambiguously aligned to a scaffold region, and the other end of the sequenced DNA fragment failed to unambiguously align, and fell within a gap, based on the insert sizes of the fragments. 17.5 Mb of DNA within 6,075 gaps were thus surveyed. The D. pulex paired-end reads that "dangle within gaps" are annotated as follows, using RepeatMasker
[http://www.repeatmasker.org] and RepBase [http://www.girinst.org/repbase/] database of arthropod repeats, and Gmap [S12] for EST and transcript finding:

- 1.16% of DNA within gaps is composed of simple repeats, 1.55% is composed of low complexity regions, and 2.50% is composed of transposons. These values are slightly higher than the 0.38 \% simple repeats, 0.77 \% low complexity, and 0.69 \% transposons for the full assembly. These small increments are unlikely to have impacted the assembly.
- 22% of the Daphnia genes (see section II. 1 below) have high-identify paralogs within gaps, which is equal to the number of paralogs found elsewhere in the assembled genome. These paralogs are found in 3,598 of the 6,075 surveyed gaps (59%).
- ESTs also mapped to the dangling reads at the same rate as found in the assembled genome. Of 151,075 ESTs, 5% are found in these reads - with average 90% identity - compared to 92% found in full assembly at 95% identity. Therefore, ESTs align to genomic DNA at nearly equal rates for dangling reads residing in gaps (0.0006 EST/base) and for assembled sequences of the genome ($0.0008 \mathrm{EST} /$ base).

Overall, we conclude that gaps contain repeated sequences. Given the number of highidentity paralogs arranged within 59% of the surveyed gaps, we surmise that, in particular, high-identity gene paralogs contributed to creating gaps in the D. pulex assembly

4. Comparative genomic hybridization using multiplex microarrays

In collaboration with Roche NimbleGen Inc. we designed and manufactured a multiplex (12plex) long-oligonucleotide (60 nt) D. pulex microarray that measures gene expression and can also be used for comparative genome hybridizations. Each glass slide contains 12 identical arrays prepared using a Maskless Array Synthesizer [S13]. Each array consists of 137,000 temperature-balanced probes; 22,076 genes are represented by three unique probes, 13,232 genes are represented by two unique probes, 357 genes are presented by a single probe, while the remaining probes are designed from transcriptionally active regions whose gene models are not yet described. The array also contains control probes and random probes designed to reflect the genome nucleotide composition by Markov modeling.

DNA samples from 24 cultures of TCO were obtained using a CTAB method [S14] then quantified using a Quant-iT ${ }^{\text {TM }}$ PicoGreen ® dsDNA protocol [S15]. High molecular weight DNA (1 $\mu \mathrm{g}$) was sheered using the Sonicator 4000 (Misonix, Farmingdale, NY) to generate 500-2,000 bp fragments. The fragmented gDNA sample was assessed by capillary electrophoresis using Bioanalyzer 2100 (Agilent Technologies, Colorado Springs, CO) then labeled using the Roche NimbleGen labeling kit. Briefly, $1 \mu \mathrm{~g}$ fragmented gDNA in 40μ l water was primed with 40μ l of 1-O.D. CY-labeled random nonomer primer at $95^{\circ} \mathrm{C}$ for 10 minutes, then immediately cooled to $4^{\circ} \mathrm{C}$ for 10 minutes. The reaction was followed with 100 U Klenow fragment ($3>5$ exo-) and $10 \mu \mathrm{l}$ of 10 mM dNTP mix to a final volume of $100 \mu \mathrm{l}$, incubated at $37^{\circ} \mathrm{C}$ for 2 hours, and terminated with 0.5 M EDTA. CY-labeled gDNA was purified by isopropanol precipitation in the presence of sodium chloride. Concentration and purity of the resuspended Cy/DY labeled gDNA in water was determined using NanoDrop ND- 1000 (Thermo Fisher Scientific, Waltham, MA).

Hybridization, post-hybridization washing and scanning were done according to NimbleGen User's Guide for CGH Analysis v.5.1 (16 Mar 2009) with modifications for the 12-plex array format. Images were acquired using a GenePix 4200A scanner with GenePix 6.0 software (Molecular Devices, MDS Analytical Technologies). The data from the images were extracted using the software NimbleScan v2.4 (Roche NimbleGen Inc., Madison, WI).

The data were imported into an in-house analysis pipeline using Bioconductor for the analysis [S16]. The signal distributions of all probes, including random probes, were adjusted across the 24 replicates to the same median.

5. Chromosome studies

The D. pulex karyotype (Figure S6) is based on the preparation of meiotic chromosomes as described previously [S17]. Prepared slides were placed on a heat block at $65^{\circ} \mathrm{C}$ overnight, incubated in $2 \times S S C$ at $60^{\circ} \mathrm{C}$ for 1 h , and rinsed in $0.9 \% \mathrm{NaCl}$. For G banding, slides were dipped in 0.05% trypsin for 10 sec , rinsed in Gurr's buffer (Gibco, Carlsbad, CA), and stained with Giemsa (1 ml Giemsa [Gibco] buffered with 50 ml Gurr buffer) for 12 min . Finally, slides were rinsed in distilled water, air dried and analyzed by blight field observation. For DAPI banding, slides were stained with DAPI mounted in an antifading solution, Vectashield (Vector Laboratories, Burlingame, CA), and analyzed by fluorescence observation. Observations were made on a Nikon Ecripse 80i microscope equipped with a motorized Z axis. Images were captured with Photometrics HQ using Metamorph software and processed with Adobe Photoshop software. Measurements were performed using Scion image software.

II. Gene Inventory

1. Manufacturing gene models and selection of the minimum set

The minimum gene set refers to Dappu version 1.1 gene models. These models were predicted using several methods: Fgenesh [S18], Genewise [S19], SNAP [S20], PASA [S21] and Gnomon [S22](Table S9). These gene prediction methods include a combination of ab initio modeling, homology-based modeling using protein seeds from similar sequences in other genomes, and modeling based on cDNA sequence alignments to the genome assembly. Whole genome tiling path microarrays, peptide sequencing, and comparison with D. magna genome sequence were used as additional lines of evidence. In addition, genes were also manually curated.

The annotation pipeline typically produced multiple overlapping gene models, which were created by different gene predictors at each locus. To select the best representative gene model, we employed a heuristic approach, based on a combination of protein homology and EST support. Homology information was based on the best alignments produced by BLASTp searches [S23] from the NCBI protein database. Only alignments with scores >50 and coverage greater than 25% of the length of the gene models were considered valid models with homology support.

EST support was based on the correlation coefficient (CC), a measure commonly used to estimate the accuracy of predicted gene models relative to known, experimentally validated gene models [S24]. For this annotation project, an average CC value was computed from all ESTs that mapped to a gene model. The CC values ranged from -1 to +1 , with +1 assigned to a perfect match between the ESTs and the predicted gene model, and -1 representing a complete disagreement. Negative correlations indicated potentially poor quality gene models. Therefore, models with negative correlations and poor homology support (alignment coverage both for gene model and its protein homolog $<50 \%$) were initially discarded from the minimum gene set.

Each gene model was assigned scores based on the following formula: $\mathrm{S}=$ Sblast \times (cov1 \times cov2 +CC); where Sblast is the BLASTp score of alignments between a gene model and a protein homolog, cov1 and cov2 are the alignment-coverage for the model and homolog, respectively ($0 \leq \operatorname{cov} 1, \operatorname{cov} 2 \leq 1$), and CC is an average correlation coefficient between the model and all overlapping ESTs. For a given locus, the model with the highest score was
selected, and all other models that had greater than 5\% overlap with the selected model were excluded from the final minimum gene set.

Ab initio models with no detectable homologs were also excluded from the minimum Dappu v1.1 set. Reducing the stringency of this gene selection project predicted a much larger count, potentially exceeding 40,423 genes. A protein similarity search against a draft genome sequence for D. magna at 8 -fold coverage identifies 2,319 (23%) of 10,015 ab initio gene models, and 3,653 (46%) of 7,965 gene models proposed by TARs (section II.4) that are all presently excluded from our minimal set of genes. Moreover, of the $>11,000 \mathrm{D}$. pulex peptide sequences detected by tandem mass spectrometry (section II.3), 880 peptides map to 95 ab initio gene models that are absent from the minimum set.

Multiple methods that follow were used to validate the Dappu version 1.1 gene builds.

2. Transcriptome sequencing 37 cDNA libraries

Twenty non-normalized cDNA libraries were generated from RNA extracted from a D. pulex isolate TRO. The libraries represent transcriptomes under a combination of 13 ecological conditions and three developmental stages (Table S10). The animals were cultured within large, aerated, 200 liter container of filtered lake water by feeding a concentrated monoculture of green algae (Scenedesmus acutus). Total RNA was isolated using Trizol reagent (Invitrogen Life Sciences, Carlsbad, CA) and was subsequently purified using the RNeasy protocol (Qiagen, Valencia, CA). The cDNA libraries were constructed and sequenced using previously described methods [S25], except that paired-end sequences were now obtained. This effort produced 70,765 reads from a total of 50,070 clonal plasmids. This method resulted in a gene discovery rate of 41% to 85% among the libraries and an average rate of 64%.

Sixteen additional cDNA libraries were constructed using normalization procedures that improve the sampling of uniquely identified genes among conditions (Table S10). Total RNA was isolated from the TCO isolate using Trizol reagent (Invitrogen Life Sciences, Carlsbad, CA) and was subsequently purified using the RNeasy protocol (Qiagen, Valencia, CA). The cDNA libraries were produced using the Creator SMART (Clontech, Mountain View, CA) system by following the manufacturer's instructions. After the cDNA synthesis but prior to cloning, the cDNA pool was normalized using the Trimmer-Direct cDNA normalization kit (Evrogen, Moscow, Russia), amplified then ligated into the pDNR-LIB vector. The vector-cDNA ligants were bacterial transformed into TOP10 competent cells (Invitrogen Life Sciences, Carlsbad, CA), grown onto selective $2 \times Y T$ agar plates overnight and individual colonies were archived by freezing within 15% glycerol $2 \times$ YT selective media. These libraries are available to the research community by the Indiana University Center for Genomics and Bioinformatics. Sequencing reactions were performed by priming at the 5' end of cDNA using vector primer pDNRlib30-50 (TAT ACG AAG TTA TCA GTC GAC G) and by priming at the 3 ' end using vector primer M13rev (AAA CAG CTA TGA CCA TGT TCA C) with ABI BigDye chemistry and the $3730 x L$ sequencer. Vector and poor quality sequences were trimmed from the sequencing reads and ESTs were assembled into contigs using ESTPiper [S26]. This effort produced 89,140 reads from a total of 59,904 clonal plasmids. This method resulted in a gene discovery rate of 75% to 87% among the libraries and an average rate of 81%. EST sequences have been deposited in GenBank, accession numbers: FE274839-FE425949.

The ESTPiper program assembled 113,931 ESTs out of 148,410 sequences that passed quality assurance thresholds producing a unigene set of 14,891 sequences. The assembly to the D. pulex genome sequence scaffolds began first by using BLAT [S27] to find overlapping and
mate-paired EST clusters, then by using PASA [S21] to merge sets of compatible overlapping EST alignments to identify alternative splice variants. The following parameter options were applied: blat min. identity $=95 \%$; blat max. intron $=750 \mathrm{~Kb}$; clustering min. coverage $=80 \%$; clustering min. overlap $=40 \mathrm{bp}$; clustering max. magnification $=10 \mathrm{bp}$. A PASA database was constructed for D. pulex (Table S1) that provides web access to EST assembly summaries and details, EST validation and correction reports for gene predictions, providing a useful reference for expert gene annotators.

3. Proteome sequencing

We sequenced over 11,000 peptides using two approaches.
1D Nano-LC Orbitrap approach - Animals were freeze-dried and solubilised in SDS Buffer (0.5 M Tris pH 6.8, 5\% SDS, glycerol, milli-Q water, Bromophenol Blue, 10 mM DTT). After centrifugation at $100,000 \times \mathrm{g}, 100 \mu \mathrm{~g}$ protein was subjected to separation by SDS-PAGE on a 12.5% maxi gel using the BioRad Protean II Electrophoresis system (BioRad, Veenendaal, Netherlands) using 60 V in the stacking layer, increasing up to 80 V during the separation. The gel was stained using Gelcode® blue stain reagent (Pierce, Rockford, USA) overnight and subsequently washed with milli-Q water. The lane was subsequently excised into 20 gel pieces and reduced with 6.5 mM DTT (Roche Diagnostics) followed by alkylation with 54 mM iodoacetamide (Sigma-Aldrich, St. Louis, USA) for one hour, to be then digested with trypsin at an enzyme: substrate ratio of 1:50 (w/w). Nanoflow liquid chromatography was performed on an Agilent 1100 HPLC binary solvent delivery system (Agilent Technologies, Waldbronn, Germany) with a thermostated wellplate autosampler coupled to an LTQ-Orbitrap mass spectrometer (Thermo Electron, Bremen, Germany). $30 \mathrm{~mm} \times 100 \mu \mathrm{~m}$ Aqua C_{18} (Phenomenex, Torrance, CA) trapping column and a $200 \mathrm{~mm} \times 50 \mu \mathrm{~m}$ Reprosil-Pur $\mathrm{C}_{18^{-}}$AQ (Dr. Maisch GmbH, Ammerbuch, Germany) analytical column. Peptides were trapped at $5 \mu \mathrm{l} / \mathrm{min}$ in 100% A (0.1 M acetic acid in water) on the Aqua C_{18} column for ten minutes. After flow-splitting down to ~ 100 $\mathrm{nl} / \mathrm{min}$, peptides were transferred to the analytical column and eluted with a gradient of $0-40 \%$ B (80% Acetonitrile/ 0.1 M Acetic Acid) in 40 minutes in a 60 minute gradient. Nanospray was achieved using a coated fused silica emitter (New Objective, Cambridge, MA) (o.d., $360 \mu \mathrm{~m}$; i.d., $20 \mu \mathrm{~m}$, tip i.d. $10 \mu \mathrm{~m}$). A $33 \mathrm{M}^{\prime} \Omega$ resistor was introduced between the high voltage supply and the electrospray needle to reduce ion current. The LTQ-Orbitrap mass spectrometer was operated in data-dependent mode, automatically switching between MS and MS/MS. The two most intense peaks above a threshold of 500 were selected for collision induced dissociation (CID) in the linear ion trap at normalized collision energy of 35%. In the LTQ-Orbitrap full scan MS spectra ($300-1500 \mathrm{~m} / \mathrm{z}$) were acquired with a resolution of 60,000 at $400 \mathrm{~m} / \mathrm{z}$ after accumulation to a target value of 500,000.

2D Nano-LC LTQ approach - Growth of daphniids (TCO isolate), protein preparation, SDS gel fractionation of $50 \mu \mathrm{~g}$ protein and in-gel digestion with Trypsin were performed as described in detail [S28]. The 2D-nano-LC separation of peptides derived from 10 SDS gel slices was performed on a multi-dimensional liquid chromatography system (Ettan MDLC, GE Healthcare, Piscataway, NJ). Chromatographic parameters for the first dimension were: $50 \times 0.32 \mathrm{~mm}$ SCX column (BioBasic, Thermo Electron, Bremen, Germany), flow rate $6 \mu \mathrm{~L} / \mathrm{min}$ with 6 discrete salt plugs of increasing salt concentration (10, 25, 50, 100, 500 and $800 \mathrm{mM} \mathrm{NH}_{4} \mathrm{Cl}$ in 0.1% formic acid and 5\% ACN). The eluted peptides were bound on a RP trap column (C18 PepMap 100, $5 \mu \mathrm{~m}, 300 \mu \mathrm{~m}$ i.d. 5 mm , LC Packings) and subsequently separated on the second-dimension RP column (C18 PepMap 100, $3 \mu \mathrm{~m}, 75 \mu \mathrm{~m}$ i.d. 15 cm , LC Packings) with a 72 min linear gradient (A: 0.1% formic acid, B: $84 \% \mathrm{ACN}$ and 0.1% formic acid) at a flow rate of $260 \mathrm{~nL} / \mathrm{min}$. Mass spectrometry was performed on a linear ion trap mass spectrometer (LTQ, Thermo Fisher,

Waltham, MA) online coupled to the nano-LC system. For electrospray ionization a distal coated SilicaTip (FS-360-50-15-D-20, New Objective, Woburn, MA, USA) and a needle voltage of 1.4 kV was used. The MS method consisted of a cycle combining one full MS scan (Mass range: 300$2000 \mathrm{~m} / \mathrm{z}$) with three data dependent MS/MS events (35% collision energy). The dynamic exclusion was set to 30 s .

Database searches and statistical data evaluation - MS/MS spectra of both approaches were converted to DTA files using Bioworks (Thermo, San Jose). Perl scripts were used to convert all spectra into a single file and searched using MASCOT search engine (Matrix Science, London, UK, Version 2.2.01) against D. pulex gene model databases (v1.1 or All Models) with cysteine carbamidomethylation and Methionine oxidation as a fixed variable modifications, respectively. A peptide mass tolerance of 5 ppm for Orbitrap spectra and 2 Da for LTQ data was used. As fragment mass tolerance 0.8 Da was selected and Trypsin was chosen as proteolytic enzyme allowing one missed cleavage. All data were loaded into Scaffold (version 02.01.00, ProteomeSoftware, Portland, OR) and was used to probabilistically validate peptide and protein identifications. Peptide and protein identifications were accepted when reaching 90\% and 95\% probability, respectively, requiring a minimum of two peptides per protein.

4. NimbleGen genome tiling microarray experiments

We used a set of two custom-designed Roche NimbleGen high-density-2 (HD2) whole genome tiling microarrays, each with 2.1 million isothermal long-oligonucleotide probes (50-75 nt in length) that sequentially overlap 30 bp , on average (NCBI GEO accession numbers GPL11200-GPL11201). Included are 225,000 markov modeled random probes sharing base compositions equivalent to the Daphnia sequences represented by the experimental probes. These random probes are used to set appropriate thresholds that measure significant hybridization signals over the background. All experimental probes were designed from unique regions of the genome sequence using the NimbleGen ArrayScribe software and the quality assurance tests of the probes were conducted by CGB in-house algorithms. Experiments conducted on this tiling array are used to (1) validate the frozen gene sets of the current genome annotation, (2) improve the predicted gene structures by empirically determining UTRs and intron-exon boundaries, identifying missing upstream, internal, and downstream exons and alternative transcripts, (3) propose gene structure models in transcribed regions containing no predicted genes and (4) delineate transcriptionally active regions of the genome from intergenic, intronic and genic regions. Signal to background ratios were determined by first calling probes that fluoresced at intensities greater than 99% of the random probes' signal intensities; therefore only 1% of fluorescing experimental probes should be false positives. The arrays reliably produced high signal to background ratios; $\log _{2}$ ratios of eight were observed for signal over background.

We conducted two-color competitive hybridizations that measure differential expression from three replicates, each using RNA from independent biological extractions of (1) adult males vs adult females, (2) $4^{\text {th }}$ instar juveniles responding to kairomones by the dipteran predator Chaoborus americanus vs controls, (3) 11 day old animals exposed to four metals separately for 24 hours vs controls, and (4) four week old animals who were exposed for 21 days to cadmium vs controls.

Comparing the sexes - We used Daphnia pulex isolate TCO for comparing adult male and female transcriptomes. Animals were reared in filtered lake water at $20^{\circ} \mathrm{C}$ and a $12: 12$ light/dark cycle at a density of approximately 1 individual per 5 ml . Animals were fed Scenedesmus algae at approximately $0.1 \mathrm{mg} \mathrm{ml}^{-1}$ each day and split into two groups of 20 . One group was exposed
to 400 nM methyl farnesoate in methanol ($60 \mu \mathrm{~L}-1$), which is known to reliably induce male production [S29], while the other group of 20 individuals were untreated. Progeny were raised under conditions described above in common beakers, with about 25 individuals per beaker and inspected by microscopy to verify healthy appearance and the development of animals of both sexes. After 14 days, adult males and females were sacrificed. Total RNA was isolated using Trizol (Invitrogen) and RNeasy columns (Qiagen), including a DNase treatment performed oncolumn. Quality of total RNA preparations was assayed by spectrophotometry and by the Bioanalyzer 2100 system (see Bioanalyzer section of [S30]). Three biological replicates were compared. Two female replicates were labeled with Cy -3 (green) dye, therefore two male replicates were labeled with Cy -5 (red) dye, while the third replicate consisted of a dye flip.

Exposure to kairomones - We used Daphnia pulex clone R9 (isolated from arctic Canada by Dr. Larry Weider) for our kairomone experiments. This clone was shown to respond to chemical cues from Chaoborus by producing distinct neckteeth [S31]. We conducted the experiments in two separate labs under different culture conditions and slightly different induction protocols. The three biological replicates for each experimental condition were then mixed before the RNA was extracted. This allowed us to focus our search on genes that were up or down-regulated simultaneously under all induction conditions. In both set-ups, we cultured the Daphnia and conducted the experiments in artificial medium (consisting of local tap water, ultra pure water and trace elements) under fluorescent light in climate controlled rooms at $21^{\circ} \mathrm{C}$. Scenedesmus acutus was used as food and offered at non-limiting concentration to stimulate offspring production in the cultures.

In one lab, we simultaneously raised cohorts and placed a mixture of 150 differently aged adult mothers into 3 L borosilicate glass beakers. We had a control and an induction treatment. In the induction treatment, 60-70 fourth instar Chaoborus flavicans larvae were placed into a net cage hanging into the experimental beakers. The net prevented direct predation but allowed all chemical cues to pass. The Chaoborus larvae were fed with first instar D. pulex from the cultures because the kairomone production depends on actively feeding Chaoborus larvae. Dead larvae were replaced and prey remnants were removed daily. We collected all offspring produced by the mothers in two day intervals, ensuring that the Daphnia were in the first two juvenile instars where they are still inducible. Offspring released during the initial two days were not used because their induction time had been two short. We verified neckteeth production by checking subsets of the offspring under a dissecting microscope. All juveniles in the induction treatment carried neckteeth. We harvested all offspring produced during the next 10 days (500-150 animals every second day per beaker). The control treatments had identical setups with the exception that the net cages contained no predators. Both treatments had four independent replicates. The animals were directly transferred to Trizol and frozen at $-80^{\circ} \mathrm{C}$.

Experiments in the second lab deviated in some minor aspects. Animals were raised in 1.5 L beakers containing age-synchronized females and net cages. 15 larvae of Chaoborus flavicans were placed into the net cages for the induction. After releasing their offspring, the mothers were removed and the offspring stayed in the treatments. Offspring were harvested after molting to the second instar. Induction was checked under a dissecting microscope. Both treatments had three independent replicates. The animals were directly frozen in artificial medium at $-80^{\circ} \mathrm{C}$. The RNA was isolated and treated as above. Two kairomone treatment samples were labeled with Cy-3 (green) dye, therefore two control replicates were labeled with Cy-5 (red) dye, while the third replicate consisted of a dye flip.

Exposure to metals - We used Daphnia pulex isolates TCO and PA33 (from Portland Arch nature preserve in Lafayette, Indiana) for comparing the transcriptome of stage-specific adult
females challenged by metals to that under no stress. The experiment followed a protocol described in an earlier study [S32]. Animals were reared in 3.5L borosilicate glass beakers (25 per beaker) held at a constant temperature ($20 \pm 1^{\circ} \mathrm{C}$) and photoperiod (16:8 light-dark). The animals were maintained in nanopure water reconstituted to moderate hardness [S33] and renewed weekly. They were fed Scenedesmus algae daily at a concentration of $75,000 \mathrm{cells} / \mathrm{mL}$. Our pre-experimental procedure consisted of maintaining cultures of neonates (<24 hours old) for one generation prior to the metal exposure to control for maternal effects [S34]. These animals are referred to as 'brood females', which were synchronized with respect to time of maturity for producing neonates for the metal experiments.

We conducted a chronic (16-day) exposure experiment to cadmium. Test solutions were prepared immediately prior to use with culture media from stocks made with CdCl_{2} (analytical grade, Sigma Chemical, St. Louis, MO, USA) dissolved in deionized water. Three independently replicated Daphnia microarray experiments used 24 hour old animals exposed to nonlethal concentrations of cadmium ($0.5 \mu \mathrm{~g} \mathrm{Cd} / \mathrm{L}$) and control conditions in batches of 50 Daphnia per 3.5L exposure chamber. Earlier experiments showed that this concentration inhibits reproduction by $\sim 30 \%$. The animals were directly frozen in artificial medium at $-80^{\circ} \mathrm{C}$. The RNA was isolated and treated as above. Two cadmium treatment samples were labeled with $\mathrm{Cy}-3$ (green) dye, therefore two control replicates were labeled with Cy-5 (red) dye, while the third replicate consisted of a dye flip.

In another tiling array experiment, adult Daphnia (17-24 d) were acutely exposed (24-h) to one of five metals (arsenic, $1384 \mu \mathrm{~g} / \mathrm{L}$; cadmium, $20 \mu \mathrm{~g} / \mathrm{L}$; copper, $1 \mu \mathrm{~g} / \mathrm{L}$; nickel, $200 \mu \mathrm{~g} / \mathrm{L}$; zinc, $200 \mu \mathrm{~g} / \mathrm{L}$) or control conditions were identical, but lacked metals. The metal concentrations in these tests were demonstrated to be non-lethal over the acute exposure period. Arsenic and copper experiments were conducted with TCO. Copper, nickel, and zinc experiments were conducted with PA33. All Daphnia were exposed in batch with 25 individuals housed per 3.5L. Batch number was optimized to provide adequate sample mass for molecular evaluation (e.g., 1 adult Daphnia equals $1 \mu \mathrm{~g}$ of total RNA). Each exposure included four replicate beakers per treatment and control. Culture conditions followed those previously described. RNA was extracted from each sample and pooled in equal-molar amounts from the five treatments and controls to form two groups (e.g., metal, control). Replicates within these groups were independent, as pools were randomly constructed from individual biological replicates obtained for each exposure condition.

For both experiments, three biological replicates were compared. Two metal exposure replicates were labeled with Cy - 3 (green) dye, therefore two control conditions replicates were labeled with Cy-5 (red) dye, while the third replicate consisted of a dye flip.

RNA sample processing and analysis of data - Beginning with at least $0.5 \mu \mathrm{~g}$ of total RNA, a single round of amplification using MessageAmpTM II aRNA kit (Ambion) produced more than $100 \mu \mathrm{~g}$ for all other tissue types. Starting with $10 \mu \mathrm{~g}$ of cRNA, double strand cDNA synthesis was carried out using the Invitrogen SuperScript Double-Stranded cDNA Synthesis kit using random hexamer primer followed by DNA labeling using 1 O.D. CY-labeled random nonomer primer (either Cy3- or Cy5-coupled) and 100 U Klenow fragment ($3>5$ exo) per $1 \mu \mathrm{~g}$ double-stranded cDNA (see NimbleGen labeling protocol for gene expression contained in the following PDF available from the NimbleGen website: exp_uerguide v3p2.pdf). Each treatment and control was differentially labeled and a dye-swap was included among the replicate experiments. Dual-color hybridization ($15 \mu \mathrm{~g}$ of both Cy -labeled samples), post-hybridization washing and scanning were done according to the manufacturer's instructions (exp_userguide_v3p2.pdf). Images were acquired using an Axon GenePix 4200A scanner
(Molecular Devices, Sunnyvale CA) with GenePix 6.0 software. The data from these arrays were extracted using the software NimbleScan 2.4 (Roche NimbleGen, Inc., Madison, WI).

Transcriptional active regions (TARs) were defined by stringing together overlapping probes showing fluorescence above a 1% false positive rate (FPR). First, replicate arrays were quantilenormalized [S35] and to each probe the median value of the replicate probe values was assigned. The fluorescence signal of 225,453 random probes, designed to reflect the genome nucleotide composition by Markov modeling, was used to determine a FPR threshold. Probes were considered positive if their fluorescence signal was higher than the $99^{\text {th }}$ percentile of the fluorescence signal of the random probes. (Fluorescence signal of 275,000 probes from 3,889 scaffolds likely to be from bacterial DNA were also assessed. Only 1.8% of those mostly bacterial probes had signal above that 1\% random probe FPR cutoff.) Contiguously transcribed elements, TARs, were generated similarly to the approach developed in [S36]. Positive probes were joined into a TAR if they were adjacent (maxgap=0, no intermittent non-positive probe) and a TAR's length had to be at least 45 bp (minrun=45, mid-point first positive probe to mid-point last positive probe, resulting in at least 3 adjacent positive probes for a TAR).

The exons or genes were deemed to be transcribed only when greater than 80% or their tiled length was expressed. Genes validated by tiling array or EST data are shown in Table S11.

The data analysis to measure differential expression of genes and of unannotated TARs was performed using the statistical software package R [S37] and Bioconductor [S16] with additions and modifications. The signal distributions across chips, samples and replicates were adjusted to be equal according to the mean fluorescence of the random probes on each array. All probes including random probes were quantile-normalized across replicates. Expression-level scores were assigned for each predicted gene based on the median $\log _{2}$ fluorescence over background intensity of probes falling within the exon boundaries. This following analysis protocol was used for estimating differential expression of genes and other genome features from tiled expression data. (1) We created a "tile-expression" table containing normalized $\log _{2}$ expression scores for each oligonucleotide probe, with columns for each treatment and replicate, as well as the designated genome location (or address) of each probe. (2) We next created a "tile-genemapping" table, in the same sorted order as the tile-expression table, which has columns of gene IDs for each exon, intron, tar-region, in rows matching the address of each probe. (3) We calculated the per-tile, per-treatment differential expression (DE) levels with LIMMA R package [S38]. This balanced-design DE calculation is of the same type that LIMMA is designed to produce. (4) Using in-house algorithms, we combined the per-tile DE results using the tile-gene mapping table to produce statistics for each gene, gene-intron, tar-region of interest that include M and A expression estimates, t -statistic, and probability. The data are deposited at NCBI GEO under the accession GSE25823.

5. Transcription profiling using NimbleGen multiplex microarrays

We employed the 12-plex gene expression microarray described above (section I.4) for additional higher-throughput gene expression experiments. Our protocol on the use of this microarray platform for two-color hybridizations - comparing one conditions versus another - is described in a technical report [S30].

To investigate the evolution of gene expression, we gathered twelve microarray datasets that were produced using the same protocol by the same person (J. Lopez, CGB). We compared the gene expression patterns of four to six replicates of D. pulex: coping with $0.5 \mu \mathrm{~g} / \mathrm{L} \mathrm{Cd}$, with 1.5 $\mathrm{mgC} / \mathrm{L}$ of a $1: 1$ mixture of Microcystis and Ankistrodesmus, with a Cd/microcystis mixture, and
with $5.33 \mathrm{~g} / \mathrm{L} \mathrm{NaCl}_{2}$. For each condition we compared the expression response of adapted and non-adapted isolates to control exposures. We also exposed a non-adapted isolate to acid stress (pH 6), and compared young and geriatric isolates. Results from each of these 12 experiments are presented more fully within companion studies (added to [S39]).

After hybridizations and scanning, the data from each experiment were extracted using NimbleScan v2.4 software (Roche NimbleGen, Inc., Madison, WI) and imported into an in-house analysis pipeline using Bioconductor for normalization and analysis [S16]. All probes including random probes were quantile-normalized across chips, subarrays, samples and replicates. Differential expression was assessed using LIMMA and EBarrays [S38, S40] using the median signal of probes representing genes. EBarrays uses a parametric mixture model to calculate the posterior probability of differential expression for arbitrarily complex experimental designs. This method was applied to each experiment. To determine the significance of expression differences, and adjust for multiple testing, we calculated the False Discovery Rate using the BenjaminiHochberg method [S41] for each gene using the Bioconductor LIMMA package. The data are deposited at NCBI GEO under the accession GSE25823.

6. Annotating protein-coding genes

All predicted protein-coding gene models were functionally annotated by homology to annotated genes from the NCBI non-redundant set and classified according to Gene Ontology [S42], eukaryotic orthologous groups [S43], KEGG metabolic pathways [S44] and phylogenomic gene clustering [S45]. The automated annotation is followed by a distributed community-wide manual curation. The JGI Portal provides tools for web-based manual curation that enables a search for the gene of interest, validation of predicted gene structures, correcting and de novo model building with the correct structure, and correcting and/or providing additional details on functional annotation.

Manual curation is focused on either specific genes searchable by keyword or BLAST or groups of genes from metabolic and regulatory pathways (KEGG browser), functional categories of eukaryotic clusters of Orthologous Groups (KOG, via KOG browser) and molecular functions, biological processes or cellular components of Gene Ontology (GO via GO browser). At every locus, curators assess the quality of the predicted gene models using available supporting evidence on the DNA level displayed on the genome browser (ESTs, homology, genome conservation, etc.), or on the protein level (protein and alignments, domains, completeness), or through additional custom analysis (e.g., multiple alignment). After these assessments, the best available model is selected for the final minimum gene set (gene catalog v1.1). In the absence of models of sufficient quality, the models are edited or created de novo to be included in the gene catalog. Annotation data were submitted for1,688 manually curated genes and 523 novel or structurally modified genes. Gene annotations are deposited at DDBJ/EMBL/GenBank under the accession ACJ G00000000.

7. Annotating non-coding RNA and transposable elements

Automated searches for non-protein-coding loci added more characterized loci to the v1.1 gene builds. To estimate the repeat copy number for the rRNA arrays, we mapped by using BLAT all homologous reads from the TCO shotgun genome dataset to a reference sequence for the ribosomal RNA genes. The average coverage of shotgun reads for the rRNA repeat in this analysis was $4,120 \times$. Given that the average genome-wide coverage is $8.7 \times$, we estimate that the number of copies for the rRNA repeat is ~ 468. A similar analysis of the TRO shotgun reads suggests a repeat copy number of ~ 500.

We located tRNA genes using the Aragorn [S46] and rRNAscan-SE [S47] algorithms, which generated counts of 3,983 and 5,440 loci respectively. The combined analysis identified an overlapping set of 3,798 tRNAs. These annotated tRNA gene models are mapped to the genome sequence using Gbrowse at wFleaBase (Table S1).

Micro-RNA (miRNA) loci in the D. pulex genome (Table S16) were identified using a pipeline that uses Support Vector Machine models, homology and an orthology procedure [S48].

Transposable element (TE) content in D. pulex was determined using a two-step process. Consensus sequences were identified using various programs and used to build a library which was subsequently used to mask the genome to estimate the proportion of the genome comprised of TEs. Long terminal repeat (LTR) retrotransposons were located using MGEScanLTR, a de novo identification method based on string pattern matching and profile hidden Markov model [S49]. MGEScan-LTR identified full-length elements having LTRs at both ends, and clustered them into families by using threshold parameters of 80% identity of reverse transcriptase (RT) protein sequences. The program mainly found elements in Gypsy, Copia, and Bel/Pao clades. In order to identify DIRS elements, protein domain searching was used with RT and tyrosine recombinase (YR) as queries. Non-LTR retrotransposons were identified using MGEScan-nonLTR, a probabilistic model for finding the protein domains for RT and endonuclease [S50]. Stop codons and frameshift mutations were allowed in this search. The elements identified were subsequently clustered into families by using the threshold parameters of 80\% identity of RT protein sequences. DNA transposons were identified using a combination of complementary approaches including protein homology, RepeatScout - a de novo repeat identification tool [S51], and the classification tool, Repclass [S52]. At the final step, a library of consensus (representative) sequences from families was assembled and used with RepeatMasker to estimate the proportion of the genome comprised of TEs, including full-length copies, fragments (including solo LTRs), as well as non-autonomous families. The results of RepeatMasker estimate the proportion of the genome represented by each superfamily (Table S17-18) after filtering short fragments (length $<20 \%$ of query element for DNA transposons and non-LTR retrotransposons and length $<1,000 \mathrm{bp}$ for LTR retrotransposons).

We visualized the number and genomic organization of an important transposable element within the repeated (and consequently unassembled) rDNA genes by fluorescence in situ hybridization (FISH; Figure S11). Preparation of chromosome spreads was performed as described previously [S17] with slight modification. Briefly, testes of adult males fixed in 4\% paraformaldehyde were extracted and dissected in PBS, incubated in PBS containing 0.5\% Triton-X, then briefly incubated in water. The tips of testes were gently torn in 4\% paraformaldehyde, and squashed under a coverslip. After freezing the sample on dry ice with the coverslip facing up, it was removed.

DNA fibers were prepared from oocyte nuclei. Ovaries of adult D. pulex females were extracted in PBS, and an oocyte was isolated with forceps. The oocyte was placed in NDS [1\% (wt/vol) sodium lauroyl sarcosinate, 0.5 M EDTA, 10 mM Tris] on a slide and incubated for 10 min. DNA fibers were mechanically spread on the slide using the edge of a coverslip, and the slides were put on a heat block at $65^{\circ} \mathrm{C}$ to dry. The slides were then washed briefly in PBS and fixed in ethanol.

Labeling of probe DNAs and hybridization were performed as described previously [S17]. PCR product of the D. pulex IGS was labeled using the Bio-Nick labeling system (Invitrogen, Carlsbad, CA) for labeling with biotin-14-dATP. Pokey element from D. pulex was labeled using the DIG-nick translation mix (Roche) for labeling with digoxigenin (DIG)-11-dUTP. Hybridization
mixture [50 \% (v/v) formamide, 10\% (v/v) dextran sulfate, $100 \mathrm{ng} / \mu \mathrm{l}$ salmon sperm DNA, and 0.1-0.2 $\mu \mathrm{g}$ labeled probe DNA in $2 \times$ SSC] was applied to the specimen, covered with a coverslip, and sealed with rubber cement. After the rubber cement solidified, the slide was heated for denaturation on a heat block at $80^{\circ} \mathrm{C}$ for 6 min , and incubated for hybridization at $37^{\circ} \mathrm{C}$ in a humid chamber for 72 hrs . After hybridization, the rubber cement was peeled away and the slide was immersed in $2 \times$ SSC to float the coverslip off. Subsequently, the slide was washed once for 15 min in 50% formamide dissolved in $2 \times S S C$ at $37^{\circ} \mathrm{C}$, twice for 10 min in $2 \times$ SSC, once in $4 \times$ SSC for 5 min at room temperature, and then blocked with 4\% Block Ace (Dainippon Sumitomo Pharma, Osaka, Japan) in $4 \times$ SSC for 15 min at $37^{\circ} \mathrm{C}$. Hybridization of biotin-labeled probes was detected with goat anti-biotin antibody (Vector Laboratories, Burlingame, CA), followed by staining with Alexafluor 488 rabbit anti-goat IgG antibody (Molecular Probe, Invitrogen, Carlsbad, CO). Hybridization of digoxigenin-labeled probes was detected with mouse anti-digoxigenin (Roche Diagnostics GmbH, Mannheim, Germany), followed by staining with Alexafluor 594 rabbit anti-mouse IgG antibody (Molecular Probe, Invitrogen, Carlsbad, CO). Each antibody was diluted in $4 \times$ SSC containing 1% Block Ace at the concentration suggested by the manufacturer. Incubation for detection was 1 hr at $37^{\circ} \mathrm{C}$, followed by washing for 10 min in $4 \times$ SSC, for 15 min in $4 \times$ SSC containing 0.1% Triton $\mathrm{X}-100$, and for 10 min in $4 \times$ SSC at room temperature. Staining was done for 45 min at $37^{\circ} \mathrm{C}$, followed by washing for 10 min in $4 \times \mathrm{SSC}$, for 20 min in $4 \times$ SSC containing 0.1% Triton X-100, for 20 min in $4 \times$ SSC, and for 5 min in $2 \times$ SSC at room temperature. Finally, the specimens for chromosome FISH were counterstained with DAPI mounted in an antifading solution, Vectashield (Vector Laboratories, Burlingame, CA). The specimens for fiber-FISH were mounted in Vectashield. Observations were made on a Nikon Ecripse 80i microscope equipped with a motorized Z axis. Images were captured with Photometrics HQ using Metamorph software.

III. Attributes of a Compact Genome

1. Comparing genome structures

Gene structures were measured for EST-validated gene models of D. pulex and compared to gene structures of six insects plus two non-arthropods (Acyrthosiphon pisum, Apis mellifera, Nasonia vitripennis, Tribolium castaneum, Anopheles gambiae, Drosophila melanogaster, Mus musculus, Caenorhabditis elegans) (Table S19). PASA [S21] was used first for EST assembly and for the production of cDNA-gene models. PASA also provided a method of validating gene models from the EST assemblies. The structure statistics were produced by processing gene exon locations with Perl and R language scripts that tabulate exon, intron and coding exon locations per gene. The data and software are deposited at [S53]. A table of arthropod gene structure statistics is updated with new genome data, as available at [S54, S55](Table S1).

2. Comparative study of intron evolution

Clusters of probable orthologous genes were constructed for nine animal species, including six arthropod genomes, two genomes of vertebrates, and the only available cnidarian genome (Table S20). Orthologous relationships were established by comparing the complete sets of protein sequences from these animals using a modification of the previously described method [S56]. If there was more than one gene from a particular species in any putative orthologous set, the ortholog with the highest similarity to the rest of the proteins in the cluster was chosen [S57]. Therefore, each of the clusters contained exactly one sequence from each species. Clusters that included sequences with obvious annotation errors (e.g., incorrectly assembled genes) were discarded. When applied to the six arthropod species, this approach yielded 3,936 clusters of likely orthologous groups. Adding the remaining three species yielded 2,946 clusters.

Sequences from each orthologous cluster were aligned using MUSCLE [S58]. The protein sequence alignments were converted back to the corresponding nucleotide sequence alignments, and intron positions were mapped onto the alignments [S59]. Only those positions without gap within five amino acids on either side were included in the calculations to prevent errors caused by misalignment. The intron presence-absence matrices were then constructed from such verified intron positions for each species, and intron gain and loss events were inferred using a maximum likelihood (ML) method [S60](Table S24).

IV. Origin and Preservation of Daphnia pulex Genes

1. Assigning gene homologies

For the comparative study of the D. pulex repertoire of protein-coding genes, we used SmithWaterman alignment algorithm as implemented in Paralign (Sencel Bioinformatics, Oslo, Norway) to search for homologous genes in Tribolium castaneum (beetle), Drosophila melanogaster (fruitfly), Pediculus humanus (louse), as well as Strongylocentrotus purpuratus (urchin) Gallus gallus (chicken), Xenopus tropicalis (frog) and H. sapiens (human). Using these all-against-all gene comparisons, we identified orthologous gene relations, i.e. gene lineages originating from the last common Bilaterian ancestor of these species, using the OrthoDB procedure [S61]. It employs a clustering approach of best reciprocal hit triangles with an e-value cutoff of $1 \times e^{-3}$, and tuples with cutoff of $1 \times e^{-6}$, that are expanded to include all more closelyrelated within-species homologs and require all member sequences to overlap by at least 30 amino acids. This procedure has been scrutinized as part of several genome projects [S62, S63, S64, S65], and the extensive manual examination of orthologous groups in Daphnia [S66, S67, S68, S69, S70, S71, S72, S73, S74] and in other species [S75, S76, S77, S78] has confirmed their accuracy.

An interactive data-mining tool was created to explore orthologous gene sets among the proteomes of all sequenced arthropods [S79] including D. pulex, Ixodes scapularis (tick), Acyrthosiphon pisum (pea aphid), P. humanus (louse), Aedes aegypti, Anopheles gambiae, Culex pipiens (mosquitoes) Apis mellifera (honeybee), Nasonia vitripennis (wasp), T. castaneum (beetle) and three drosophilids: D. melanogaster, D. pseudoobscura, D. mojavensis. An all-against-all protein similarity searches using BLAST was performed [S23]. Small (<40 amino acid) proteins and alternative transcripts were removed to only use the most similar gene variants; the discarded sequences included 6,500 alternate transcripts for D. melanogaster, 1,300 from A. aegypti, and fewer than 800 from all others. The similar genes were clustered using the standard methods outlined for OrthoMCL [S80, S81], which can be summarized as follows. Significance criteria were applied with recommended options: a similarity e-value $\leq \mathrm{e}^{-05}$, protein percent identity $\geq 40 \%$, and MCL inflation of 1.5 (influencing the granularity of the clustering). Reciprocal best similarity pairs between species, and reciprocal better similarity pairs within species (i.e., recently arisen paralogs, or proteins that are more similar to each other within one species than to any protein in the other species called in-paralogs) were added to a similarity matrix. The matrix was normalized by species and subjected to Markov clustering (MCL; [S82]) to generate ortholog groups including recent in-paralogs. An additional round of MCL clustering was applied to link related gene groups.

Finally, the Superfamily annotation [S83] was explored to verify patterns of gene family expansions observed by the above methods. Superfamily is based on a collection of hidden Markov models representing structural protein domains at the SCOP superfamily level. The results of all three investigations are available online (Table S1).

Results from these methods were verified to be consistent with the gene tree procedure PhIGs [S45]. PhIGs conducts a true phylogenetic analysis using maximum likelihood. Briefly explained, PhIGs performs these steps: (1) an all-by-all Blast search of the inferred amino acid sequences of each gene model of each considered genome, (2) extension to a full-length alignment of each significantly similar pair using MUSCLE [S58], (3) scoring of the similarity among each pair, (4) building a graph with each sequence as a node and the scores of the pairs as edges, (5) specifying the deepest ingroup versus outgroup relationship, (6) building clusters of gene families by noting the distance between each set of ingroup-outgroup gene pairs then doing a single-linkage clustering of all genes of ingroup organisms that have smaller distances, (7) successively moving through each descendent node of the tree of organisms, in each case specifying the new set of ingroup-outgroup relationships and repeating the clustering, (8) creating a multiple sequence alignment of each cluster, (9) performing a series of quality control measures, considering such things as total length of the multiple sequence alignment and eliminating highly gapped positions using GBlocks [S84], (10) creating a maximum likelihood evolutionary tree of each gene cluster. The complete gene sets from 14 genomes used for this analysis are: the protist Monosiga brevicollis, the cnidarian Nematastella vectensis, Homo sapiens, the teleost Takifugu rubripes, the urochordate Ciona intestinalis, the nematode Caenorhabditis elegans, the mollusk Lottia gigantea, the polychaete Capitella capitata, the oligochaete Helobdella robusta, the dipterans Drosophila melanogaster, Anopheles gambiae, and Aedes aegypti, the coleopteran Tribolium castaneum, and Daphnia pulex. The PhIGs results can be downloaded from [S55].

2. Studying the history of gene family expansions and losses

The gene families of hypothetical ancestral species were reconstructed by a step-wise detection of BRH - here also called the symmetrical best alignments (sym-bets) - for each of the ancestral species. This comparison of gene families among the ancestral species of the phylogeny provides a hypothesis for the timing of gene duplication and loss events throughout evolution. We used Evolmap [S85] to elucidate these events, which is an algorithm that reconstructs sym-bets and localizes the gene duplications and losses to the most parsimonious branch of the phylogenetic tree by assuming a known species history and by applying the Dollo parsimony criterion. We applied Evolmap on 11 species (Table S27) using Nematostella vectensis as the outgroup for the assumed species phylogeny from Figure 1C.

3. Studying the history of gene duplication

To characterize the evolutionary pattern and rate of gene duplication, we compared the protein coding genes (Dappu v1.1, $\mathrm{n}=30,940$) to one another using a modified installation of Genome History [S86], which measures substitution patterns between gene copies in the context of gene family assignments. Our study included other genomes for comparative insights. The entire gene catalogue from C. elegans, and H. sapiens were downloaded from Ensembl [S87] For genes with multiple splice variants, the largest gene was chosen. Transposable element genes were excluded to the extent that they could be identified.

Genome History (GH) detects and compares gene duplicates within a genome by using a set of user-specified parameters and input. The following protocol was followed:

1. All predicted protein sequences were compared to each other using WU-gapped-BLASTp. Self-alignments were discarded and alignments better than e^{-10} proceeded to next step.
2. Gene matches were aligned using ClustalW [S88] with restrictions set at a minimum alignment length of 100 amino acids and percent identity greater than 40%. These strict
settings minimized false relationships due to highly conserved motifs and narrowed the focus of this study to recent gene duplicates ($\mathrm{K}_{\mathrm{s}}<1$).
3. Each aligned gene pair was then back-translated using the nucleotide gene file. For each pair, K_{a} (substitutions / replacement-site) and K_{s} (substitutions / silent-site) were calculated using the maximum likelihood, codon-based model [S89].

Birth rates of gene duplicates were calculated using the number of single-pair duplicates in the youngest cohort ($K_{s}<0.01$), the baseline number of single copy genes and the synonymous substitution rate $\left(K_{s}\right)$, providing units of duplications/gene/ K_{s}. Birth rates of nematodes and humans were comparable to those found in earlier studies [S90]. D. pulex appears to have a higher rate of gene duplication than other animals studied to date (see Table 8.1 in [S91]).

While the observed number of new duplicates can be used to estimate a birth rate, it should be considered a downwardly biased estimate, since observed duplications may represent a subset of events that rose to high frequency in the population, and were not purged by selection. Additionally, an accurate gene birth rate must also account for gene losses over the measured interval ($K_{s}=0.0-0.01$), which can be inferred, assuming steady-state birth/death rates, from an estimate of instantaneous mortality rate using the slope of the regression of duplicate numbers at time $t\left(n_{t}\right)$ on synonymous substitution rate (K_{s}) [S91]. Birth rates estimates that account for losses give slightly higher values (5-20\% higher), but do not affect the phylogenetic pattern of estimated rates (D. pulex $>\mathrm{H}$. sapiens $>$ C. elegans).

4. Measuring the distribution of duplicated genes using Tandy

Tandem duplicated genes can be nearly identical (>95\% identity), arranged in very close proximity to one another (within the length of introns), produce regular signals of genome structure evolution and may be linked to interesting biology. Yet, software that relies on alignment with gapping produce poor gene models from repeated high-identity exons. Gapped alignments often mistakenly merge exons from neighboring genes into gene models. Therefore, Tandy software was developed to address problems of accurately predicting genes when arranged within tandem duplicated gene (TDG) clusters [S92]. The tandy approach compares exons, and secondarily predicted genes and proteins, to locate all duplicates in a region. Gene predictors typically call exons with greater success than their calls of full gene models because exon matches are made without gaps.

After identifying all predicted exons, tandy's algorithm marked runs of duplicate exons. These marked exons were then combined and split into duplicate gene models based on a heuristic method that uses (a) inter-gene versus intron distances, (b) runs of exon sets (e.g. exons 1, 2, 3 of a gene model that are repeated), and (c) gene start/stop exons and strand inversions. Tandy's final output was a GFF feature file of duplicated regions, of gene models and of the exon matches per gene model. Duplicates were then classified based on their relative distance from one another ($<15 \mathrm{~Kb}$), based on the number of intervening genes, based on gene predictions and several quality measures.

Tandy was applied to produce comparative results using the well-studied genomes of C. elegans, D. melanogaster, 11 other Drosophila genomes, and D. pulex. Recent improvements add protein predictions to identify duplicates. Although these have a higher error rate than exon predictions, when one protein of duplicate set is well modeled, it can find other duplicates. The Tandy results were also used as evidence for gene prediction software to indicate gene boundaries.

5. I dentifying lineage specific gene family expansions

Groups of orthologous genes were delineated by the OrthoMCL method [S79] described above (section IV.1). Lineage-specific gene family expansions were defined as orthologous groups with multiple copies in Daphnia whose numbers are significantly greater than those of insects and tick ($p<0.05$) based on 2,000 random permutations of exact probability, without correction for multiple testing (Table S26). To identify independent gene-family expansions in D. pulex and among the three mosquito species, the same test was repeated for each of these four species against the distribution of gene copy numbers of the remaining arthropod taxa.

6. Annotating and tracing the phylogeny of opsins

Sequence similarity searches against the D. pulex v1.1 gene set were performed by BLASTp [S23], using protein sequences of each D. melanogaster opsin gene of interest from FlyBase [S93] as "bait". The searches retrieved top best matches until D. pulex models outside the subfamilies of interest were obtained. Each D. pulex gene identified from this search was manually annotated with reference to the draft genome assembly and assigned to a subfamily by inclusion in maximum likelihood phylogenies.

We performed three separate phylogenetic analyses to understand the evolution of these Daphnia opsins (Figures S21-22). First, we analyzed diverse representatives of the major opsin clades, including ciliary, rhabdomeric (Gq) and RGR/Go opsins. In this analysis, we also included all opsins recently described from the branchiopods Triops longicaudatus, T. granarius, and Branchinella kugenumaensis [S94], plus opsin sequences from two crustaceans, a copepod Tigriopus californicus and an ostracod Vargula tsujii, which are included in Figure S21. Accession numbers are given in Table S32. To determine opsin sequences from these two crustaceans, we first used Trizol (Invitrogen) to extract total RNA from the copepod Tigriopus californicus provided by Ron Burton of the Scripps Institution of Oceanography, and from the ostracod Vargula tsujii collected from baited traps set near Cabrillo Beach, San Pedro, CA (33.706,118.279). For the copepod, we first performed degenerate RT-PCR with a 48C annealing temperature using primers LWF1a (TGGTAYCARTWYCCICCIATGAA) and OPSRD (CCRTANACRATNGGRTTRTA), then performed a hemi nested reaction on this PCR product diluted 1: 10 with primers LWF1 and Scylla (TTRTAIACIGCRTTIGCYTTIGCRAA). For the ostracod we used primer SLF [S95] for degenerate 3' RACE. We sequenced the initial products to enable design of species-specific opsin primers. These gene specific primers allowed for successful 5' and 3^{\prime} RACE reactions and subsequent cloning and bidirectional sequencing of fragments representing an entire opsin for each species. For this phylogenetic analysis, we aligned opsin proteins using MUSCLE [S58], then estimated the most likely tree using RaxML [S96], while assuming the WAG $+\mathrm{I}+\Gamma$ model. We performed bootstrapping with 100 pseudoreplicates (Figure S21). This phylogeny is rooted with ciliary opsins as the outgroup, following [S97].

[^0]
V. Implications Daphnia's Genome Structure
 1. Finding non-allelic gene conversion events

To determine how much concerted evolution has shaped the patterns of divergence among duplicated genes throughout the Daphnia genome, we compared gene conversion features and rates of gene conversion in D. pulex to those of five species of Drosophila. The original data set comprised 14,653 paralogous D. pulex genes from 2,259 gene families. These genes were used to make 66,501 pair-wise alignments of the coding sequences, which were subsequently processed to remove regions of low similarity, including gaps. The latter step is required to eliminate regions with very high divergence in the alignments, which could elevate the rate of false positives. Furthermore, as this filtering process can shorten the alignments to a large extent and possibly introduce some bias in the data set, only alignments that retained 50% or more of their original length after this step were further analyzed. The final set included most of the original data (13,330 genes grouped in 55,362 pair-wise alignments).

Gene conversion among D. pulex paralogous genes was investigated using the program Geneconv v.1.81 [S99], which was run using all default settings, except for the addition of the option to display pair-wise p-values and the option to include monomorphic sites in the calculation. The latter option allows the program to take into account constant sites and is required to examine alignments containing only two paralogs. The significance level is determined based on 10,000 permuted datasets. All fragments identified with $p<0.05$ were regarded as gene conversion events. The initial Geneconv output included 11,659 pairs from 6,943 genes. Of these genes, many were present in 10 or more converted pairs. We removed those pairs because such multiple conversion events between paralogs are highly improbable. The same threshold was applied for our analysis of gene conversion in Drosophila species. Rates of conversion were calculated as the ratio between gene pairs with conversion over the total number of screened pairs per species. The genetic divergence (number of synonymous substitutions per synonymous site or K_{s}) between paralogs was estimated by the maximumlikelihood method implemented in the program codeml from the package PAML [S100]. To correct the genetic divergence in converted pairs, we multiplied the original K_{s} value by the ratio between the alignment length and the length of the alignment minus the conversion tract. Several aspects of gene conversion were compared between D. pulex and five Drosophila species: D. melanogaster, D. yakuba, D. pseudoobscura, D. virilis and D. grimshawi.

2. Annotating and tracing the phylogeny of hemoglobins

Sequence similarity searches for hemoglobin genes against the D. pulex v1.1 gene set were performed as described above in finding opsin genes. Each D. pulex gene identified from this search was manually annotated with reference to the draft genome assembly. The D. pulex genome is found to contain 11 recognizable di-domain Hb genes (Table S39). Eight of the D. pulex Hb genes (named Dpul- Hb 1 to Dpul-Hb8) are organized in tandem within a 23.6 kb region on scaffold 4 (chromosome 7 based on the single Dp112 marker of the genetic map). Their arrangement along the same coding DNA strand is interrupted only by a non-protein encoding gene between Hb4 and Hb5. The eight clustered genes plus Dpul-Hb9 on Scaffold 17 are composed of seven exons, whereas Dpul-Hb10 and Dpul-Hb11consist of six exons, where the second intron is deleted from the ancestral gene structure. Although incomplete, a gene that may have encoded a single domain Hb chain is identified on scaffold 67 (dappu-109652).

An earlier study reported on the partial genomic sequence of a D . magna Hb gene cluster containing four Hb genes [S101]. To study the origin and evolution of duplicated Hb genes, and the consequences of their structural arrangements along two distant branches of the Daphnia
phylogeny, we further analyze the D . magna Hb gene cluster. The nucleotide sequence of the cluster was determined by first screening for clones containing Dmag- Hb 1 to Dmag-Hb4 from a lambda Zap genomic library using a DIG-labeled DNA fragment, which was located on the intergenic region between Dmag-hb4 and Dmag-hb5. We then determined the nucleotide sequences of a 6.6 Kb genomic region containing Dmag- Hb 2 and Dmag- Hb 3 by chromosome walking. Finally, the genomic clone encoding Dmag-Hb1 was screened by using a DIG-labeled DNA fragment that was generated by DNA amplification of the upstream region of Dmag- Hb 2 . We determined the nucleotide sequence of a 3.6 Kb DNA fragment containing Dmag- Hb 1 . A total of seven di-domain Hb genes were thus discovered (newly named Dmag-Hb1 to Dmag-Hb8); genes that were previously labeled dhb1 to dhb4 correspond to Dmag-Hb6, Dmag-Hb8, DmagHb5, and Dmag-Hb4, respectively. The seven genes are clustered in the same direction within a length of about 23.5 kb . Other than the obvious absence of Dmag-Hb7 from the D. magna cluster, elements in synteny between the two species are seemingly preserved from a duplication history that predates the split between the Ctenodaphnia and Daphnia subgenera.

The Hb gene cluster is used as a model for analyzing the evolutionary processes associated with tandem gene duplications. Specifically, we hypothesized that TDG clusters, like the Hb gene cluster, are subject to concerted evolution. Three alignments were created for our phylogenetic investigations comparing divergence among protein coding regions and intergenic regions of the Hb clusters. The first alignment of the deduced amino acid sequence of the 18 Daphnia Hbs and two nematode genes (Ascaris suum and Pseudoterranova decipiens) were produced using ClustalW [S102]. Major adjustments were then made according to the conserved amino acids in known functional domains among arthropods and vertebrates (Figure S25). All gaps and amino acids corresponding to gap position were deleted and the amino acid sequences were then converted to the nucleotide sequences. As a result, 882 nucleotides were aligned, of which 534 were variable among the Daphnia genes and 749 were variable when outgroup Hbs were included (Figure S26). A second nucleotide sequence alignment by ClustalW was produced for intergenic regions between the stop codon of the upstream gene and the TATA box of the downstream gene, except for upstream sequences of Hb1. All gap positions were removed from the alignment. The 837 nucleotides were aligned, of which 833 were variable (Figure S27). A gene phylogeny for the coding regions was constructed using MrBayes v3.1.2 [S103] by applying the GTR and a site-specific rate model for each codon position. The four Markov Chain Monte Carlo (MCMC) chains were run for 3,000,000 generations and 15,100 trees were sampled with their posterior probabilities. A 50\% majority consensus rule tree was estimated. By contrast, a phylogenetic tree for the intergenic regions was constructed by using GTR base substitution model with a gamma rate substitution. The MCMC chains were run for 3,000,000 generations. A 50% majority consensus rule tree was estimated from 15,100 trees.

VI. Evolutionary Diversification of Duplicated Genes

1. Estimating expression-level divergence among paralogs

I dentification of duplicate genes - The paralogs used for this study were those identified by Tandy (section IV.4) and by our analysis of genome history (section IV.3), which also produced the estimate of sequence divergence at silent sites (K_{s}) among all pairs of duplicates. Duplicated genes were grouped into gene families by the Markov clustering and MCL clustering methods described above (section IV.1).

Gene expression data - Two datasets were examined for this study, each taken from the multiplex microarray experiments described above (section II.5). The first set of analyses investigated variation of expression among duplicates of individual gene families. The M values ($\log _{2}$ treatment $-\log _{2}$ reference) from eight of the twelve experiments were used to calculate
the Pearson product-moment correlation using the statistical package JMP (SAS Institute Inc.). Prior to filtering, correlations were measured for 46,343 pairs of paralogs with $K_{s}<5$, of which 35,770 pairs were assigned to 1,393 annotated gene families. Hierarchical clustering of the genes [S104] was based on their M values across experiments and required that a significant expression-level difference was observed for at least one experimental condition. Clustering was performed using the program Cluster v2.11 and visualized using TreeView v1.6 (rana.lbl.gov/EisenSoftware.htm). Plots comparing the correlation coefficients for paired orthologs as a function of their relative ages (measured by K_{s}) were also produced using JMP (SAS Institute Inc.).

The second set of analyses investigated variation of expression among all duplicated genes within the D. pulex genome across all 12 experiments. The microarray probes used for detecting expression differences between paralogs were filtered to only include probes for genes which differed in sequence from the sequence of the closest related paralog by greater that 5% of the nucleotides. This threshold was chosen based on the reported specificity of long oligonucleotides on this NimbleGen microarray platform [S13]. By consequence, of the original 80,142 probes on the array that are designed to query the expression of 29,569 genes, our analysis was restricted to 14,323 probes interrogating 6,241 genes with paralogs in the genome: 3,059 genes are represented by three probes, 1,964 genes are represented by two probes, and 1,218 genes are presented by a single probe. $\log _{2}$ signal to background ratios were determined for each probe under each experimental condition, by first calling probes that fluoresced at intensities greater than 99% of the random probes' signal intensities; therefore only 1% of fluorescing experimental probes should be false positives. Probes with negative ratios were discarded from measurements of differential expression for each of the 12 contrasting conditions. The data file is available at [S55].

Our approach followed the general statistical method of Gu et al [S105], who defined a pair of duplicated genes as having "similar" or "different" expression patterns across experimental conditions based on whether their expression scores differed at $p \leq 0.05$ using an analysis of variance. Using custom scripts written for the R statistical package [S37, S55], we employed a similar ANOVA model where all the replicate probes for the two genes formed the error term, and the mean difference of the two genes was the measured effect.

In brief, we define a distinguishable expression pattern by a significance criterion ($p<0.05$) using ANOVA for the simple statistical model of "aov(Yab ~ Xab)", for matrices Yab differential expression M values and Xab gene factors, with replicates. A supplemental file [S55] reports
 their K_{a} and K_{s} values. We use $\operatorname{pr}(M)<0.05$ as criterion that expression differs between paralogous genes, for zero to twelve treatments. The tested hypothesis is one investigating the number of paralogous pairs in each K_{s} category that reach the criterion of a distinguishable expression pattern, which is tested for significance with Fisher's exact test for count data presented in Table S42. This method is reliable for as few as two probes for one gene and one probe for the other, although a greater number of replicate probes produced more significant results. The relation between the maximum observed difference in the expression response of paralogs to a shared experimental condition and their number of synonymous substitutions per synonymous site (K_{s}) was measured by a linear regression model using the R package [S37]. Because large K_{s} values are unreliable estimates of age, we restricted our analysis to $K_{s}<3$.

2. Testing for genome structure effects on expression divergence

To test for genome structure effects on the evolution of gene expression, we compared the expression patterns of duplicated genes that are (1) arranged within TDG clusters, (2) that have signatures of gene conversion (section V.1), and (3) that are dispersed in the genome. The observed numbers of paralogs within each class that shared the same expression patterns, or that had different expression patterns in at least one of the 12 conditions tested on the microarrays were tested against expectations that there are no differences using Chi-square tests.

VII. Functional Significance of Expanded Gene Families

1. Charting metabolic pathways for co-expanding, interacting genes

Homologous genes are defined by the metazoan Non-supervised Orthologous Groups (meNOGs), which are obtained from the eggNOG database [S106]. The meNOGs are built upon 363,805 proteins from the following 18 metazoan species: Homo sapiens, Pan troglodytes, Macaca mulatta, Mus musculus, Rattus norvegicus, Canis familiaris, Bos taurus, Monodelphis domestica, Gallus gallus, Xenopus tropicalis, Tetraodon nigroviridis, Takifugu rubripes, Danio rerio, Ciona intestinalis, Anopheles gambiae, Drosophila melanogaster, Apis mellifera, Caenorhabditis elegans. The meNOGs assemble 241,305 proteins into 23,033 orthologous groups. These groups are then subdivided into 4,404 subgroups of genes having a 1-to-many relationship (i.e., gene duplications occurred within a single species), 3,721 subgroups of many-to-many gene relationships (i.e., gene duplications occurred in multiple species) and 14,908 subgroups of genes with 1-to-1 relationship (i.e., single genes are found in each genome). The initial meNOG dataset was extended by the addition of D. pulex. The 30,907 D. pulex proteins were aligned to the 363,805 meNOG proteins using the PARALIGN software [S107] and the Swiss-Waterman algorithm. Daphnia pulex proteins were assigned to the meNOGs by reciprocal best matches above a sequence similarity threshold of 180 bit scores. Thus, 13,816 Daphnia proteins were assigned to 7,413 meNOGs. Ortholog groups were previously annotated with enzyme (EC numbers) and to metabolic pathways on the basis of the KEGG database [S44]. Therefore, enzyme annotations were transferred to 1,908 Daphnia genes. The data file is available at [S55]

Expanded and contracted enzymes were identified by the Fisher exact test. The test was based on the distribution of the number of genes corresponding to enzymes among the subset of equally distributed species between vertebrates (H. sapiens, M. musculus, G. gallus and T. nigroviridis) and arthropods (D. melanogaster, A. mellifera, A. gambiae). For example, we identified 89 copies of the Daphnia gene encoding enzyme EC2.4.1.152 (fucosyl transferase). By contrast, the total number of genes encoding this enzyme in other species is 13 (2 in H . sapiens , 1 in M. musculus, 1 in G. gallus, 3 in T. nigroviridis, 2 in D. melanogaster, 2 in A. mellifera and 2 in A. gambiae). The Fisher exact test statistic and the corresponding p-value were calculated based on expectations derived from comparing 1,908 total genes in Daphnia to 7,876 genes in all other species. Finally, a Bonferroni correction was applied to account for multiple testing using 563 as the total number of unique Daphnia enzymes. We tested for expanded and contracted enzymes comparing arthropods vs vertebrates (see Figure S30 and Table S44 for detailed information) and Daphnia vs all the other genomes (see Figure S31 and Table S43 for detailed information). Thirty-eight enzymes showing significant deviations from expected numbers (p-value < 0.05) were finally mapped onto the overview metabolic network [S108] to observe functional relationships (Figure 4).

Among these 38 enzymes encoded by amplified genes, we identified the fraction of interacting genes (i.e., sharing metabolites) within the whole metabolic network (in total 563 enzymes and 478 interactions). As a result, 19/38 enzymes interact within small subnetworks (Figure 4 panels A-G). To assess the significance of the observed number of interacting amplified
genes, we first applied a binominal test. The probability distribution required for the binominal test was generated from 1,000 sets of randomly selected 38 genes. As a result, we proved that the nineteen (half of 38) is a significantly greater number of genes than numbers that are observed by chance. Second, we additionally performed a network permutation analysis. That is, we generated 1,000 randomized whole metabolic networks using node permutation (i.e., relabeling all nodes), and checked the number of interactions among the same set of 38 amplified genes. As a result, the number of interacting genes within the amplified genes in the "real" network is significantly higher than that in randomized networks ($p<0.03$ in the null distribution derived from the 1,000 randomized networks (Figure S32).

2. Uncovering functional diversity of glycosphingolipid biosynthesis genes

To test whether evolutionary preservations of duplicated genes may be functionally interdependent, we compared the average similarity of expression patterns for interacting genes from lineage-specific expanded families within shared metabolic pathways (i x i matrix) to that for non-interacting genes from families of different pathways (i x j matrix). The differential gene expression patterns (only $\log _{2}$ fold change >0.5 were considered) of 275 duplicated genes across 12 experimental conditions and belonging to 38 metabolic pathways (Table S43) were used to calculate 37,675 pair-wise estimates of expression similarity based on their root mean square difference (RMSD). Thus, a RMSD near 0 is indicative of genes that are alike in their expression patterns, whereas a RMSD = 1+ is indicative of genes whose expressed patterns are different. There are mostly only single comparisons of interacting gene families (ixi) within the same pathway (same KEGG map ID in Table S43), but many possible pairs of gene families to chose for different-pathway comparisons ($\mathrm{i} \times \mathrm{j}$). To reduce chance bias of selecting high scoring pairs from this large null-hypothesis ix j matrix, different-path comparisons were limited to gene families having a similar number of paralogs.

The hypothesis being tested is whether a greater similarity in expression is observed for bestmatched genes belonging to two different families within the same pathway, than observed for best-matched genes belonging to two families from a different pathway. We therefore implemented sampling without replacement for each enzyme (gene family) pairing, calculating RMSD for all possible gene pairs, then selecting the most alike pairs until all genes from the smallest enzyme group are matched. Thus, duplicated genes are sampled only once from each enzyme group. Significant differences between the averages calculated for all ixiand ix jene pairs were tested using the t-statistic. The input files, custom perl program "dpx-msrevpathq.pl" and results files for this "PathXDiverge" analysis for D. pulex gene expression patterns across metabolic pathways are available at [S55].

To further test our hypothesis and provide a specific example, we contrasted the phylogenetic history of interacting and co-expanded gene families of the glycosphingolipid biosynthesis pathway of metabolism to their similarity in expression patterns across eight microarray experiments. Amino acid sequence alignments were obtained using MUSCLE [S58] for 96 genes from among three families (Tables S45-48). Phylogenetic gene trees were constructed by the maximum likelihood method using the PHYLIP ProML algorithm [S109] with corrected distances by the Jones-Taylor-Thornton model of molecular evolution [S110]. Correlation coefficient plots and hierarchical clustering of genes, based on their differential expression patterns, were conducted as described above (section VI.1). Of particular interest was the functional association of genes within the largest expanded metabolic gene family (fucosyltransferase; enzyme 2.4.1.152) and the nine members of the expanded glycosyltransferase gene family (enzyme 2.4.1.65), because both enzymes are required to catalyze biochemical reactions for the production of branched glycans along the glycosphingolipid biosynthesis pathway [S111]. To test
these associations, we partitioned the variance in differential gene expression (DE) from microarray experiments with a nested ANOVA and REML estimator using JMP 8.0 (SAS Institute Inc.). We used the estimated variance component to calculate the ratio of among group variation to total variation. This ratio is the statistic $D_{s t}$ that estimates group differentiation based on the quantitative differential expression data and varies from 0 to 1 , similar to $F_{s t}$ [S112]. Unlike $F_{\text {st }} D_{\text {st }}$ is a measure of phenotypic, not genetic variance. The test was based on calculating the variance in the expression patterns of duplicated genes sharing memberships within (1) phylogenetically distinct clades ($>95 \%$ identity at amino acids) relative to the variance in expression patterns observed among genes having independently evolved, and (2) groups of genes clustered with unrelated interacting genes based on the hierarchical clustering. We used the Delta method [S113] to estimate the significance of $D_{s t}$.

VIII. Ecoresponsive Genes

1. Treatment of the transcriptome data with reference to the annotation

Sequences obtained from the cDNA sequencing project (section II.2) were classified as transcribed genes under biotic ecological conditions, abiotic ecological conditions, and standard non-ecological conditions, based on the libraries from which the gene transcripts were sampled. The biotic ecological challenges include exposure to bacterial infection, predators, hormones and varying diets (Table S10; TRO 12-20, TCO 9, 14). The abiotic ecological challenges include animals exposed to environmental toxicants, elevated UV, hypoxia, acid, salinity and calcium starvation (TRO 1-4, 6-9, TCO 4-8, 10-13, 15). Standard non-ecological conditions include animals at various stages of life history within a controlled laboratory environment (TRO 5, 1011, 21, TCO 1-3). The transcribed gene counts with and without homology to proteins from other species were tabulated and tested against expectations that these were equally distributed among the three classes of ecological conditions using Chi-square tests. Chi-square tests were also performed for transcribed genes from the tree classes found within and outside of tandem duplicated gene (TDG) clusters.

Differentially expressed Transcriptional Active Regions (TARs) obtained from the whole genome tiling path microarray studies (section II.4) were classified as overlapping with annotated exons (gene), residing within predicted introns of annotated gene models (intron), or located outside of currently annotated gene models (unknown). For each of the four tested treatments, counts of the tiles with up-regulation, down-regulation and no differential expression in each genome feature were tabulated. Chi-square tests were conducted against the null expectation that the pattern of regulation of tiles in each genome feature would be proportional to the number of tiles in each feature within each category of regulation (up-, down-, and no differential).

SUPPORTING TEXT

1. Chromosome Studies

The chromosomes of Daphnia are extremely small. Past karyological observations have therefore been restricted to counting the diploid chromosome numbers [S114, S115]. Recent advancements in cytological techniques and instrumentation have permitted some successes at characterizing the morphology of D. pulex chromosomes (Figure S6).

Because most chromosomes are uniformly short, they are only roughly arranged according to size. Yet three size classes are apparent (Table S8). Chromosome 1 is obviously the largest, measuring 5.6-6.6 $\mu \mathrm{m}$ or 25% of the total. Chromosomes $2-4$ form the second class, containing 30% of the total nuclear DNA, while chromosomes $5-12$ constitute the third and shortest class for the remaining 45\%. Heterochromatic (A-T rich) regions are observed only on the four largest chromosomes. Two internal regions are identified in chromosome 1 and both terminal regions of chromosome 2 are banded; single broad bands are observed on chromosomes 3 and 4.

A first genetic linkage map for D. pulex was already published using 185 microsatellite markers [S8]. This investigation measured the segregation of polymorphisms within 129 (F_{2}) selfed progeny from a D. pulex hybrid (F_{1}) obtained by crossing two genetically divergent isolates from populations in Oregon. The map spans 1,206 Kosambi cM and shows an average inter-marker distance of 7 cM . Linkage groups range in size from 7 to 185 cM and the number of markers per linkage group varied from 4 to 27. The map reveals linkage groups corresponding to the 12 chromosomes and covers approximately 82% of the genome.

We consolidated the genetic map data with the genome scaffolds to assign these sequences to each of the 12 chromosomes for the purpose of validating the genome assembly, identifying gaps and to begin defining the recombinational landscape. Mapped microsatellite marker sequences were unambiguously identified on the genome scaffolds by sequence similarity searches (Table S5). Of the 5,191 scaffolds from the present assembly, only 73 are placed onto chromosomes. Work is underway to obtain better coverage and consolidation of the D. pulex genetic and physical maps, while substantial progress is made at discovering the recombination map of the 10 D. magna chromosomes [S116].

Telomeres in Arthropoda are so far known to range from simple TTAGG telomeric repeats with relatively uniform and short $\sim 3 \mathrm{~kb}$ sub-telomeric regions for the long arm telomeres in the honey bee Apis mellifera [S117] - to much longer arrangements including multiple retrotransposon insertions within the TTAGG repeats in the silkmoth Bombyx mori and flour beetle Tribolium castaneum [S62, S118], to the unusual situation in Diptera, which have lost both telomerase and TTAGG repeats and depend entirely on regular insertions of particular retrotransposons (e.g. [S119]). We identified and manually annotated a single full-length ortholog of insect telomerase [S117, S120] in the D. pulex genome [NCBI Acc. Num for DpulTERT].

We searched the 228,190 fosmid clone end reads for tandem repeats of TTAGG with lengths of $1,000 \mathrm{bp}$. We found several hundred matches, most with long stretches of TTAGG repeats, although sometimes interspersed with TTAGGG repeats, which is the ancestral arthropod repeat. Almost all of these are plus/minus orientation, indicating that ends of chromosomes in D. pulex indeed consist of long stretches of TTAGG repeats (otherwise we would expect equal numbers of plus/plus and plus/minus matches). Examination of the mate pairs of these fosmid end-reads,
which should therefore be $30-40 \mathrm{~kb}$ internal to the TTAGG repeats, revealed almost entirely repetitive sequences.

One particular 136 bp satellite repeat was very common amongst these mate pairs and appears to form long repeat stretches that immediately border the TTAGG repeats, so was named TELSAT1 (consensus sequence is
TITTTCTAAGTATTGTCATCAGCGCCACCTGGTGGCAAGTITTGGAACTAAATTTTATTATGATCGCATCGT GTTCAGCGTTAAATTCTGATCAAGAATATGTTTGTTTCAAATGGTTCTGAGCAGTAGAAGTGCC). Examination and alignment of all 86 junctions between TELSAT1 and TTAGG repeats within the full set of sequence reads revealed that TELSAT1 repeats only occur in front of TTAGG repeats in direct tandem orientation, although rarely they are interspersed within the TTAGG repeats. There are 28 unique junctions of TELSAT1 repeats with TTAGG repeats, all joined from different positions within the TESAT1 repeat to the GG of a TTAGG repeat. A few of these junction sequences are singletons that might be interspersed within the TTAGG repeats, leaving around 24 unique junctions with multiple reads representing them, which likely are the 24 telomeres on the 12 D. pulex chromosomes.

To identify unique sequences upstream of the TELSAT1 repeats, a second search of the fosmid end reads was conducted with multiple TELSAT1 repeats, and the mate pairs of plus/minus matches were examined. Most of these sequences are composed of more TELSAT1 repeats, indicating that these repeats form sub-telomeric clusters over 40 kb in length. The few others include another 193 bp satellite named TELSAT2 (consensus sequence is TTTCCCTGTTACAGGATATGTTCATCGATGTCCAATACACTATTTAAAGTCATTAAAATCAATGAATCTATTA AGACATTCATGATGGAAAAGAAATAGAAATAAGAGTTGATAGAAAATCTTCCAGGAACTGAAAATCACAAC TTCAATGAATTTAAAATGACGATTCTGATTGTTTTACAAATTTCAAGGG). Efforts to progress beyond these TELSAT2 repeats led only to multiple other repetitive regions, thwarting efforts to connect these sub-telomeric regions to unique scaffolds in the assembly. In summary, the D. pulex telomeres appear to consist of terminal TTAGG repeats of a few kb, with long stretches of TELSAT1, TELSAT2, and other repeats in the sub-telomeric regions.

2. Gene Homology among Daphnia Genomes

TCO genes were partitioned among four classes of models, based on supporting evidence. Searches for homologs were conducted by measuring nucleotide similarities using BLASTn [S121] between TCO and TRO genomes. We estimated the levels of sequence divergence between these two strains range between 3% and 5%. The first class of models consisted of TCO v1.1 gene predictions with both homology to non-daphniid proteomes and EST evidence. We found $17,411 / 18,233$ (95.5%) genes models with significant alignments ($\mathrm{e}<10^{-5}$) to TRO sequence. The second class of TCO gene predictions consisted of models without homology to other sequenced proteomes, yet having EST or paralogs (i.e., lineage-specific genes). We found that $9,733 / 12,707$ (77%) of these gene models had significant sequence alignments to TRO sequences. The third class consisted of TCO ab initio gene predictions that were not included in the Frozen Gene Set v1.1 because they lacked supporting evidence. Here, 6,576/10,015 (65.7%) had clear homologs in the TRO genome. Finally, the fourth class consisted of extra gene predictions inferred from transcriptional active regions (TARs) where tiling array data suggested significant expression levels in areas without ESTs or gene prediction models (Table S12). Based on BLASTn scores, 6,684/7,897 (84.6\%) TARs had homology between TCO and TRO.

We also searched for homologs of D. pulex genes within the D. magna genome that is currently being sequenced. Daphnia magna is a member of the subgenus Ctenodaphnia and resides primarily in Eurasia, whereas D. pulex is mainly in North America and its lineage split
from the D. pulex ancestor ca 150-200 MYA [S122], although younger estimates are obtained from nuclear genes [S123]. We currently have a draft genome assembly from $8 \times$ coverage sequencing using the Roche- 454 genome sequencer. Due to the possibly deep evolutionary history between these species, we used tBLASTn to detect homology between the two genomes (cut-off set at $e<10^{-5}$). Using the same four categories as above, we found evidence of homology for 1) 16,486/18,233 (90.4\%) "best" predictions, 2) 4,969/12,707 (39.1\%) of lineage-specific genes, 3) 2,319/10,015 (23.1\%) of weak-evidence predictions and 4) 2,787/7,897 (35.3\%) of TARs.

3. Micro-RNA and Transposable Elements

We located 50 micro-RNA (miRNA) loci in the D. pulex genome (Table S16) using a pipeline that uses Support Vector Machine models, homology and an orthology procedure [S48]. All loci are preserved in insects, most are single copy genes except for three loci: dpul-mir-2, dpul-mir-7, dpul-mir-87.

MicroRNAs are short (21-24-nt) non-coding RNAs that bind to complementary sites, usually located in the 3'-UTR of target mRNAs, and regulate protein translation. We discovered three miRNA-producing loci are evolutionary conserved within sequenced insect and Daphnia Hox clusters. Locus dpul-iab-4 resides in the Bithorax complex between the Abd-B and Abd-A genes, while dpul-mir-993 and dpul-mir-10 reside in the Antennapedia complex between Pb and Dfd , and between Dfd and Scr genes, respectively. Recent reports demonstrated that the iab-4 gene produces two distinct miRNAs that are encoded on opposite DNA strands [S124]. They inhibit endogenous UBX expression to induce Ubx-like haltere-to-wing transformations [S125, S126, S127]. Surprisingly, the structural arrangements important for wing development are preserved in the D. pulex genome (Figure S10). Knowledge on the general functional conservation of miRNA is restricted by the limited diversity of available arthropod genomes. For example, Shiga et al. [S128] reported several alternatively spliced variants of D. magna Antp and Ubx mRNAs, including bi-cistronic transcripts of both genes, yet no protein expression was observed from the fused Ubx/Antp transcripts. Ubx mRNA was shown to be a direct target for iab-4 microRNAs in Drosophila melanogaster [S124], implying that regulation of protein expression from fused transcripts might be mediated by functions of microRNAs in Daphnia.

In annotating transposable elements, 1,712 intact or fragmented elements are identified from five superfamilies of non-LTR retrotransposons, including the L2 superfamily, which is abundant in D. pulex but otherwise found only in the Anopheles gambiae genome. Representatives of 10 superfamilies of DNA transposons, including the Helitron and Maverick subclasses, are also found in D. pulex. Many have full-length open reading frames indicating they may have been recently active. Finally, as expected, the Daphnia specific DNA transposon Pokey [S129] is inserted in multiple copies throughout the large subunit ribosomal RNA gene of the single ribosomal DNA (rDNA) array, in addition to occurring at other genomic locations. The distribution of Pokey in the rDNA array is visualized using fiber-FISH (Figure S11) because sequence assemblies of the tandemly arrayed rDNA units are not possible.

4. The 46 Daphnia pulex Opsins

Animals use proteins of the opsin family of seven-transmembrane G-protein-coupled receptors to detect light (e.g. [S130, S131]). Three major lineages or subfamilies of opsins in animals are generally recognized: the ciliary opsins represented most prominently by the vertebrate visual opsins, the rhabdomeric opsins represented by the insect visual opsins, and the retinochromeor Go-like opsins represented by RGRopsin, peropsin, and neuropsin in chordates (e.g. [S97,

S132, S133, S134]). Some opsin evolution experts split the latter group into multiple subfamilies in recognition of their considerable divergences (e.g. [S131]). The classification of this third subfamily remains unsettled, and some authors rank these as protein families within an opsin superfamily. Nevertheless, substantial evidence suggests that all three subfamilies predate the major split of bilateral animals into the protostomes and deuterostomes: (i) the chordate melanopsin are relatives to the previously protostome-only rhabdomeric opsins [S132, S135]; (ii) the insect pteropsin and an annelid ciliary opsin are protostome representatives of the ciliary opsins [S133, S134, S136]; (iii) vertebrate members of the retinochrome-like subfamily resemble squid retinochrome (e.g. [S137, S138, S139]), as does the opsin 2 gene in scallops [S140]. More recently, older animal phyla are revealing additional opsin lineages and evolutionary complexity, including a clade named 'cnidops' known only from Cnidarians (e.g. [S97, S141]).

The Daphnia compound eye consists of eleven ommatidia and the two eyes are fused during ontogeny into a single anterior and dorsal organ. Daphnia also have a single ocellus. Like some other arthropods (reviewed in [S142]), each Daphnia ommatidium of the compound eye has eight photoreceptor cells (see [S143]). Attempts to study the wavelength specificity and sensitivity of these individual light-detecting units proved difficult. But in pioneering work, [S144] used intracellular recordings to identify photoreceptor cells that respond specifically to blue, green, and red light. Smith and Macagno [S143] confirmed these capabilities using extracellular recordings from entire ommatidia and also demonstrated UV sensitivity.

By manual annotation of the D. pulex genome sequence, we identified 46 opsin genes (Table S32). Daphnia pulex has the greatest number of opsins of which we are aware described to date for any animal (Figure S21), although the genomes of the cnidarians Hydra magnipapillata and Nematostella vectensis rival D. pulex if counting the numerous cndiarian sequences that are presumably pseudogenes [S97]. Our phylogenetic analysis along with genes from the three known subfamilies of animal opsins revealed that most D. pulex opsins originated by gene duplications among four lineages, including a novel rhabdomeric opsin lineage we name arthropsins. Arthropsins are highly diverged from other known opsins. Their phylogenetic position, coupled with absence from all other available animal genome sequences implies multiple independent losses of this kind of opsin, whose functions are unknown. This large repertoire of opsins, along with previous studies revealing multiple photoreceptors and opsins in other crustaceans (e.g. [S95, S145, S146]), indicates that a remarkable diversity of opsins mediates light-sensitive behavior in these arthropods.

Expansion 1, Arthropsins - We were surprised to discover an entirely new and putatively ancient lineage of opsins in the D. pulex genome, which we call arthropsins. Arthropsins form a sister group to all known members of the rhabdomeric clade, confidently outside even the vertebrate 'melanopsin' rhabdomeric lineage.

Because of the unexpected position of arthropsins, we looked for evidence of rapid rates of evolution because fast evolution could cause positively misleading topological results [S147]. We performed all possible three-taxon, maximum likelihood relative rate tests between arthropsin genes and all other genes, using a ciliary opsin outgroup (Takifugu TMT, GenBank AAM90677). These relative rate tests were implemented in HyPhy [S148], assuming a WAG + F model of protein evolution and a critical value using Bonferroni correction for multiple comparisons. There was no evidence of elevated rates of molecular evolution in arthropsin genes based on ML relative rate tests, which does not support long-branch artifacts determining clade position: 970 out of 988 arthropsin comparisons were non-significant; 18 comparisons significantly rejected the null hypothesis of equal rates of evolution between an arthropsin gene and another gene; 16
of these comparisons involved Amphiop4 or Amphiop5, showing that Amphiop4 and 5 genes evolved significantly slower than arthropsin genes. These results do not indicate arthropsins genes are fast evolving. Rather, Amphiop4 and 5 genes are slow, as indicated by significantly slower rates in 213 of 254 relative rate comparisons involved Amphiop4 or 5. Two comparisons showed that arthropsin genes evolved significantly slower than Squid Retinochrome. Taken together, there is no evidence of rapid evolution in the arthropsin genes, and no reason to suspect LBA in the placement of the clade. Other possible explanations for this placement, including convergent evolution of rhabdomeric-clade synapomorphies remain to be explored. Indeed, arthropsins share several diagnostic amino acids with the rhabdomeric opsins, including the SHP (or SSP) motif at the terminus of TM7, which contrasts to the XNX motif shared by all ciliary, peropsin and RGR opsins. Moreover, the cytoplasmic loop 3 (CL3) domain of arthropsins is longer than that of the ciliary opsins, in keeping with all other rhabdomerics. The sequence of this loop is divergent from the other rhabdomeric opsins, however, whereas it is highly conserved within all the arthropod visual opsins (e.g. [S146]).

Besides being ancient, arthropsins have undergone their own expansion within the D. pulex genome, including two presumably old lineages (based on their low $\sim 50 \%$ amino acid identity), each with multiple sub-lineages. In the absence of functional information, the only obvious features that distinguish the arthropsins from the other rhabdomeric lineages is that they all have relatively long C-termini, comparable in length to the pteropsins and some other ciliary opsins. Arthropsins1-5 also have a few additional amino acids in CL3, making this loop longer than those of other known opsins. We name these genes arthropsins to indicate their presence in at least one major arthropod lineage. We hypothesize that others will be discovered in other crustaceans, perhaps some insect lineages, as well as other arthropods, or other protostomes.

Expansion 2, Pteropsins - Pteropsin is a protostome lineage of ciliary opsins, which are otherwise primarily known from vertebrates [S133, S134, S136]. Arendt et al. [S133] defined the ciliary and rhabdomeric lineages based in part on their recognition of both kinds of opsins in the annelid Platynereis dumerilii, which is a protostome. In both insects and annelids, this ciliary opsin is expressed in the brain rather than in visual organs, and hence is likely to serve a nonvisual role in light detection, perhaps in entraining circadian rhythms [S134, S149]. Although duplication of pteropsin is known from Anopheles gambiae mosquitoes (AgOp11 and 12, [S136]), D. pulex again reveals multiple, sometimes old (based on as low as 54% amino acid identity), duplications of this lineage. Among these nine duplicated genes we discovered the only obvious pseudogenes among the total set of 46 opsin genes; specifically, Pteropsin2 has multiple frameshifts and a mutated intron/exon boundary, while Pteropsin5 has a small frameshifting deletion in exon 7. The D. pulex pteropsin genes share all five introns that insect pteropsin genes share, including the three that group them with the vertebrate ciliary opsins, as well as two idiosyncratic introns not seen in any other opsin gene (data not shown). The expansion of the D. pulex pteropsins also led to some proteins with unusual features. These include insertions of 5-15 amino acids in CL2, which includes a string of 5 or 6 glycines in Pteropsin5-8. Similarly an insertion of 4-25 amino acids is present in EL3 in Pteropsin4-9.

Expansion 3 - Short wavelength and unknown wavelength opsins - Daphnia pulex have four opsins that fall within a paraphyletic grade at the base of rhabdomeric opsins. This grade also includes opsins from other arthropods with experimentally determined short wavelength sensitivities, including Drosophila UV (rh3) and blue (rh5) opsins. Two of the Daphnia opsins are similar to UV and blue opsin clades, respectively. Most insects have single orthologs of the blue and UV opsins, therefore, these findings are unremarkable [S143, S144]. In addition, Kashiyama et al [S94] found Triops and Branchinella to have single orthologs sister to known UV opsins (they did not detect the blue ortholog we report in Daphnia). The other two D. pulex opsins in
this grade are homologous to the Rh7 opsin in D. melanogaster (also called "the unknown wavelength opsin"). The Daphnia genes share only 49\% amino acid identity.

Expansion 4 - Medium- and long-wavelength opsins - Daphnia pulex have numerous opsins from two major lineages of presumably medium and long-wavelength opsins. Lineage A is already known from a crab [S150] and Triops [S94]. The crab opsins are maximally sensitive to green light around 480 nm [S150]. Lineage B is composed of only D. pulex genes and other branchiopod genes. The two lineages cluster confidently with the long-wavelength opsins of insects and of other arthropods. However, the divergence of D. pulex genes from the other crustacean opsins is curious, because the better known long-wavelength lineage in insects has clear orthologs in crustaceans [S146] including Procambarus clarkii [S151] and in a chelicerate Limulus polyphemus [S152]. Presumably, genes from this better-known long-wavelength opsin lineage were lost during evolution leading to branchiopods. In turn, the D. pulex opsins in lineages A and B are sufficiently ancient to also be present in other branchiopods.

We speculate that these two opsin lineages underlie the green and red wavelength photoreceptor cell sensitivities identified by [S144] and Smith and Macagno [S143], with the Lineage A genes mediating green sensitivity and the Lineage B genes mediating red sensitivity. Furthermore, the expansion of these two lineages to total 25 genes is unprecedented in animal genomes, although expansions to six genes have been reported for the long-wavelength opsins of A. gambiae mosquitoes [S136] and Oakley and Huber [S95] reported up to eight opsins in two ostracods. Unlike the insect expansions, which are all relatively recent and apparently largely species-specific, these two crustacean long-wavelength lineages are very old (less than 50% amino acid identity for all A-B comparisons) and each have diversified in both ancient and recent times; multiple young duplications encode almost identical proteins.

The remarkable repertoire of opsins encoded by the D. pulex genome indicates that their visual capabilities, while long recognized as being sophisticated, might be even more so. Early work demonstrated sensitivity to at least four different wavelengths, corresponding to UV, blue, green and red light [S143, S144]. In his intracellular recordings from single photoreceptor cells within ommatidia, Schehr [S144] observed that R6 and R8 have peak sensitivity around 450 nm , R2, R3, and R5 are most sensitive around 510 nm , and R1 around 590, so the R4 and R6 cells are candidates for the UV receptor cells. Smith and Macagno [S143] noted that the long wavelength specificities were less easily defined when observed extracellularly for entire ommatidia. It is therefore possible that each cell expresses a different opsin, or sometimes even multiple opsins. In addition, Smith and Macagno [S143] noted that spectral sensitivities showed slight variations between dorsal and ventral ommatidia. It is therefore also possible that the particular opsin expressed in a particular photoreceptor cell is different in different ommatidia. Detailed in situ hybridization studies of the expression patterns of these opsins, particularly the many LOPA/B genes, will help address these questions.

SUPPLEMENTARY FIGURES

A. Introduction

Figure S1. Reconstruction of the evolutionary history of sequenced arthropods by maximium likelihood methods. Branch lengths are actual sequence divergence corrected for multiple substitutions at 131 aligned and concatenated universal single-copy orthologs totaling 23,748 amino acids. All nodes of the phylogeny are supported by the bootstrap value of 100%. The Daphnia lineage is firmly positioned at the base of the insect clade, together forming the Pancrustacea, confirming current knowledge of the phylogeny and showing that the overall molecular evolutionary rate in the Daphnia lineage is not extraordinary. Common names: Acyrthosiphon pisum, pea aphid; Pediculus humanus, human louse; Apis mellifera, honey bee; Nasonia vitripennis, jewel wasp; Aedes aegypti, yellow fever mosquito; Culex quinquefasciatus, southern house mosquito; Anopheles gambiae, African malaria mosquito; Drosophila melanogaster, fruit fly; Tribolium castaneum, flour beetle; Daphnia pulex, waterflea, Ixodes scapularis, blacklegged tick.

Figure S2. Overview of the Daphnia pulex Genome Project. This multi-institutional project is divided into three sections. (1) Sequencing and assembly was done at the Joint Genome Institute (JGI) using DNA prepared at the University of New Hampshire (UNH) and at Indiana University (IU). Two additional assemblies and a genetic map were used to validate the results at IU. (2) Automated gene calls were made using algorithms implemented at the JGI, IU and at the National Center for Biotechnology Information (NCBI). Empirical gene annotations were made possible by sequencing 200,000 ESTs at the JGI from cDNA libraries created at UNH and IU to sample genes expressed under a variety of ecological settings and developmental stages; additional RNA was obtained from consortium members at the University of WisconsinMilwaukee, the University of Edinburgh and the University of Basel. Genome tiling path microarray experiments were carried out at Roche NimbleGen Inc. and at IU; additional RNA was obtained from Ludwig-Maximilians-Universität (LMU). (3) Discoveries of gene products and functions were made based on functional genomic experiments using in-house spotted oligo and Roche NimbleGen 12-plex microarrays at IU and proteomics at Utrecht University, University of California Davis and LMU; additional RNA for microarray experiments was obtained from Utah State University. All results are integrated at two publicly available databases: wFleaBase at IU [S153] and at the JGI's Genome Portal [S154]. Finally, over 100 investigators of various disciplines received manual annotation training at IU and via telephone and video conferences from J GI and IU, then trained others to ultimately contribute a series of manuscripts describing Daphnia's genome biology [S39]. Arrows indicate the flow of information across the three sections.

B. Genome Sequence, Assembly and Chromosomes

Figure S3. Distributions of the cumulative scaffold and gap lengths for the JAZZ, Arachne, and PCAP assemblies (with 26,848, 23,643 and 61,858 scaffolds, respectively). The JAZZ assembler produced the best results, likely because of differences in its algorithm. For JAZZ, the unhashability threshold was set to five times the estimated sequence depth (i.e., 40). This is the threshold before a given sequence string is deemed too frequent to be used to seed alignments. The mismatch penalty was set to -30.0, which would tend to assemble together sequences that were more than 97% identical. Other scoring and penalty options were set to their default values. Default parameters were used for Arachne and PCAP. PCAP produced the largest number of scaffolds and placed more reads than the other two assemblers. A majority of the scaffolds, however, contain only a single contig. Super-scaffolds are also displayed, based on manual gapbridging. The inset plots the earliest cumulative rate of assembly for scaffolds 1-1,500.

Figure S4. Venn diagram highlighting the number of putative mis-assembled regions by using three different methods: GAV (Genome Assembly Validator), which identified 3,053 putatively mis-assembled regions; comparative validation using Arachne assembly as the reference, which identified 1,889 putatively mis-assembled regions; and the comparative validation using PCAP assembly as the reference, which identified 3,304 putatively mis-assembled regions. Notably, only a small number (84) of regions were reported by all three methods, whereas most of these regions were reported by only one method (2,519 for GAV, 891 for Arachne, and 2,168 for PCAP).

GAV 3053

Figure S5. The distribution of detected breakpoints by GAV among the scaffolds with varying lengths. As expected, long scaffolds tend to contain more potentially mis-assembled regions.

Figure S6. The karyotype of Daphnia pulex based on meiotic chromosomes prepared from testis. DAPI banding (A) and G banding methods (B) were used to reveal heterochromatic, dense DNA and/or higher AT content bands. Chromosomes are aligned according to their length. Arrowheads indicate the conspicuous heterochromatic bands on four large chromosomes. Bars represent $5 \mu \mathrm{~m}$. Chromosome and banding measurements are listed in Table S8; we estimate that chromosomes $1-4$ contain half of the genome's DNA and that 25% of the genome is heterochromatic.

C. Largest Gene Inventory

Figure S7. Corroborating evidence for the existence of a minimal set of 30,907 predicted protein coding genes. (1) Expression of 10,578 genes was detected by cDNA sequencing (ESTs aligning to $>90 \%$ of the gene model); (2) Expression of 13,445 genes was detected by tiling path microarray experiments as transcriptional active regions (TARs aligning to $>80 \%$ of the gene model). (3) Paralogs were found for 13,105 loci ($p<10^{-20}$). (4) Homologs of 18,765 genes were detected within a draft assembly of 8 -fold coverage of the D . magna genome sequence. (5) Homology was found for 19,641 genes in other sequenced genomes ($\mathrm{p}<10^{-5}$). (6) Peptides were sequenced matching 1,273 genes (not shown). At least 26,649 loci (86\%) are conservatively supported by at least one line of evidence. Homology and transcriptional evidence for the v1.1 annotated gene set is listed in Table S11.

Figure S8. Cumulative frequency distribution of the ratio of non-synonymous (K_{a}) over synonymous nucleotide substitutions $\left(K_{s}\right)$ among duplicated genes in the genome of Daphnia pulex and three reference genomes. This analysis purposefully adds evidence (one of six independent assessments presented) of the validity of the large number of annotated/duplicated genes in the sequenced genome, by utilizing the prediction that no evidence of purifying selection is expected from mistakenly annotated duplicated genes. Measurements are obtained from 34,550 pairs of D. pulex duplicated genes sharing a minimum of 60% amino acid identity, compared to 9,562 pairs for Homo sapiens, 5,048 pairs for Caenorhabditis elegans and 1,367 pairs for Drosophila melanogaster. Median K_{a} / K_{s} for D. pulex is 0.38 , while 90% of the measurements are below 0.83. Daphnia pulex had the lowest proportion of paralogs $<0.5 \mathrm{~K}_{\mathrm{a}} / \mathrm{K}_{\mathrm{s}}$ (a metric for purifying selection), but not much different than for human. This pattern is caused by Daphnia and Homo having a disproportionate number of very recent duplicates compared to Caenorhabditis and Drosophila (Figure S17), since K_{a} / K_{s} cannot be calculated when there is no divergence between paralogs.

Figure S9. Evidence that genes residing in areas of low read coverage within the draft genome assembly are genuine. Results from the comparative genomic hybridization of TCO labeled DNA on a custom 12-plex microarray manufacture by Roche NimbleGen Inc. containing 3 unique probes for 21,133 predicted genes, 2 unique probes for 8,307 predicted genes and 1 unique probe for 129 unique genes representing 96% of the total predicted gene set. The experiment was replicated 24 times; no correlation is found between read coverage and the mean fluorescing units of probes representing genes.

Figure S10. Daphnia pulex reveals arthropod origin of two Hox cluster encoded microRNAs (iab4 and mir-993). (A) Drosophila melanogaster Hox cluster arrangement. Alignments and secondary structures for conserved microRNAs (B) iab-4, (C) mir-993 and (D) mir-10. The color hue code of the alignment indicates the number of different consistent nucleotide pairs occurring for a given base pair. The saturation of the color indicates the number of sequences that are not consistent with the base pair, in the sense that they have nucleotides at the relevant positions that do not form one of the six standard RNA base pairs. Abbreviations: Drome, Drosophila melanogaster; Drosi, D. simulans; Drose, D. sechellia; Droya, D. yakuba; Droer, D. erecta; Droan, D. ananassae; Drops, D. pseudoobscura; Drope, D. persimilis; Drowi, D. willistoni; Dromo, D. mojavensis; Drovi, D. virilis; Drogr, D. grimshawi; Culpi, Culex quinquefasciatus; Aedae, Aedes aegypti; Anaga, Anopheles gambiae; Bommo, Bombyx mori; Trica, Tribolium castaneum; Apime, Apis mellifera; Nasvi, Nasonia vitripennis; Acypi, Acythrosiphon pisum; Dappu, Daphnia pulex; Dapma, Daphnia magna; Lotgi, Lottia gigantean; Danre, Danio rerio; Musmu, Mus musculus.

B mir-iab-4 (unounomancumation

D mir-10

Figure S11. Distribution of transposon Pokey in the ribosomal DNA of Daphnia pulex. A. DAPIstained mitotic chromosomes. B. rRNA gene clusters (green) revealed by fluorescence in situ hybridization (FISH). The intergenic spacer (IGS) was used as probe DNA. Red represents counterstained DNA. C. IGS (green) and Pokey (red) visualized on a stretched chromatin fiber by fiber-FISH. Pokey elements are clearly dispersed along the whole length of the rDNA array. Bars represent $2 \mu \mathrm{~m}$.

Figure S12. Age distribution of Daphnia pulex Long Terminal Repeats elements (LTRs) as pairwise divergence at nucleotide positions at the termini.

D. Attributes of a Compact Genome

Figure S13. Size distribution of introns in Daphnia pulex, Caenorhabditis elegans (smaller, gene rich genome), Drosophila melanogaster (relatively small arthropod genome), and Mus musculus (large, gene rich genome). A. Distributions of the cumulative density and intron size comparing the four species. B. Density distributions of intron size for the four species. C. Same density distribution as in panel B, observed by scaling down the y-axis values to show bimodal distributions in genomes except for the D. pulex genome.

Figure S14. Pair-wise percentage of conservation of intron position. The numbers were obtained by dividing the number of shared introns by the total number of introns in the given two species and converting the result to percentage and clustering using the UPGMA algorithm. Scale bar represents percent divergence. These results were validated by a subsequent analysis using clusters that only contained EST validated D. pulex introns. Validated introns were identified by the application of PASA (Program to Assemble Spliced Alignments), which produced 114,128 valid alignments from 166,289 high quality ESTs representing 15,827 genes. A link to the PASA analysis and exploratory tools for the Daphnia project is listed in Table S1. The number of annotated Daphnia pulex introns supported by ESTs is 33,386 . The result from this validation test is the same and is presented in Table S23.

Figure S15. Ancestral reconstruction of intron gains and losses for arthropods and three other metazoans using Maximum Likelihood methods. The Daphnia lineage shows a burst of new introns. The node sizes are proportional to the intron content. The green bars indicate intron gain events and scaled by the maximum gain (in Daphnia). The red bars indicate intron loss events and scaled by the maximum loss (in Arthropoda ancestor). Abbreviations: Anaga, Anopheles gambiae; Aedae, Aedes aegypti; Drome, Drosophila melanogaster; Drops, Drosophila pseudoobscura; Apime, Apis mellifera; Dappu, Daphnia pulex; Homsa, Homo sapiens; Danre, Danio rerio; Nemve, Nematostella vectensis, which is used as the outgroup species.

Figure S16. Estimated independent and parallel gain of introns in Daphnia. A. Estimated independent intron gains in D. pulex and parallel gains with arthropods and non-arthropod animals. B. Estimated parallel gains in D. pulex and different arthropod lineages. Abbreviations: Anaga, Anopheles gambiae; Aedae, Aedes aegypti; Drome, Drosophila melanogaster; Drops, Drosophila pseudoobscura; Apime, Apis mellifera.
A

E. Origin and Preservation of Daphnia pulex Genes

Figure S17. Frequency of pair-wise genetic divergence at silent sites (K_{s}) among the 2-member gene duplicates in the Daphnia pulex, Caenorhabditis elegans and Homo sapiens genomes. The comparisons are made between genes with greater than 100 aligned amino acids and with percent identity better than 40%. Here, $1,437,949$ and 962 pair-wise comparisons are made for the three genomes, respectively.

Figure S18. Frequency of pair-wise genetic divergence at silent sites (K_{s}) among gene duplicates in Daphnia pulex. Panels include genes with greater than 100 aligned amino acids and with percent identity better than 40%. A. 66,502 pairs including gene duplicates with evidence of gene conversion. B. 60,444 pairs excluding gene duplicates with evidence of gene conversion. We find that our estimate of the age distribution of duplicated genes is unaffected by gene conversion.

A

B

Figure S19. Position and size of Tandem Duplicated Gene (TDG) clusters within the genome assemblies of four model species. Clusters are identified using the custom algorithm called Tandy (described in Methods section). The bottom axis plots all genes binned in groups of 50 and ordered from largest scaffold/chromosome to the smallest. The peak heights along the y axis represent the percentage of genes that are simple tandem gene repeats (red) and mixed tandem gene repeats (green) within that 50 genes window in the respective genomes. In Caenorhabditis elegans, the largest TDG clusters have biased genomic distributions, as previously reported [S155]. In Daphnia pulex, TDG clusters are larger on average (scaled to 23,791 genes following the removal of small scaffolds under 80 Kb , compared to 20,062 in C . elegans), yet are more evenly distributed among the genome scaffolds. The Drosophila melanogaster and Mus musculus genomes also contain TDG clusters, yet these are comparatively less prominent.

Daphnia pulex tandem runs
$20+\%$ tandem duplicates (median: 16\%)

Drosophila melanogaster tandem runs
13\% tandem duplicates (median: 12\%)

Mus musculus tandem runs

Figure S20. Physical distances between neighboring members of large duplicated gene families composed of 10-80 genes within the Daphnia and three reference genomes. Daphnia's duplicated genes are most densely arranged into clusters. Observations are binned within intervals of $0-5 \mathrm{~Kb}, 5-10 \mathrm{~Kb}, 10-20 \mathrm{~Kb}, 20+\mathrm{Kb}$ and duplicates distributed among different sequence assembly scaffolds (unlinked). The last two bins are scaled $2 x$ for the y-axis values. Shaded fractions designate inverted duplicates (shaded portions of bar graph). Nearby tandem duplicates show a lower inversion rate than other species. Daphnia's genome shows an excess in unlinked (across-scaffold) duplicate genes as well as very near 1,000-2,000 bp tandem genes. As this draft genome assembly has thousands of small scaffolds, the unlinked duplicates may be found to be nearby tandems with further assembly refinement. The small scaffolds likely failed to assemble in part due to tandem duplicate gene regions. Abbreviations: Caeel, Caenorhabditis elegans; Dappu, Daphnia pulex; Drome, Drosophila melanogaster; Musmu, Mus musculus.

Duplicate gene distance

Figure S21. Phylogenetic relationships of 39 of the 46 Daphnia pulex opsin genes (listed in Table S32), labeled in red; Some clusters of the most recent gene duplications within the Crustacea Long wave-length opsins Lineages A and B are not shown because full-length protein sequences are not available for these tandemly duplicated genes that failed to assemble) and representative animal opsins (labeled in blue for crustacean sequences and in black for all others). Opsins are members of the GPCR-class family of proteins that mediates phototransduction cascades in eumetazoan animals. The phylogeny is constructed by first aligning amino acids using MUSCLE [S58] and assuming the a WAG+I+Г model of amino acid evolution, as implemented in RaxML [S96]. The resulting phylogeny is rooted by the ciliary subfamily [S156]. At left, bootstrap support at the nodes is reported as concordance among 100 pseudo-replications, with nodes with $<49 \%$ support collapsed. Several major opsin clades are labeled. Although low bootstrap support is obtained for the RGR/Go subfamily (49\%), analysis of intron locations supports their monophyly [S157], as does more extensive sequence phylogenies (e.g. [S156]). At right is a phylogram showing branch lengths proportional to inferred number of amino acid changes. Gene names are the genus of the containing species, plus a number or accession number to identify uniquely multiple genes from the same species. We included all Branchiopoda opsin genes from a recent publication that studied three species [S94].
Abbreviations for D. pulex genes: LOP=Long-wave opsin; UVOP = Ultraviolet Opsin and BLOP = Blue Opsin are named based on similarity to functionally characterized opsins of other species, no functional analyses have yet been performed for these; 'Arthropsin' is used to describe a new clade of opsins, known so far only from Daphnia. We find these genes to be a sister-group to 'rhabdomeric' (Gq-coupled) opsins with strong support (100\%). Based on multiple three-taxon, maximum likelihood relative rate tests implemented in HyPhy [S158], we found no evidence for rapid rates of evolution in arthropsin genes, and therefore no support for long branch topological artifacts [S159] caused by rapid arthropsin evolution.

Figure S22. Maximum-likelihood phylogenies of Daphnia pulex opsin genes for comparison to evolution of other gene families involved in vision and eye development [S66]. Bootstrap support at the nodes is reported as concordance among 100 pseudo-replications. We included two clades of opsins in this analysis: rhabdomeric opsins (panel A, lineage 1), and the newly described arthropsin clade (panel A, lineage 2). Consistent with previous analyses [S97], this analysis recovers rhabdomeric opsins only from the bilaterian animals. A reconciled tree analysis (inferring the timing of gene duplication and loss events by comparing a gene tree to a species tree [S66, S160]) identifies 43 well-supported gene duplication events in the evolutionary history of rhabdomeric and arthropsin opsins across all taxa examined - far more than any other phototransduction locus considered by [S66]. Twenty-five of these duplications occurred within the D. pulex lineage alone. One duplication of rhabdomeric opsin predated the bilaterians (panel B, lineage 0); two duplications occurred at least prior to the origin of the Pancrustacea (panel B, lineages 1 and 2), and two duplications preceded the evolution of the vertebrates (Panel B, lineages 4 and 5). This analysis also recorded 13 loss events for rhabdomeric opsins. Because the node joining arthropsins (panel B, lineage 6) to the larger rhabdomeric opsin radiation was weakly supported in this analysis (alrt $=65$) (panel B) and because we assigned loss and gain using nodes supported by alrt $=0.9$ or greater, we did not record any loss events for this clade. However, the finding that the Daphnia-specific opsin clade arthropsin is basal to rhabdomeric opsins in rooted analyses (Figure S21) suggests that a more complicated history of loss for arthropsins is likely. Panel B lineages: $1=$ Rh6/Rh2; $2=$ Rh3/Rh4/Rh5/Rh7; 3 = Loph Rh; $4=$ Bilaterian Rh; $5=$ Melanopsin; $6=$ Arthropsin.

F. Consequence Daphnia's Genome Structure

Figure S23. Rates of gene conversion (as percent of converted paralogs) and number of intervening genes between duplicates in Daphnia pulex (blue) and the average of five Drosophila species (red: D. melanogaster, D. yakuba, D. pseudoobscura, D. virilis, D. grimshawi). Values on the X-axis represent intervening genes between pairs of duplicates. Strictly tandem pairs have zero intervening genes. Bars above and below the mean values are maximum and minimum values among the Drosophila species.

Figure S24. Rates of gene conversion (as percent of converted paralogs) and divergence between duplicates in Daphnia pulex (blue) and the average of five Drosophila species (red: D. melanogaster, D. yakuba, D. pseudoobscura, D. virilis, D. grimshawi). Values on the x-axis represent divergence estimates for synonymous nucleotide substitutions. Bars above and below the mean values are maximum and minimum values among the Drosophila species.

Figure S25. Amino acid sequence alignment of di-domain hemoglobins (Hb) of Daphnia pulex and D. magna. The amino acid sequences used in the alignment and their accession number of NCBI/EMBL/DDBJ databases are: Moina macroccopa Hb 1 and Hb 2 (AB055113, AB055114), Barbatia lima Hb1 and Hb2 (D63931, D58417), Barbatia reeveana Hb (M73328), Ascaris suum Hb (L03351), and Pseudoterranova decipiens Hb (M63298). A to H helices in the globin folding are indicated above the first amino acid of each helix. N -terminal extension and pre-A are also indicated. The most conserved residues in all Hb are shaded black. Other highly conserved residues are shaded gray. Abbreviations: Dpul, Daphnia pulex; Dmag, Daphnia magna; Mmac, Moina macroccopa; BI, Barbatia lima; Br, Barbatia reeveana; As, Ascaris sum; Pd, Pseudoterranova decipiens.

Note. All Hb proteins from both Daphnia species and from outgroup species have conserved amino acids, such as a Trp residue at the twelfth position of helix A (A12), Pro (C2), Phe (CD1), His (F8), and Trp (H8), which are important for heme binding in the first and second domains. An exception is found at position F8 containing a substitution of Tyr for His in the first domain of Dpul-Hb9. Generally, positions B10, E7, and E11 residues are most important for oxygen affinity, and amino acid residues at B10 and E11 play a pivotal role in formation of the distal heme pocket [S161]. We find Leu (B10), His (E7), and Val (E11) conserved among vertebrate Hb and myoglobin, while Gln (E7) is common in the invertebrate Hb , including Hb in Daphnia. However, Leu is replaced by Phe at position B10 of the second Hb domains in Daphnia, except for Dpul-Hb10 and Dpul-Hb11, while Leu at position E11 is replaced by Ile in the first domains and Val in the second domains, respectively. A study of Ascaris (nematode) Hb suggests that substituting Leu for Phe increases the rate of oxygen association, resulting in an increase of oxygen affinity [S162], while a 10 fold benefit is observed in myoglobin [S163]. Presumably, a similar equilibrium between oxygen affinity and dissociation is reached by Daphnia's second domains. Finally, D. pulex Hb have characteristic Thr rich sequence in their pre-A sequences, located upstream of the first domain of waterflea Hb , except for Dpul- Hb 6 and Dpul-Hb9. The identities between the first and the second domain of the same Hb subunit in Cladocera (Daphnia plus Moina) are remarkably low in contrast to clam and nematode di-domain Hb (average amino acid identities in Cladocera, clam and nematode are 25.1\%, 79.2\% and 56.7\%, respectively). This observation suggests that the duplication of an Hb gene encoding a single heme-binding domain preceded the fusion and formation of di-domain Hb genes in Cladocera, which occurred much earlier than in clam and nematode.

Dpul-Hb1 Dpul-Hb2 Dpul-Hb3
Dpul-Hb5
Dpul-Hb6
Dpul-Hb7
Dpul-Hb8
Dpul-Hb9
Dpul-Hb10
Dpul-Hb11
Dmag-Hb1
Dmag-Hb2
Dmag-Hb3
Dmag-Hb4
Dmag-Hb5
Dmag-Hb7
Dmag-Hb8
Mmac- Hb 1
Mmac-Hb1
Mmac-Hb2
$\mathrm{MmaC-Hb}$
$\mathrm{Pd}-\mathrm{Hb}$
$\mathrm{Pd}-\mathrm{Hb}$
$\mathrm{As}-\mathrm{Hb}$
$\mathrm{As}-\mathrm{Hb}$
$\mathrm{Bl}-\mathrm{Hb} 1$
$\mathrm{Bl}-\mathrm{Hb} 2$
$\mathrm{Bl}-\mathrm{Hb} 2$
$\mathrm{Br}-\mathrm{Hb}$

signal sequence	N terminal extension pre-A
1 MQP	YS--QAPGTTTTTVT--TTVTTVTADEGTDS--GLL
1 MQFLK-IALFFALVALASSSPS	CS--QAPGTTITSVT--TTVTTVTADEDSDN--GLL
1 -MAS--FKIVFLLSVLAFA---	CA--YKPGTTTTTVT--TTVTTVSADEGNE---GI
1 -MAFK-FALLFGLVAFASA	CS--QAPGTTTTTVT--TTVTTVSADEGDE---GIL
1 -MAFK-FALLFGLVAFASA---	CS--QAPGTTTTTVT--TTVTTVSADEGDE---GIL
1 MQILTALALFFGTIAATCA	CANMATPGKTS YAIA--MSIMTTEDDEMGS---GLL
1 -MAFK-FALLFGLVAFASA-	CS--QAPGTTTTTVT--TTVTTVSADEGDE---GIL
1 MQVLS-LALFIGIAAAVSA-	YA----PGTKVTTVT--TSVTTVTLDEEST---GIL
1 MLASFKLVVLLSVVALACA-	WP--QFGSSSMTTGP---TTSTVPAKENSQGPTPKL
1 -MAFK-LALLFGVIAFASA-	CS--YAPGTTVTTVT--TAVTTVSADEGEE---GIL
1 -MAFK-LVLLFGVIASA---	CS--YAPGTSVTTAV-----TTVSADEGEE---GIL
1 MQLFN-LALVFGVVAFVSAB---	CS--QTPGTTTTTVT--TTVTTVTADDDGEA--GLL
1 MQSLK-IALLFAFVALAST---	CS--QAPGTTTTTVT--TTVTTVTADDDSDS--GLL
1 MASFK-IALLFGVIAFVSA---	CS--QAPGTTTTTVT--TTVTTVSADDGGEA--GLL
1 MASFK-IALLLGVIAFVNA---	CS--QAPGTTTTTVT--TTVTTVSADDGSEA--GLL
1 MASFK-IALLFGVVAFVSA---	YS--QAPGTTTTTVT--TTVTTVSADDGSEA--GIL
1 MASFK-IALLLGVIAFVNA---	CS--QAPGTTTTTVT--TTVTTVSADDGSEA--GLL
1 MQVLT-IALFLGIVATASA---	CASMAAPGTTVTTVT--TSVTTVSADEEST---GIL
1 --MLK-IT LLLAVT LAVAYA--	HQ--YAPGTWTTVTSTTTTTSVSAGDSDDS--GLL
1 --MMK-IALLLAVT LAVAYA --	SQ--YAPGSWTTVTSSTTTTTVSAGDSDDS--GLL
1 -MHSSIVLAIVLFVAIASA---	
1 -MRSLLLLSSIVFFVVTVSA---	
1	-MSVAEK VDE VT--
1	-MSVEDKIEEVT--
	MSVSAKLDE VT

EF SLSS SLFS SLSS SLFS SLSS SLGS SLGS TYDD TYOD QLDS QLDD QLDS
 F

F
FG G

GH H
H

domain2
pre-A

A	AB	B
TPHQIRDVQTSWENLR	SD--	--RNSLVSAIF
TPHQIHDVQR SWENIR	AN--	--RNSLISAIFVK
SGHMIGDVQR SWENIR	GD--	--RNAMISSIFVKLFKE
SPHMIGDVQRSWENIR	GG--	--RNAMVSDIFIKLFKE
SGHMIGDVQR SWENIR	GG--	--RNAMVSDIFIKLFKE
TPQQIKE VQRTWASMR	SD--	--RNSI VSAIFIELFRE
TGRQIRDAQRTWENIR	GG--	--RNAMVSSIFIKLFKE
TLHQIRDVQR SWETIR	ND--	--RNAMVSSIFIKLFKE
TRPQIRNVQR SWESMK	SG--	--RNSLVSAIFIKLFK
SAHQIRDVQR SWENVR	GG--	--RNAMVSAIMIKLFKE
SAHQIRDVQR SWENIR	SV--	--RNTLVSSIMIKLFKE
TPHQIRDVQTSWENIR	GD--	--RNSI VSAIFIKLFKE
TPHQIQDVQR SWENLR	AN--	--RNAMVSSIFVKLFKE
TPHQIQDVQRS W ENIR	NG--	--RNAIVSSIFVKLFKE
TPHQIQDVQR SWENVR	NG--	--RNALISSIFVKLFKE
TPHQIQDVQRSWENIR	NG--	--RNALVSSIFVKLFKE
TPHQIRDVQR SWENIR	ND--	--RNALVSSIFVKLFKE
TLHQIRDVQRSWENIR	SG--	--RNALVSSIFVKLFKE
SGHIIKDVQRSWENVR	GN--	--RNTI VAGIFOKL FAG
SGHIIKDVQR SWENVR	GN--	--RNTI VAGIFOKL FAG
-HSVRDHCMNSLEYIA	IGDK	EHQKQNGIDLYKHMFEH
-HAVRHQCMR SLQ ${ }^{\text {did }}$	IGHS	ETAKQNGIDLYKHMFEN
QSDNKSLIRETWEMIA	GD--	--RKNGV-E LMALLFEM
QPANKGLIRETWNIVA	GD--	--RKNGV-E LMALLFEM
-PANKGLIRETWNMIA	GD--	--RKNGV-ELMALLFEM

 E
NADYEKQI
NADYEKQI
NADYEKQ
NADYEKQ
NADYERQ
NTDFNQQ
NADYEKQ
NGDYNQQ
NGDYI QQ
DAEFNKQ
DVEFNKQ
NGEYNKQ
NGEYNKQ
NAEYEKQ
NAEYEKQ
NAEYEKQ
NAEYEKQ
HADYEKQ
NADFNKQ
NADFNKQ
DAFFYKQ
DPFFVKQ
NRKLNGH
NRKLNGH
NRKLNGH
$\mathrm{Pd}-\mathrm{Hb}$
Bl -Hb1
$\mathrm{Bl}-\mathrm{Hb} 1$
$\mathrm{Bl}-\mathrm{Hb} 2$
$\mathrm{Br}-\mathrm{Hb}$

EF
EF

 FG
--RAI
$--R A I$
$--R S I$
$--R S I$
$---R S I$
$--R N A$
$--R S I$
$--R G I$
$--R S I$
$--R S I$
$--R C I$
$--R A I$
$--R A I$
$--R G I$
DDIHL
LGVQL
$--R G V$
$--R G V$
$--R G V$

 GH
-SKGV
-ASGV
-AKSV
-AKGV
-AKGV
-AKGI
-SKGL
-AKGI
-TRGV
-ASGV
-ASGV
-SKGV
-ASGV
-AKGV
-SKGV
-ANGV
-SKGV
-ASGV
-SSGV
-SSGV
SHQHL
--SHL
CGSRC
CGQRC
CGQTC

Figure S26. Nucleotide sequence alignment of di-domain hemoglobins (Hb) in coding regions of genes. The most conserved residues in all Hb are shaded black. Other highly conserved residues are shaded gray. Abbreviations: dpul, Daphnia pulex; dmag, Daphnia magna; asuumc, Ascaris sum; pdecic, Pseudoterranova decipiens.

Note. The nucleotide alignment was analyzed using GENECONV [S99] by assigning a gap penalty of 1 and creating 10,000 permutations for detecting copied DNA with probability $\mathrm{p}<$ 0.05 . Five copied DNA segments in the D . magna Hb gene cluster and the eight DNA segments in the D . pulex Hb gene cluster were identified. In the D . magna Hb gene cluster, gene conversion events occurred between $\mathrm{Hb} 1 / 2, \mathrm{Hb} 2 / 3, \mathrm{Hb} 2 / 4, \mathrm{Hb} 2 / 5, \mathrm{Hb} 2 / 7$ and $\mathrm{Hb} 1 / 7$. By contrast, gene conversion events occurred between $\mathrm{Hb} 1 / 3, \mathrm{Hb} 2 / 3, \mathrm{Hb} 2 / 4, \mathrm{Hb} 2 / 7, \mathrm{Hb} 3 / 4, \mathrm{Hb} 3 / 7$, $\mathrm{Hb} 4 / 7$ and $\mathrm{Hb} 5 / 7$ in the D. pulex Hb gene cluster.

Figure S27. Nucleotide sequence alignment of intergenic regions between the stop codons of upstream genes and the TATA of the downstream genes of all Daphnia pulex (dpul) and D. magna (dmag) di-domain hemoglobins (Hb). The most conserved residues in all Hb are shaded black. Other highly conserved residues are shaded gray.

Note. Consensus core sequence of HRE (T/G/C ACGTG) in the Hb gene clusters were found by using the homology search tool of GENETYX v11 (www.sdc.co.jp/genetyx, , Tokyo, Japan). Presumptive hypoxia response elements (HREs) in all intergenic regions were identified (Figure 2B). Some elements were accompanied by conserved ancillary sequences (VTACGTG(N)7YCACGY) (Figure 2B, marked with asterisks). Alignment of the intergenic sequences showed that many of them are located exactly the same position relative to the translation start point of the downstream Hb genes in the two clusters (Figure 2B, marked with sharps).

G. Evolutionary Diversification of Duplicated Genes

Figure S28. Differential expression (DE) profiles of 37 of the 46 Daphnia pulex opsin genes from eight microarray experiments (A-H). A. Heat map showing results from the hierarchical clustering by un-centered expression correlation of genes from all of the major clades. Red designates up-regulation against the reference condition. Green designates down-regulation against the reference condition. Dark shades denote no change in gene expression. B. Differential gene expression (DE) pattern correlations among paralogs of the long-wavelength opsin genes, including lineage A (LOPA) and lineage B (LOPB), as a function of their pair-wise genetic divergence at silent sites (K_{s}). Symbols indicate whether the paralogs both stem from lineage A (triangles), both stem from lineage B (circles), or are each from separate lineages (squares). Observations that are encircled involve all comparisons involving LOPA3 (Dappu67015). By eliminating this gene with the most divergent expression patterns, long-wavelength opsins are seen to gradually diverge with increasing age (best fit regression line is shown). Relative time since duplication is inferred from K_{s}.

Figure S29. Differential expression (DE) profiles of 11 Daphnia pulex di-domain hemoglobin genes from eight microarray experiments ($\mathrm{A}-\mathrm{H}$). A. Heat map showing results from the hierarchical clustering by un-centered expression correlation of genes from all major clades. Red designates up-regulation against the reference condition. Green designates down-regulation against the reference condition. Dark shades denote no change in gene expression. B. Differential gene expression (DE) pattern correlations among paralogs of the di-domain hemoglobin genes, including duplicates that are within the tandem duplicated gene (TDG) cluster (TDG only), duplicates sharing gene conversion tracts (Conv. only), duplicates within TDG clusters that also show signatures of gene conversion (TDG + Conv.), and duplicated genes that are dispersed in the genome, as a function of their pair-wise genetic divergence at silent sites $\left(K_{s}\right)$. Observations that are encircled involve all by one comparison involving Dpul-Hb8 (Dappu-230333). By eliminating these comparisons with the pair of genes with $K_{s}=5$, hemoglobins are seen to diverge with increasing age (best fit regression line is shown). Relative time since duplication is inferred from K_{s}.

A

H. Functional Significance of Expanded Gene Families

Figure S30. Thirty-eight expanded and 54 contracted metabolic genes in arthropod genomes compared to vertebrates. All enzymes are supported by the Fisher exact test (15 dark green and 2 red bars represent genes supported by Bonferroni correction for multiple testing), based on the distribution of the number of genes encoding corresponding enzymes among the following species: Homo sapiens, Mus musculus, Gallus gallus and Tetraodon nigroviridis represent vertebrates, Drosophila melanogaster, Apis mellifera, Anopheles gambiae represent arthropods.

Contracted gene families in arthropod $\longleftarrow \mid \longrightarrow$ Expanded gene families in arthropod

Figure S31. Expanded metabolic genes in the Daphnia pulex genome compared to other arthropods and vertebrates. Thirty-two enzymes are supported by the Fisher exact test (dark green bars represent 20 genes supported by Bonferroni correction for multiple testing), based on the distribution of the number of genes encoding corresponding enzymes among the following species: Homo sapiens, Mus musculus, Gallus gallus and Tetraodon nigroviridis represent vertebrates, Drosophila melanogaster, Apis mellifera, Anopheles gambiae represent arthropods.

Expanded genes in Daphnia

Figure S32. Distribution of the number of amplified genes with interactions, derived from 1,000 randomized metabolic networks. The horizontal axis represents the number of interacting genes with the vertical line at $p=0.03$, and the vertical axis represents the frequency from sampling 1,000 randomized metabolic networks. Nineteen amplified genes are observed in the real network as having interactions, which is significantly higher than in randomized networks.

Figure S33. Phylogenetic relationships of members of the three expanded gene families of the Daphnia pulex glycosphingolipid biosynthesis neo-lactoseries pathway of metabolism (KEGG map000602). Phylogenetic trees are constructed by the maximum likelihood method using the Phylip ProML algorithm [S109] with corrected distances by the Jones-Taylor-Thornton model of molecular evolution [S110], using aligned amino acid sequences by MUSCLE [S58](Tables S4548). Orthologs from the Tribolium castaneum (labeled blue) and Ixodes scapularis (labeled orange) genome sequences are included to bracket the Daphnia pulex paralogs.

Enzyme 2.4.1.65

Enzyme 2.4.1.206

Figure S34. Differential expression (DE) pattern correlations among the Daphnia pulex genemembers of three lineage-specific gene family expansions from microarray experiments. The three enzymes are known to interact within the glycosphingolipid biosynthesis neo-lactoseries metabolic pathway of other model species. Correlations are plotted as a function of their pairwise genetic divergence at silent sites $\left(K_{s}\right)$. Enzyme names: 2.4.1.152, Alpha-1,3fucosyltransferase C; 2.4.1.206, Beta-1,3-galactosyltransferase 5; 2.4.1.65, glycosyltransferase.

Figure S35. The phylogeny of duplicated fucosyltransferase genes (Enzyme 2.4.1.152) compared to their differential expression (DE) profiles across 8 experimental conditions (A-H) on microarrays. Gene phylogeny is identical to the panel in Figure S34. Internal nodes labeled blue are clades containing genes with average genetic distance between 0.4 and 0.5 . Heat map on the left shows results from the hierarchical clustering by un-centered expression correlation of 79 genes from the expanded fucosyltransferase family plus 8 genes from the expanded glycosyl transferases family (enzyme 2.4.1.65 labeled by filled circles). Red designates up-regulation against the reference condition. Green designates down-regulation against the reference condition. Dark shades denote no change in gene expression. The two enzymes are required for biochemical reactions of glycosphingolipid biosynthesis. Subclusters labeled 1-7 contain at least one 2.4.1.65 gene. All 2.4.1.152 genes are grouped into one of these subclusters, except for Dappu-58299, Dappu-52155, Dappu-48653 and Dappu-248921. Lines are colored based on the membership of genes within clades stemming from marked nodes of the protein phylogeny.

Figure S36. Differential transcription of the genome from D. pulex exposed to kairomone produced by the larval dipteran predator Chaoborus (biotic challenge), from D. pulex exposed to cadmium (abiotic challenge) and from male and females (standard conditions) measured by genome-wide tiling path microarray experiments. Differential transcription is twice as pronounced in genomic regions that are currently void of gene models (Intergenic) compared to regions with annotated genes when D. pulex are exposed to ecological conditions.

Exposure to kairomone

Exposure to cadmium

Sex differences

Gene
Intron

SUPPLEMENTARY TABLES

A. Introduction

Table S1. Open-source web-portals for Daphnia pulex genome data, analysis results and bioinformatic tools.

Daphnia informatics	URL address	Citation
wFleaBase	http://wFleaBase.org/	[S153]
JGI Genome Portal	http://www.jgi.doe.gov/Daphnia/	[S154]
PASA Database	http://wfleabase.org/genome/Daphnia_pulex/current/pasa/	[S21, S164]
ESTPiper	https://estpiper.cgb.indiana.edu/	[S26]
Superfamily	http://supfam.org/	[S83]
Cado	http://omics.informatics.indiana.edu/lab/CADO/precalculated/DpullnterPro/	[S165]
OrthoDB	http://cegg.unige.ch/orthodb	[S61]
miROrtho	http://cegg.unige.ch/mirortho/	[S48]
DGC Web Portal	http://daphnia.cgb.indiana.edu/	[S166]
Scaffold Dotplot	http://cancer.informatics.indiana.edu/cgi-	bin/jeochoi/daphnia/tandemduplicategene/index.cgi
MGEScan-LTR	http://darwin.informatics.indiana.edu/cgi-bin/evolution/daphnia_ltr.pl/	[S167]
DGC Wiki Portal	https://wiki.cgb.indiana.edu/display/DGC/Home	[S49]
NIH Model Organisms	http://www.nih.gov/science/models/	[S166]
NCBI UniGene	http://www.ncbi.nlm.nih.gov/UniGene/UGOrg.cgi?TAXID=6669/	[S168]
euGenes Arthropods	http://arthropods.eugenes.org/arthropods/	[S169]
Companion papers for the	http://www.biomedcentral.com/series/Daphnia.	[S54]
genome sequence		[S39]

B. Genome Sequence, Assembly and Chromosomes

Table S2. Summary of the Daphnia pulex genome assemblies using three assemblers. The official assembly for the current annotation is JAZZ, where numbers in parentheses are for the scaffolds and contigs from the nuclear genome. Other numbers refer to the full sequence data. The ARACHNE and PCAP assemblies are used to validate JAZZ.

	JAZZ	ARACHNE	PCAP
Number of reads	2,711,298	2,724,768	2,615,317
Number of reads placed	1,645,566	1,401,492	1,968,495
	$(1,554,564)$		
Length of reads placed (bp)	1,199,451,926	1,188,616,421	1,688,271,557
Number of scaffolds	26,848	23,643	61,858
	$(5,191)$		
Length of scaffolds (bp)	256,659,416	395,871,249	262,945,580
	$(197,261,574)$		
Length of largest scaffold (bp)	4,193,030	2,075,369	1,945,001
	$(4,193,030)$		
Avg. Length of scaffolds (bp)	9,660	16,743	4,250
	$(38,001)$		
Length of N50 scaffold (bp)	318,519	40,486	92,912
	$(642,089)$		
Number of N50 scaffold	142	1,734	376
	(75)		
Number of contigs	44,403	80,844	74,521
	$(19,008)$		
Length of contigs (bp)	186,524,647	209,098,385	239,506,399
	$(158,634,814)$		
Length of largest contig (bp)	528,830	144,860	302,603
	$(528,830)$		
Avg. Length of contigs (bp)	4,201	2,586	3,213
	$(8,346)$		
Length of N50 contig (bp)	1,170	14,037	14,037
	(831)		
Number of N50 contig	34,096	3,158	3,158
	$(49,250)$		
Number of gaps	17,555	57,201	12,663
	$(13,817)$		
Length of gaps (bp)	70,117,214	186,772,864	23,439,181
	$(38,612,943)$		

Table S3. Analysis of shotgun reads from TCO and TRO derived libraries. Two genomic read libraries from TRO (ANIT,ANIS) and three libraries from TCO (AZSN, AZWZ, AZSH) were aligned to the TCO assembly using the BLAST algorithm and a strict filter was used to identify potential scaffold bridging reads (see SOM). Approximate insert size for each library is shown in parenthesis. Each row of the table between "Starting Reads" and "Different Scaffolds" represents a criterion on which the alignment failed to pass through the filter, with the number of failed reads shown for each read library.

gDNA Library	TRO			TCO			
	ANIT (8kb)	ANIS (3kb)	Total	AZSN (35kb)	AZWZ (7kb)	AZSH (3kb)	Total
Starting Reads	151,381	137,603	288,984	201,262	1,202,060	1,139,438	2,542,760
No Pair in Library	3,322	9,427	12,749	15,869	177,097	55,295	248,261
No Blast Hit	18,286	21,303	39,589	--	--	--	--
No pair	5,601	4,299	9,900	17,489	43,401	56,395	117,285
e-value not met	38,654	36,206	74,860	11,368	45,522	50,054	106,944
Multiple hits	64,088	47,494	111,582	120,882	719,482	771,530	1,611,894
Potential inversion	596	380	976	380	3,206	7,660	11,246
Different scaffolds	1,920	1,520	3,440	1,828	12,760	14,922	29,510
Candidate Reads	18,914	16,974	35,888	33,446	200,592	183,582	417,620

TRO = reads from The Rejected One
TCO = reads from The Chosen One

Table S4. Putative super-scaffolds based on focused paired-end read analysis. Super-scaffolds are ordered by sequence length, excluding gaps. Scaffolds which clustered with a super-scaffold but could not be unambiguously placed are listed as Additional Scaffolds. Each bridged scaffold is listed in order of assembly with the number of bridging reads in the column to the right. Scaffolds anchored on the genetic map (Table S5) are indicated by an "Ig" followed by the genetic map chromosome number. Scaffolds that must be reverse complemented in order linked in the proper orientation are marked with an "rc". In a few cases, no direct bridging reads were found between two scaffolds but flanking scaffolds were found to be linked. These scaffolds are indicated with an "na" in their Bridging Scaffold column followed by the number of reads that bridge the flanking scaffolds.

Please download Tables S4 and S11-14 from:
http://wfleabase.org/releasel/current_release/supplement/

Table S5. Scaffolds genetically mapped to chromosomes. Markers and map IDs are described in [S8, S170]. Chromosomes are numbered starting from the largest map distance to the smallest.

Scaffold ID	Start position	End position	Marker ID	Map distance (cM)	Map ID
Chromosome 1					
scaffold 130	265403	264989	Dp840	.	d115
scaffold 42	674271	674164	Dp40	3.9	d039
scaffold 42	766448	766130	Dp564	.	d076
scaffold 130	317751	317116	Dp1354	8.4	d167
scaffold 42	132315	132609	Dp589	15.8	d098
scaffold 42	112093	112556	Dp1290	17.9	d170
scaffold 53	685669	685917	Dp199	22.8	d048
scaffold 53	515514	515330	Dp571	26.1	d096
scaffold 53	289336	289000	Dp884	30.4	d114
scaffold 53	192875	193436	Dp1073	32.5	d181
scaffold 207	91612	91361	Dp553	42.6	d134
scaffold 106	175949	175582	Dp802	57	d101
scaffold 211	98831	99327	Dp1495	72.3	d063
scaffold 3	3212918	3212697	Dp1189	77.5	d193
scaffold 3	3015577	3015192	Dp300	86.5	d053
scaffold 3	2484047	2483839	Dp729	98.2	d103
scaffold 3	2318013	2318270	Dp1266	102.6	d174
scaffold 3	2276376	2275958	Dp1368	104.3	d163
scaffold 3	2064769	2064530	Dp149	109.8	d001
scaffold 3	1923990	1923837	Dp754	.	d130
scaffold 3	1384162	1383978	Dp655	122.4	d091
scaffold 3	739228	739030	Dp74	148.6	d007
scaffold 61	198861	198594	Dp1155	168.6	d148
scaffold 61	211843	212169	Dp1195	.	d188
scaffold 80	268005	267759	Dp48	182	d009
scaffold 53	150886	150445	Dp957		d138
Chromosome 2					
scaffold 5	2127458	2127138	Dp1048		d197
scaffold 70	111417	111546	Dp725	2.4	d102
scaffold 86	425898	426113	Dp848	7.5	d112
scaffold 58	394484	394271	Dp967	22	d140
scaffold 27	318072	318300	Dp785	25.6	d095
scaffold 159	63421	63621	Dp1497	25.8	d123
scaffold 84	320005	319800	Dp339	25.8	d016
scaffold 84	323106	323340	Dp742	25.8	d104
scaffold 63	450291	450076	Dp1491	28.3	d050
scaffold 63	480969	480790	Dp389	29.9	d074
scaffold 134	191172	191603	Dp1494	70.5	d044
scaffold 80	364906	364846	Dp969	82.5	d195
scaffold 30	735909	736343	Dp1005	89.3	d196
scaffold 30	741780	741652	Dp637	89.3	d120
scaffold 30	883779	883988	Dp28	93.1	d004

scaffold 237	42137	42598	Dp821	99.2	d109
scaffold 112	95327	95763	Dp325		d070
scaffold 71	331251	330699	Dp1363	99.4	d175
scaffold 1	4020601	4020755	Dp321	101	d002
scaffold 1	3532645	3532515	Dp395	107.4	d047
scaffold 1	3510933	3510772	Dp147		d015
scaffold 1	3257753	3258007	Dp1056	116.8	d183
scaffold 1	2755698	2755478	Dp224	128.7	d069
scaffold 1	2459188	2459642	Dp557	137.8	d079
scaffold 1	2184113	2183854	Dp117	145.6	d124
scaffold 1	1891813	1892387	Dp1346	156.4	d162
Chromosome 3					
scaffold 219	85465	85231	Dp1498		d008
scaffold 16	499003	499212	Dp308	11.4	d067
scaffold 26	674530	674325	Dp71	.	d010
scaffold 87	19282	19769	Dp1490		d064
scaffold 26	185444	185604	Dp572	30.9	d097
scaffold 21	598039	598442	Dp1058	31.7	d169
scaffold 21	813362	813165	Dp581		d082
scaffold 21	835598	835104	Dp1276	35.6	d177
scaffold 21	1051430	1051139	Dp24	39.5	d003
scaffold 21	1248646	1248825	Dp50	41.5	d122
scaffold 62	124936	124649	Dp616	62.4	d078
scaffold 62	51713	51836	Dp115	66.4	d054
scaffold 97	406130	406310	Dp337	76.2	d019
scaffold 2	3187522	3187300	Dp137		d041
scaffold 2	3138447	3137984	Dp770		d094
scaffold 2	2984218	2983993	Dp144	93.3	d049
scaffold 2	2984384	2984631	Dp895	93.3	d132
scaffold 2	2184048	2184167	Dp111		d062
scaffold 128	62140	62654	Dp196	111.9	d059
scaffold 32	851822	852212	Dp1492	111.9	d066
scaffold 2	1834370	1834050	Dp998	116.8	d136
scaffold 2	1851473	1851638	Dp813	116.8	d108
scaffold 2	1247523	1247096	Dp530	127.1	d075
scaffold 2	465349	465115	Dp1041	147.2	d147
Chromosome 4					
scaffold 31	806857	806709	Dp675		d089
scaffold 31	224972	225256	Dp311	0.9	d071
scaffold 31	224972	225256	Dp311	0.9	d071
scaffold 31	647755	648063	Dp1311	0.9	d156
scaffold 28	18864	18481	Dp1372	5.9	d168
scaffold 2784	447	465	Dp430		d029
scaffold 110	104935	104741	Dp605		d081
scaffold 11	725719	726062	Dp687	8	d084
scaffold 11	343688	343786	Dp878	15.3	d116
scaffold 11	203644	203416	Dp924	19.6	d139

scaffold 86	299694	299675	Dp1376	26.8	d179
scaffold 8	2259957	2260245	Dp78	33	d057
scaffold 8	1927865	1927328	Dp1185	36.3	d155
scaffold 8	1410937	1411116	Dp779	36.6	d105
scaffold 47	238533	238708	Dp295	.	d021
scaffold 8	213952	214644	Dp830	80.5	d106
scaffold 43	380284	379974	Dp143	114.6	d018
scaffold 43	254164	254353	Dp1409	120	d180
scaffold 43	119984	120207	Dp1396	123.1	d172
scaffold 163	158324	158011	Dp1148	143.4	d143
Chromosome 5					
scaffold 89	595719	595282	Dp838	.	d126
scaffold 89	542785	542357	Dp1123	3.1	d160
scaffold 89	311220	310743	Dp1262	7.1	d164
scaffold 39	1016773	1016558	Dp91	29.6	d013
scaffold 39	589286	589170	Dp240	49.3	d031
scaffold 39	427971	428255	Dp231	54.1	d024
scaffold 39	379458	379327	Dp208	57.6	d042
scaffold 39	284948	284755	Dp319	60.9	d030
scaffold 39	5470	5195	Dp721	69.3	d093
scaffold 12	1025201	1024971	Dp21	95.5	d055
scaffold 12	368224	368109	Dp648	96	d087
scaffold 15	212509	212011	Dp632	96	d119
scaffold 38	309466	309811	Dp775	113.5	d100
Chromosome 6					
scaffold 43	874249	874269	Dp907	.	d111
scaffold 47	77609	77800	Dp1232	22.9	d144
scaffold 47	88108	87872	Dp170	22.9	d020
scaffold 47	76063	76223	Dp815	.	d125
scaffold 191	128146	127729	Dp642	38.4	d085
scaffold 32	244697	244205	Dp298	48.6	d025
scaffold 32	253637	253489	Dp126	49.8	d014
scaffold 32	295131	295288	Dp475	.	d035
scaffold 32	376888	377193	Dp1040	52.9	d142
scaffold 32	471100	471385	Dp985	55.3	d135
scaffold 183	105222	105353	Dp1399	60	d190
scaffold 32	749728	750056	Dp146	60.7	d012
scaffold 32	772534	772153	Dp361	60.7	d073
scaffold 32	1085664	1085897	Dp385	61.6	d028
scaffold 57	715932	715294	Dp1327	63.4	d152
scaffold 251	4363	4584	Dp1350	84.9	d153
scaffold 28	807177	807482	Dp1238	107.2	d151
Chromosome 7					
scaffold 46	900788	901047	Dp156	.	d027
scaffold 4	2237553	2237059	Dp112	21.2	d058
scaffold 184	39118	39342	Dp786	31.6	d133
scaffold 93	181025	180507	Dp1328	31.6	d157

scaffold 91	402113	401836	Dp1347	45	d189
scaffold 91	391760	391276	Dp1391	46.6	d191
scaffold 46	483793	484121	Dp1300	53.3	d166
scaffold 46	456561	456798	Dp867	54.5	d107
scaffold 22	102030	102641	Dp1489	80.4	d040
Chromosome 8					
scaffold 7	1979117	1979476	Dp53		d068
scaffold 7	2037319	2037409	Dp142	4.3	d065
scaffold 83	464580	465066	Dp559	23.9	d077
scaffold 136	226201	225971	Dp887	46.5	d117
scaffold 151	287252	287019	Dp1404		d165
scaffold 77	181266	181816	Dp1160		d150
scaffold 77	57562	57923	Dp1493		d045
scaffold 199	40471	40664	Dp883	50.5	d113
scaffold 32	551409	551789	Dp1351	75.2	d192
scaffold 2	11597	11824	Dp1485	76.1	d121
Chromosome 9					
scaffold 9	761358	761163	Dp1278		d178
scaffold 9	848851	848517	Dp1309	0.9	d171
scaffold 9	1082325	1082581	Dp1325	6.2	d145
scaffold 9	1369547	1369704	Dp621	20	d118
scaffold 9	2143217	2143047	Dp330	48.1	d043
scaffold 99	316482	316596	Dp660	49.8	d088
scaffold 13	1397943	1397633	Dp609	64.9	d099
scaffold 13	1333322	1333135	Dp1236	65.2	d149
scaffold 13	1074377	1074598	Dp123	72.4	d011
Chromosome 10					
scaffold 103	332371	332765	Dp696		d127
scaffold 49	90586	90309	Dp460	1.9	d023
scaffold 49	580950	580271	Dp304	2.3	d034
scaffold 49	611970	612305	Dp463	5.1	d005
scaffold 100	375967	375623	Dp1496	17.5	d072
scaffold 29	225287	225013	Dp1302	26.9	d161
scaffold 29	424770	425099	Dp1057	35.4	d186
scaffold 17	914491	914609	Dp641	61.3	d083
Chromosome 11					
scaffold 24	541082	540777	Dp808		d092
scaffold 24	272325	272150	Dp70	16.5	d006
scaffold 24	141703	142351	Dp1112	22	d173
scaffold 111	208013	207484	Dp693	55.4	d086
Chromosome 12					
scaffold 5	123699	123547	Dp726		d128
scaffold 5	134282	134058	Dp936		d137
scaffold 5	126817	126598	Dp1080	0.5	d187
scaffold 5	117840	118469	Dp1144	1	d182
scaffold 5	109480	109307	Dp1079	6.9	d184

Table S6. Pair-wise comparison of genome assemblies by using different assemblers. The JAZZ contigs were matched with the contigs generated by Arachne and the contigs generated by PCAP using genome sequence alignment program, MUMmer [S10]. C_{n} and C_{1} represent the total number and total length of all matched contigs in corresponding assembly, respectively; U_{1} represent the total lengths of uniquely matched contigs in both assemblies. We also applied the two additional criteria to filter the MUMmer matches (denoted as regular and stringent; see the texts for details) and show the comparison results below. In general, >95\% JAZZ contigs are consistent with Arachne and PCAP contigs, indicating JAZZ assembly that we used for the analysis in this manuscript has satisfactory quality.

MUMmer Filtering	Assemblies	$\left(C_{n}\right)$ Total no. of matched contigs	(C_{l}) Total length of matched contigs (Mb)	Fraction of $\left(\mathrm{C}_{\mathrm{I}}\right)$ over total length of contigs	$\left(U_{I}\right)$ Total length of uniquely matched contigs (Mb)	Fraction of (U_{I}) over total length of matched contigs (C_{l})
All	Arachne vs. JAZZ	78,569	205.9	0.98	202.4	0.98
		33,734	175.6	0.94	170	0.97
	PCAP vs. JAZZ	64,973	228	0.95	221.2	0.97
		40,682	182.5	0.98	180	0.99
Regular	Arachne vs. JAZZ	52,176	172.6	0.83	164.3	0.95
		26,814	168.1	0.90	156	0.93
	PCAP vs. JAZZ	34,033	189.5	0.79	174.2	0.92
		34,960	175.9	0.94	170.2	0.97
Stringent	Arachne vs. JAZZ	35,958	151.8	0.73	145	0.96
		17,087	157.6	0.84	143.1	0.9
	PCAP vs. JAZZ	19,851	172.2	0.72	158.9	0.92
		19,792	160.9	0.86	155.4	0.97

Table S7. GAV (Genome Assembly Validator) is a machine learning approach that combines multiple evidences to detect putatively mis-assembled regions in genome assemblies [S11]. The features used in GAV include read and clone coverage, clone length statistics, and repeat content in the region. We used the regions in the assemblies that are supported by EST sequences as positive samples for the training (shown in A) The statistics of detected misassembled regions by GAV are shown in B.
A.

Criteria	Class	No. scaffolds	No. contigs	No. regions	No. bases
Regular	Correct	711	2,905	117,211	$26,634,131$
	Mis-assembly	500	1,841	13,029	369,702
	Total	940	4,746	130,240	$27,003,833$
Stringent	Correct	710	2,894	116,714	$26,608,272$
	Mis-assembly	474	1,642	10,232	334,507
	Total	920	4,536	126,946	$26,942,779$

B.

Criteria	Model	Correct assembly	Mis-assembly	Total	
Regular	No. scaffolds	512	1,799	771	1,862
	No. contigs	2,502	7,653	2,823	7,887
	No. blocks	48,009	208,363	5,906	262,278
Stringent	No. scaffolds	512	1,817	653	1,862
	No. contigs	2,496	7,710	2,097	7,887
	No. blocks	47,870	210,742	3,666	262,278

Table S8. Chromosome size measurements. Chromosomes are numbered starting from the largest in length to the smallest, and are not necessarily congruent with the chromosome numbers for the genetic map. Heterochromatic regions are measured as the proportion of total chromosome length in DAPI and G banding stained regions.

Chromosome		Area $($ square $\mu \mathrm{m})$	Length $(\mu \mathrm{m})$
	1	$3.67-6.18$	$5.66-6.59$
	2	$1.8-3.66$	$2.3-3.37$
	3	$1.74-2.11$	$2.09-2.33$
	4	$1.4-1.96$	$1.93-2.07$
	5	$1.38-1.58$	$1.77-2.00$
	6	$1.33-1.41$	$1.71-1.79$
	7	$1.27-1.3$	$1.56-1.67$
	8	$1.21-1.28$	$1.38-1.46$
	9	$0.86-1.06$	$1.16-1.31$
	10	$0.58-0.94$	$0.9-1.28$
	11	$0.53-0.83$	$0.81-1.28$
Total	$0.44-0.86$	$0.71-1.28$	
Heterochromatic region	$16.21-23.17$	$21.98-26.43$	
	$4.2-5.85$	$(25 \%$ of total area $)$	

C. Largest Gene Inventory

Table S9. Results from the automated gene annotation procedures. Gnomon, Fgenesh++ and SNAP are ab-initio predictors, but also using additional EST and protein evidence. GeneWise maps known protein genes to the genome, and PASA maps ESTs into gene models. Many gene predictions were post-processed to extend models with EST evidence. Gene models were improved by manual annotation and by automated verification against EST assemblies using PASA. These improvements included UTR additions, internal rearrangements and refinements of intron-exon boundaries, and merging or splitting of gene models. The criteria for assigning gene models to the Chosen models (v1.1 frozen gene set) are described in the SOM.

Source of gene prediction	Chosen models	All models	Alternate transcripts modeled from EST data	Average protein length (AA)	Average exons per gene
Gnomon	7,717	37,329	137	323	4.7
PASA	4,059	11,845	1319	534	6.2
SNAP	7,364	41,310	na	306	3.9
Fgenesh++	5,863	34,193	na	384	3.7
GeneWise	3,328	29,488	na	na	4.8
EstExt	2,434	na	na	406	7.8
Manual	175	--	0	na	na

Table S10. The Daphnia pulex cDNA libraries and EST sequencing effort. cDNA clones were sequenced from both ends. Clone diversity is calculated by dividing the \# of EST clusters (assembled ESTs including clusters of 1) by the \# of clones in clusters. This estimate is inflated, especially for non-normalized libraries, by ignoring clones containing organelle transcripts (6\% to 45% of ESTs are mitochondrial, depending on library). By contrast, the normalized libraries typically contain between $<1 \%$ and 10% organelle ESTs. Libraries were created from two isolates: $\mathrm{TRO}=$ The Rejected One; TCO = The Chosen One.

Library ID	Condition, Developmental Stage	\# Sequenced Clones	\# Nuclear ESTs	\# EST Clusters \dagger	\# Clones in Clusters \dagger
Non-normalized					
TRO-1	Hypoxia, adult	2,304	3,355	1,039	1,823
TRO-2	Hypoxia, juvenile	3,840	5,567	1,524	3,033
TRO-3	Low dose UV exposure, mixed	2,304	2,620	1,013	1,433
TRO-4§	High dose UV exposure, mixed	384	450	188	243
TRO-5	Unchallenged, juvenile	1,152	1,580	553	827
TRO-6	Low dose cadmium, mixed	2,688	4,048	1,209	2,170
TRO-7	Low dose arsenic, mixed	4,224	6,370	1,867	3,399
TRO-8	Low dose zinc, mixed	4,224	6,817	1,535	3,709
TRO-9	High dose mixed metals, mixed	4,608	7,185	1,863	3,770
TRO-10§	Unchallenged, mixed	384	390	159	232
TRO-11§	Unchallenged, mixed	384	405	167	238
TRO-12	Invertebrate (Chaoborus) predation, adult	4,608	6,542	2,034	3,511
TRO-13	Food starvation, juvenile	2,304	2,826	924	1,378
TRO-14	Food starvation, adult	2,304	2,684	860	1,291
TRO-15§	Microcystis fed, juvenile	384	307	150	175
TRO-16§	Microcystis fed, adult	384	368	164	208
TRO-17	Fish predation, juvenile	3,840	4,750	1,548	2,638
TRO-18§	Fish predation, adult	384	425	177	249
TRO-19§	Methyl Farnesoate hormone, juvenile	384	413	170	227
TRO-20	Methyl Farnesoate hormone, adult	3,840	4,833	1,323	2,604
Total		50,070	70,765		33,158
Library ID	Condition, Developmental Stage	\# Sequenced Clones	\# Nuclear ESTs	\# Clusters \dagger	\# Clones in Clusters \dagger
Normalized					
TRO-21	Unchallenged, mixed	5,376	8,962	3,413	4,762
TCO-1§	Females, juvenile	384	211	98	121
TCO-2	Females, adult	3,456	5,313	2,252	2,821
TCO-3	Males, adult	4,224	5,425	2,168	2,883
TCO-4	Low dose nickel, mixed	4,224	6,484	2,865	3,599
TCO-5	Low dose copper, mixed	4,224	6,852	2,963	3,685
TCO-6	Acid stress pH 6.0, mixed	3,840	6,626	2,870	3,514
TCO-7	High salinity, mixed	3,840	6,121	2,645	3,275
TCO-8	Fullerene nanoparticle, mixed	4,224	5,643	2,428	3,044
		96			

TCO-9	Bacterial infection, mixed	3,456	5,639	2,553	2,935
TCO-10	High dose mixed metals, mixed	3,840	4,398	2,030	2,452
TCO-11	Low dose mixed metals, mixed	3,456	5,407	2,447	2,967
TCO-12	Low dose monomethylarsenic III,	4,224	6,274	2,768	3,387
TCO-13	mixed	Titanium dioxide nanoparticle, mixed	4,224	5,742	2,490
TCO-14	Microcystis fed, mixed	3,072	4,734	2,052	3,037
TCO-15	Calcium starvation, mixed	3,840	5,309	2,278	2,822
Total		59,904	89,140		47,891

§ Libraries failing stringent quality control checks and were therefore excluded from high throughput EST sequencing.
\dagger These numbers are of clusters and clones of nuclear genes only.

Table S11. Observed homology and transcription evidence for v1.1 annotated gene set of the Daphnia pulex genome. Evidence columns include (1) homology found within the 8 -fold coverage draft genome assembly for the distantly related Daphnia magna using BLAST searches with e-value cutoff set at 10^{-10}; (2) EST evidence when the degree of sequence identity is 90% and above; (3) homology bit scores from BLAST sequence similarity searches against the NCBI non-redundant (NR) protein database with e-value cutoff set at 10^{-5}; (4) evidence of transcription in tiling array experiments where transcriptionally active regions (TARs) and gene models overlap by 80% or more; (5) paralog IDs assigned by the OrthoMCL algorithm [S79, S80]. The gene location information includes strand ($+/-$), while the listed gene models are those summarized in Table S9. Alternative Gnomon model IDs are also provided. Summary of the results: 23,239 predicted genes only have evidence from homology to other proteomes; 18,451 genes only have evidence from EST and tiling array experiments; 27,090 have at least one line of evidence, including paralogs; 25,690 genes have at least one line of evidence, excluding paralogs. Only 4,040 genes have no comparative or empirical support.

Note: By requiring 80\% overlap between detected TARs and gene models, 57,294 exons from $14,135 \mathrm{v} 1.1$ genes are supported. In addition, we detected 10,125 TARs that overlap exons from 4,227 alternative gene models. Yet further, we count 68,033 remaining TARs that do not overlap with any predicted exons. Of these, 9,783 TARs are found inside genes and outside of predicted exons but within 500 bp of exons, and 9,620 intergenic TARs are directly neighboring predicted gene boundaries by 200 bp . These transcribed areas of the genome are most likely untranslated genic regions (UTRs) or model corrections. Finally, 48,630 TARs are unattached to existing gene models. By clustering unattached TARs in groups of 3 or more exon-like structures within 200 bases from each other, we detect 7,965 gene-like groupings. Most of these TAR-predicted loci $(7,059)$ have an open reading frame greater than 40 amino-acids (see Table S12).

Please download Tables S4 and S11-14 from:
http://wfleabase.org/releasel/current_release/supplement/

Table S12. Supporting evidence is found for 4,480 Transcriptional Active Regions (TAR)predicted loci, despite their being overlooked by gene finding algorithms or their rejection from the v1.1 gene builds. Of the 7,965 gene-like TAR groupings, most $(7,059)$ have open reading frames greater than 40 amino acids; 1,275 (16\%) have EST support and 1,514 (19\%) overlap with discarded Gnomon gene predictions, some containing erroneous stop-points in open reading frames. A search for protein homologs in the NCBI non-redundant database, at the 1×10^{-3} statistical cut-off value, uncovers matches for 171 TAR-predicted loci.

Please download Tables S4 and S11-14 from:
http://wfleabase.org/releasel/current_release/supplement/

Table S13. List of identified proteins. Values in row "Protein ID probability" are calculated using Scaffold V. 02.01.00. A) Proteins identified in v1.1 gene catalog; B) Proteins identified among all predicted models, yet not included in the v1.1 set.

Please download Tables S4 and S11-14 from:
http://wfleabase.org/release1/current_release/supplement/

Table S14. List of identified peptides. Values in rows "Protein ID probability" and "Best peptide ID probability" are calculated using Scaffold V. 02.01.00. A) Peptides identified in v1.1 gene catalog; B) Peptides identified among all predicted models, yet not included in the v1.1 set.

Please download Tables S4 and S11-14 from:
http://wfleabase. org/releasel/current_release/supplement/

Table S15. List of 716 genes conserved as single-copy othologs across eukaryotic genomes. The first 17 listed genes are missing from the v1.1 set of Daphnia pulex annotated gene list, yet all except two are either listed in this set or predicted by NCBI Gnomon gene models. Only two genes (KOG3086/CG8031 and KOG3499/CG18001) are missing from both sets. This analysis serves as a control for the assembly quality ($2 / 716=0.3 \%$ missing). The D. pulex proteins were added to the clusters of orthologous genes of eukaryotes (KOGs), which were obtained by comparison of 7 genomes: Homo sapiens, the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster, the dicot plant Arabidopsis thaliana, the ascomycete fungi Saccharomyces cerevisiae and Schizosaccharomyces pombe, and the intracellular microsporidian parasite Encephalitozoon cuniculi [S56]. The D. pulex genes were assigned to the COGs using the "index ortholog" method [S171]. To compare with other genome assemblies, we measured the frequency of identifying orthologs of these same genes within the annotated genomes of 10 arthropods [S54]: Aedes aegyptii; Anopheles gambiae; Culex pipiens; Drosophila pseudoobscura; Bombyx mori; Tribolium castaneum; Nasonia vitripennis; Pediculus humanus; Acyrthosiphon pisum; Ixodes scapularis. The number of missing genes range from 1 to 9 , placing the D. pulex genome on par among the better arthropod genome sequence assemblies for identifying these single-copy orthologs.

KOG ID	Daphnia pulex gene	Daphnia pulex gene	Drosophila melanogaster gene
KOG3086	NULL	NULL	CG8031
KOG3499	NULL	NULL	CG18001
KOG0333	NULL	NCBI_GNO_286924	CG10333
KOG0923	NULL	NCBI_GNO_140324	CG10689
KOG0924	NULL	NCBI_GNO_630594	CG32604
KOG0998	NULL	NCBI_GNO_280604	CG16932
KOG1119	NULL	NCBI_GNO_156434	CG13623
KOG1643	NULL	NCBI_GNO_9034	CG2171
KOG1748	NULL	NCBI_GNO_1452013	CG9160
KOG1758	NULL	NCBI_GNO_278513	CG2968
KOG1790	NULL	NCBI_GNO_85284	CG6090
KOG2145	NULL	NCBI_GNO_348024	CG9735
KOG2917	NULL	NCBI_GNO_680113	CG8549
KOG3045	NULL	NCBI_GNO_2332013	CG7137
KOG3152	NULL	NCBI_GNO_246373	CG32708
KOG3336	NULL	NCBI_GNO_884033	CG9131
KOG3974	NULL	NCBI_GNO_502283	CG10424
KOG1467	DAPPU-100447	NCBI_GNO_122154	CG10315
KOG1784	DAPPU-100799	NCBI_GNO_90163	CG2021
KOG2781	DAPPU-100904	NCBI_GNO_262163	CG11920
KOG1322	DAPPU-101964	NCBI_GNO_482193	CG1129
KOG0214	DAPPU-102782	NCBI_GNO_102234	CG3180
KOG1436	DAPPU-106454	NCBI_GNO_862373	CG9741
KOG2090	DAPPU-107701	NCBI_GNO_340424	CG7791
KOG2609	DAPPU-109004	NCBI_GNO_604473	CG12343
KOG0981	DAPPU-109061	NCBI_GNO_476474	CG6146
KOG0346	DAPPU-109408	NCBI_GNO_172493	CG1666
KOG2518	DAPPU-110118	NCBI_GNO_140524	CG10387

KOG2270
KOG3478
KOG3399
KOG3273
KOG3202
KOG1443
KOG0361
KOG0645
KOG2698
KOG1637
KOG1499
KOG0094
KOG0305
KOG3502
KOG1872
KOG0242
KOG0898
KOG0021
KOG2740
KOG2570
KOG1299
KOG2012
KOG2485
KOG2250
KOG2897
KOG1486
KOG3149
KOG0370
KOG0425
KOG2330
KOG0042
KOG2509
KOG2382
KOG1211
KOG2882
KOG1415
KOG3073
KOG1586 KOG0557
KOG2310 KOG1780 KOG1602 KOG0433 KOG3103 KOG2654 KOG2035

DAPPU-111070 DAPPU-111574 DAPPU-111718 DAPPU-113251 DAPPU-113324 DAPPU-113613 DAPPU-127024 DAPPU-127130 DAPPU-127379 DAPPU-127463 DAPPU-127740 DAPPU-128059 DAPPU-128430 DAPPU-128589 DAPPU-129179 DAPPU-129226 DAPPU-129273 DAPPU-129499 DAPPU-129909 DAPPU-130021 DAPPU-186897 DAPPU-186898 DAPPU-186925 DAPPU-187316 DAPPU-187339 DAPPU-187388 DAPPU-187412 DAPPU-187511 DAPPU-187657 DAPPU-187692 DAPPU-187868 DAPPU-187913 DAPPU-188037 DAPPU-188353 DAPPU-188403 DAPPU-188571 DAPPU-188726 DAPPU-188735 DAPPU-188759 DAPPU-188962 DAPPU-189031 DAPPU-189103 DAPPU-189542 DAPPU-189944 DAPPU-190512 DAPPU-190647

NCBI_GNO_530563
NCBI_GNO_352593
NCBI_GNO_662594
NCBI_GNO_416663
NCBI_GNO_60673
NCBI_GNO_8693
NCBI_GNO_606044
NCBI_GNO_394054
NCBI_GNO_616074
NCBI_GNO_510084
NCBI_GNO_99163
NCBI_GNO_108183
NCBI_GNO_346264
NCBI_GNO_374313
NCBI_GNO_106473
NCBI_GNO_406474
NCBI_GNO_238483
NCBI_GNO_102554
NCBI_GNO_822643
NCBI_GNO_208693
NCBI_GNO_380013
NCBI_GNO_438014
NCBI_GNO_986013
NCBI_GNO_40053
NCBI_GNO_414054
NCBI_GNO_82063
NCBI_GNO_744063
NCBI_GNO_370084
NCBI_GNO_1092103
NCBI_GNO_424113
NCBI_GNO_322154
NCBI_GNO_98173
NCBI_GNO_176203
NCBI_GNO_130324
NCBI_GNO_538344
NCBI_GNO_26403
NCBI_GNO_130463
NCBI_GNO_388463
NCBI_GNO_156473
NCBI_GNO_164544
NCBI_GNO_196563
NCBI_GNO_84593
NCBI_GNO_206814
NCBI_GNO_656013
NCBI_GNO_418023
NCBI_GNO_1034023

CG11660
CG7770
CG15309
CG11738
CG7736
CG14971
CG8351
CG12797
CG9441
CG5353
CG6554
CG6601
CG3000
CG2998
CG5384
CG10923
CG8332
CG32495
CG3035
CG4303
CG8228
CG1782
CG17141
CG5320
CG4621
CG6195
CG9207
CG18572
CG7656
CG3605
CG8256
CG17259
CG2059
CG6007
CG5567
CG4265
CG3527
CG6625
CG5261
CG16928
CG13277
CG5300
CG5414
CG12404
CG13625
CG6258

KOG3381
KOG1986
KOG0396
KOG0188
KOG0529
KOG3400
KOG2298
KOG2413
KOG1921
KOG1239
KOG0057
KOG1514
KOG0126
KOG2613
KOG2674
KOG2671
KOG1490
KOG0811
KOG1774
KOG0284
KOG3871
KOG2600
KOG0567
KOG1760
KOG1793
KOG0376
KOG4086
KOG1335
KOG0450
KOG0240 KOG2015
KOG0925
KOG1498 KOG2713
KOG0768
KOG1639
KOG0357
KOG2840
KOG1278
KOG3065
KOG2159
KOG1915
KOG0526
KOG0509
KOG0153 KOG3203

DAPPU-190910
DAPPU-190968
DAPPU-191245
DAPPU-191289
DAPPU-191339
DAPPU-191687
DAPPU-192225
DAPPU-193046
DAPPU-193197
DAPPU-193442
DAPPU-193653
DAPPU-194189
DAPPU-194198
DAPPU-194355
DAPPU-194862
DAPPU-195302
DAPPU-195334
DAPPU-195372
DAPPU-195506
DAPPU-195849
DAPPU-195940
DAPPU-196099
DAPPU-196422
DAPPU-196440
DAPPU-196656
DAPPU-196725
DAPPU-196840
DAPPU-197043
DAPPU-197428
DAPPU-197668
DAPPU-198149
DAPPU-198525
DAPPU-198904
DAPPU-198965
DAPPU-198969
DAPPU-199063
DAPPU-200182
DAPPU-200348
DAPPU-200371
DAPPU-200537
DAPPU-200873
DAPPU-201152
DAPPU-201206
DAPPU-201447
DAPPU-202081
DAPPU-202590

NCBI_GNO_2108023	CG7949
NCBI_GNO_344034	CG1250
NCBI_GNO_1198033	CG31357
NCBI_GNO_866034	CG13391
NCBI_GNO_940034	CG12007
NCBI_GNO_758043	CG11246
NULL	CG6778
NCBI_GNO_46083	CG6291
NCBI_GNO_392084	CG9272
NCBI_GNO_84093	CG6404
NCBI_GNO_870093	CG7955
NCBI_GNO_418114	CG10667
NCBI_GNO_834113	CG10466
NCBI_GNO_336123	CG3460
NCBI_GNO_302143	CG6194
NCBI_GNO_146173	CG1074
NCBI_GNO_250173	CG8801
NCBI_GNO_400173	CG5081
NCBI_GNO_806173	CG18591
NCBI_GNO_276194	CG1109
NCBI_GNO_18203	CG1430
NCBI_GNO_408204	CG13097
NCBI_GNO_180233	CG2245
NCBI_GNO_268233	CG10635
NCBI_GNO_320243	CG9915
NCBI_GNO_372244	CG8402
NCBI_GNO_202253	CG1057
NCBI_GNO_76263	CG7430
NCBI_GNO_352294	CG11661
NCBI_GNO_266314	CG7765
NCBI_GNO_282353	CG13343
NCBI_GNO_660373	CG11107
NCBI_GNO_566393	CG1100
NCBI_GNO_124403	CG7441
NCBI_GNO_204403	CG4743
NCBI_GNO_616403	CG10849
NCBI_GNO_66483	CG8439
NCBI_GNO_26493	CG8078
NCBI_GNO_104494	CG9318
NCBI_GNO_132513	CG9474
NCBI_GNO_128544	CG2100
NCBI_GNO_24563	CG3193
NCBI_GNO_252563	CG4817
NCBI_GNO_144584	CG6017
NCBI_GNO_366623	CG14641
NCBI_GNO_250663	CG10603

KOG2805
KOG1076
KOG1489
KOG3262
KOG0810
KOG1961
KOG0622
KOG1111
KOG2750
KOG0820
KOG2909
KOG1144
KOG1122
KOG0090
KOG3800 KOG2851 KOG0691 KOG2920 KOG1439

KOG2187 KOG3431 KOG2785 KOG1985 KOG0677

KOG0530 KOG0739 KOG0372 KOG3448 KOG2967

KOG0003 KOG2014 KOG2103 KOG0018 KOG1243 KOG1077 KOG0358 KOG3141 KOG2151 KOG2680 KOG4655 KOG0985 KOG1521 KOG1396 KOG2472 KOG2261 KOG2952

DAPPU-202999 DAPPU-203047 DAPPU-203237 DAPPU-203390 DAPPU-203416 DAPPU-204587 DAPPU-204767 DAPPU-205016 DAPPU-205037 DAPPU-205158 DAPPU-205240 DAPPU-205517 DAPPU-205675 DAPPU-205698 DAPPU-205778 DAPPU-206450 DAPPU-206490 DAPPU-207481 DAPPU-207615 DAPPU-208793 DAPPU-208840 DAPPU-209129 DAPPU-209148 DAPPU-209234 DAPPU-209281 DAPPU-209675 DAPPU-209708 DAPPU-209723 DAPPU-210151 DAPPU-210344 DAPPU-210457 DAPPU-211018 DAPPU-211085 DAPPU-212197

DAPPU-212220
DAPPU-212503
DAPPU-212601
DAPPU-213023
DAPPU-213265
DAPPU-213273
DAPPU-213575
DAPPU-213644
DAPPU-213964
DAPPU-214647
DAPPU-214661
DAPPU-215020

NCBI_GNO_240703
NCBI GNO 146714
NCBI_GNO_110744
NCBI_GNO_124764
NCBI_GNO_52774
NCBI_GNO_112974
NCBI_GNO_111144
NCBI_GNO_300013
NCBI_GNO_436014
NCBI_GNO_852013
NCBI_GNO_776014
NCBI_GNO_2380013
NCBI_GNO_440023
NCBI_GNO_536023
NCBI_GNO_954023
NCBI_GNO_1514033
NCBI_GNO_1692033
NCBI_GNO_1202053
NCBI_GNO_120063
NCBI_GNO_770094
NCBI_GNO_198103
NCBI_GNO_96113
NCBI_GNO_178114
NCBI_GNO_520113
NCBI_GNO_744113
NCBI_GNO_154133
NCBI_GNO_266133
NCBI_GNO_296133
NCBI_GNO_238154
NCBI_GNO_470113
NCBI_GNO_326173
NCBI_GNO_348194
NCBI_GNO_266254
NCBI_GNO_56274
NCBI_GNO_250273
NCBI_GNO_86293
NCBI_GNO_298303
NULL
NCBI_GNO_50363
NCBI_GNO_60363
NCBI_GNO_704373
NCBI_GNO_32383
NCBI_GNO_586394
NCBI_GNO_453
NCBI_GNO_94454
NCBI_GNO_400473

CG3021
CG4954
CG13390
CG4038
CG31136
CG7371
CG8721
CG6401
CG8414
CG11837
CG8048
CG10840
CG8545
CG33162
CG7614
CG7108
CG17187
CG17219
CG4422
CG3808
CG13072
CG6769
CG1472
CG9901
CG2976
CG6842
CG32505
CG10418
CG14618
CG2960
CG12276
CG2943
CG6057
CG1973
CG4260
CG5525
CG8288
CG2161
CG9750
CG4866
CG9012
CG3756
CG31678
CG5706
CG7776
CG9947

KOG3230
KOG2523
KOG3151
KOG0952
KOG1295
KOG3239
KOG2936
KOG0432
KOG0209
KOG3293
KOG0342
KOG1936
KOG0329
KOG0761
KOG1705
KOG1607
KOG0366
KOG2693
KOG1189
KOG1070
KOG1506
KOG1541
KOG1332
KOG1062
KOG0368
KOG1612
KOG3068
KOG0937
KOG0796
KOG2767
KOG0414
KOG0261
KOG0343
KOG0668
KOG2061
KOG0010
KOG0803
KOG0979
KOG3460
KOG0330
KOG0362
KOG0481
KOG2227
KOG0457
KOG3080 KOG1147

DAPPU-215551
DAPPU-215796
DAPPU-215895
DAPPU-216243
DAPPU-216440
DAPPU-216824
DAPPU-216884
DAPPU-217307
DAPPU-217456
DAPPU-218645
DAPPU-219114
DAPPU-219129
DAPPU-219465
DAPPU-219561
DAPPU-219863
DAPPU-220106
DAPPU-220648
DAPPU-220710
DAPPU-220868
DAPPU-220970
DAPPU-220996
DAPPU-221497
DAPPU-221812
DAPPU-221821
DAPPU-222043
DAPPU-222073
DAPPU-222167
DAPPU-222170
DAPPU-222176
DAPPU-222844
DAPPU-222916
DAPPU-222950
DAPPU-223010
DAPPU-223674
DAPPU-224172
DAPPU-224315
DAPPU-224848
DAPPU-226104
DAPPU-226183
DAPPU-226459
DAPPU-226650
DAPPU-227386
DAPPU-227580
DAPPU-227604
DAPPU-227674
DAPPU-227683

NULL	CG145
NCBI_GNO_258533	CG5941
NCBI_GNO_222543	CG4157
NCBI_GNO_310564	CG5205
NCBI_GNO_236583	CG11184
NCBI_GNO_402603	CG9099
NCBI_GNO_88613	CG1416
NCBI_GNO_106644	CG4062
NCBI_GNO_480644	CG6230
NCBI_GNO_120793	CG17768
NCBI_GNO_46873	CG6375
NCBI_GNO_130873	CG6335
NCBI_GNO_148953	CG7269
NCBI_GNO_34983	CG2616
NCBI_GNO_53423	CG2984
NCBI_GNO_1286013	CG3576
NCBI_GNO_2132023	CG18627
NCBI_GNO_160033	CG10449
NCBI_GNO_1066033	CG1828
NCBI_GNO_930034	CG5728
NCBI_GNO_1734033	CG2674
NCBI_GNO_392054	CG10903
NCBI_GNO_1014063	CG6773
NCBI_GNO_1088063	CG9113
NCBI_GNO_624074	CG11198
NCBI_GNO_102083	CG8395
NCBI_GNO_746083	CG9667
NCBI_GNO_782083	CG9388
NCBI_GNO_804083	CG7564
NCBI_GNO_1010113	CG9177
NCBI_GNO_270124	CG1911
NCBI_GNO_554123	CG17209
NCBI_GNO_628124	CG5800
NCBI_GNO_440173	CG17520
NCBI_GNO_594203	CG3260
NCBI_GNO_524214	CG14224
NCBI_GNO_234274	CG32210
NCBI_GNO_174404	CG32438
NCBI_GNO_150413	CG31184
NCBI_GNO_214443	CG9253
NCBI_GNO_556463	CG8258
NCBI_GNO_212543	CG4082
NCBI_GNO_224604	CG5971
NCBI_GNO_164564	CG9638
NCBI_GNO_402564	CG1542
NCBI GNO 44574	CG5394

KOG2924 KOG1390 KOG2529 KOG2166
KOG2141 KOG2403 KOG0911
KOG0103 KOG3406
KOG3452 KOG0402 KOG0122 KOG3301 KOG1664

KOG0407 KOG0077 KOG3079 KOG1749 KOG0767
KOG0179 KOG3424 KOG1775 KOG3090 KOG1728

KOG1647 KOG2299 KOG0181 KOG3318 KOG3271

KOG3163 KOG2691 KOG3049 KOG0466 KOG1816

KOG2708 KOG3418 KOG1678 KOG1742 KOG3387
KOG3343 KOG1688 KOG0723 KOG0182 KOG3421 KOG0279 KOG2239

DAPPU-228087 DAPPU-228205 DAPPU-228342
DAPPU-228373
DAPPU-228663
DAPPU-228809
DAPPU-229030
DAPPU-229110
DAPPU-230117
DAPPU-230277
DAPPU-230286
DAPPU-230293
DAPPU-230323
DAPPU-230423
DAPPU-230521
DAPPU-230523
DAPPU-230557
DAPPU-230600
DAPPU-230626
DAPPU-230628
DAPPU-230652
DAPPU-230679
DAPPU-230683
DAPPU-230714
DAPPU-230767
DAPPU-230884
DAPPU-230922
DAPPU-230984
DAPPU-231006
DAPPU-231033
DAPPU-231046
DAPPU-231048
DAPPU-231062
DAPPU-231070
DAPPU-231071
DAPPU-231081
DAPPU-231144
DAPPU-231165
DAPPU-231249
DAPPU-231254
DAPPU-231343
DAPPU-231471
DAPPU-231549
DAPPU-231574
DAPPU-231635
DAPPU-231649

NCBI_GNO_340734	CG8005
NCBI_GNO_246634	CG10932
NCBI_GNO_286643	CG3333
NCBI_GNO_260644	CG11861
NCBI_GNO_184694	CG9004
NCBI_GNO_180714	CG17246
NCBI_GNO_22773	CG6523
NCBI_GNO_370774	CG6603
NCBI_GNO_1718013	CG11271
NCBI_GNO_1796033	CG7622
NCBI_GNO_2028033	CG5827
NCBI_GNO_56043	CG10881
NCBI_GNO_1242043	CG3395
NCBI_GNO_354063	CG1088
NCBI_GNO_576093	CG1524
NCBI_GNO_650093	CG7073
NCBI_GNO_1032103	CG6092
NCBI_GNO_168123	CG8415
NCBI_GNO_292133	CG4994
NCBI_GNO_298133	CG4097
NCBI_GNO_358143	CG3751
NCBI_GNO_122153	CG6610
NCBI_GNO_268153	CG15081
NCBI_GNO_190163	CG8857
NCBI_GNO_826173	CG8186
NCBI_GNO_468233	CG13690
NCBI_GNO_128253	CG5266
NCBI_GNO_202283	CG11137
NCBI_GNO_614283	CG3186
NCBI_GNO_116304	CG5277
NCBI_GNO_242303	CG3284
NCBI_GNO_258303	CG3283
NCBI_GNO_286323	CG6476
NCBI_GNO_104333	CG6233
NCBI_GNO_150333	CG4933
NCBI_GNO_110343	CG4759
NCBI_GNO_758373	CG17420
NCBI_GNO_62383	CG15442
NCBI_GNO_212443	CG3949
NCBI_GNO_50453	CG3948
NCBI_GNO_546493	CG11857
NCBI_GNO_290574	CG7394
NCBI_GNO_230613	CG30382
NCBI_GNO_228623	CG6253
NCBI_GNO_552643	CG7111
NCBI_GNO_122663	CG8759

KOG3408 KOG0707
KOG0176 KOG0178
KOG0180 KOG0121 KOG3188
KOG3411 KOG0127
KOG2686 KOG0190 KOG0846 KOG2653 KOG0326
KOG0291
KOG0734 KOG0468 KOG1057 KOG2963
KOG2573 KOG2795 KOG0548 KOG1433 KOG0671
KOG1367
KOG1526
KOG2725
KOG2726
KOG0011
KOG0108
KOG0419
KOG3323
KOG1507
KOG0534
KOG2732
KOG1980
KOG2784
KOG1234
KOG2013
KOG1092
KOG2957
KOG0328
KOG0211
KOG2815
KOG1448 KOG1446

DAPPU-231670 DAPPU-231676 DAPPU-231717 DAPPU-231772 DAPPU-231791 DAPPU-231808 DAPPU-231825 DAPPU-231884 DAPPU-232196 DAPPU-233115 DAPPU-234212 DAPPU-235934 DAPPU-240002 DAPPU-244975 DAPPU-257213 DAPPU-258323 DAPPU-260737 DAPPU-260966 DAPPU-263794 DAPPU-299559 DAPPU-299643 DAPPU-299674 DAPPU-299714 DAPPU-299765 DAPPU-299795 DAPPU-299809 DAPPU-299821 DAPPU-299896 DAPPU-299929 DAPPU-299933 DAPPU-299959 DAPPU-299963 DAPPU-299973 DAPPU-299980 DAPPU-299981 DAPPU-299992 DAPPU-300019 DAPPU-300027 DAPPU-300104 DAPPU-300107 DAPPU-300127 DAPPU-300157 DAPPU-300165 DAPPU-300200 DAPPU-300219 DAPPU-300247

NCBI_GNO_326663
CG3224
CG11811
CG10938
CG9327
CG11981
CG15923
CG6750
CG5338
CG4806
CG2201
CG6988
CG5219
CG3724
CG4916
CG12325
CG3499
CG4849
CG14616
CG5786
CG13849
CG7753
CG2720
CG7948
CG33553
CG3127
CG7176
CG3803
CG5705
CG1836
CG7697
CG2013
CG18643
CG5330
CG5946
CG12018
CG7338
CG2263
CG32649
CG7528
CG5745
CG2934
CG7483
CG17291
CG4207
CG6767
CG17293

KOG0858
KOG2248
KOG1158
KOG1523
KOG0900
KOG1757
KOG3228
KOG3185 KOG0901
KOG0171 KOG3437 KOG2808
KOG3311 KOG2005
KOG2572 KOG1098 KOG1123 KOG0177 KOG2484
KOG3361 KOG0347 KOG3036 KOG0271 KOG0482
KOG1014 KOG2016 KOG0478 KOG2463 KOG1394 KOG3060 KOG1374 KOG3291 KOG0964 KOG0533
KOG2121 KOG0989 KOG0187 KOG0885 KOG2830 KOG3064 KOG2738 KOG2670 KOG0212 KOG2675 KOG3198 KOG2747

DAPPU-300294
DAPPU-300412
DAPPU-300447
DAPPU-300535
DAPPU-300540
DAPPU-300571
DAPPU-300592
DAPPU-300595
DAPPU-300630
DAPPU-300640
DAPPU-300659
DAPPU-300689
DAPPU-300691
DAPPU-300699
DAPPU-300779
DAPPU-300798
DAPPU-300803
DAPPU-300859
DAPPU-300860
DAPPU-300869
DAPPU-300875
DAPPU-300941
DAPPU-300951
DAPPU-301022
DAPPU-301034
DAPPU-301131
DAPPU-301153
DAPPU-301213
DAPPU-301461
DAPPU-301475
DAPPU-301492
DAPPU-301516
DAPPU-301524
DAPPU-301602
DAPPU-301666
DAPPU-301682
DAPPU-301703
DAPPU-301731
DAPPU-301783
DAPPU-301797
DAPPU-301830
DAPPU-301844
DAPPU-301925
DAPPU-301953
DAPPU-302042
DAPPU-302096

NCBI_GNO_832103
CG14899
CG12877
CG11567
CG8978
CG15693
CG5499
CG12135
CG17611
CG3661
CG9240
CG11419
CG6011
CG8900
CG7762
CG10206
CG8939
CG8019
CG17331
CG3983
CG9836
CG9143
CG14213
CG2863
CG4978
CG1444
CG7828
CG1616
CG2972
CG12170
CG17556
CG3157
CG8922
CG9802
CG1101
CG3298
CG8142
CG3922
CG10907
CG31852
CG10648
CG13630
CG17654
CG5608
CG33979
CG4457
CG6121

KOG0416
KOG0397
KOG2446
KOG1770
KOG1889
KOG3428
KOG3031
KOG3364
KOG0063
KOG2552
KOG1309
KOG0922
KOG1112
KOG1722
KOG0960
KOG1813
KOG1379
KOG3235
KOG2229
KOG2007
KOG1898
KOG1301
KOG1539
KOG1914
KOG0175
KOG0373
KOG2907
KOG0173
KOG3342
KOG3283
KOG2067
KOG1999
KOG0285
KOG0058
KOG3234 KOG1772
KOG2314
KOG1302
KOG0289
KOG2635
KOG1662
KOG0217
KOG1550 KOG2386
KOG0119 KOG1692

DAPPU-302154
DAPPU-302274
DAPPU-302344
DAPPU-302358
DAPPU-302360
DAPPU-302421
DAPPU-302434
DAPPU-302435
DAPPU-302438
DAPPU-302528
DAPPU-302577
DAPPU-302589
DAPPU-302612
DAPPU-302765
DAPPU-302792
DAPPU-302909
DAPPU-302940
DAPPU-303043
DAPPU-303148
DAPPU-303176
DAPPU-303178
DAPPU-303233
DAPPU-303234
DAPPU-303263
DAPPU-303318
DAPPU-303396
DAPPU-303407
DAPPU-303409
DAPPU-303416
DAPPU-303431
DAPPU-303461
DAPPU-303545
DAPPU-303553
DAPPU-303561
DAPPU-303577
DAPPU-303591
DAPPU-303630
DAPPU-303678
DAPPU-303758
DAPPU-303794
DAPPU-303877
DAPPU-303932
DAPPU-303934
DAPPU-303937
DAPPU-303941
DAPPU-304000

NCBI_GNO_474163
CG2257
CG7726
CG8251
CG17737
CG9128
CG10753
CG7993
CG17510
CG5651
CG13089
CG9617
CG8241
CG5371
CG9282
CG3731
CG4973
CG15035
CG11989
CG8070
CG8431
CG13900
CG3539
CG9799
CG17170
CG12323
CG12217
CG13418
CG3329
CG2358
CG7808
CG8728
CG7626
CG1796
CG3156
CG14222
CG6213
CG4878
CG12230
CG5519
CG14813
CG4307
CG7003
CG10221
CG1810
CG5836
CG3564

KOG0864
KOG4409
KOG1943
KOG1465
KOG1270
KOG0360
KOG3174
KOG0948 KOG0947
KOG0225
KOG2144
KOG2799
KOG2861
KOG3087
KOG0727
KOG1671
KOG1173
KOG0100 KOG0967
KOG0467
KOG2988
KOG1984
KOG2885
KOG1562
KOG2978 KOG3487
KOG2672
KOG1555
KOG0479
KOG2030
KOG2580
KOG0306
KOG0712 KOG2825
KOG2420 KOG2335 KOG2874 KOG3003 KOG3013
KOG3106 KOG1294 KOG1867 KOG2340 KOG0959 KOG0282 KOG3240

DAPPU-304059
DAPPU-304102
DAPPU-304145
DAPPU-304186
DAPPU-304225
DAPPU-304295
DAPPU-304315
DAPPU-304340
DAPPU-304359
DAPPU-304437
DAPPU-304445
DAPPU-304522
DAPPU-304531
DAPPU-304577
DAPPU-304599
DAPPU-304712
DAPPU-304732
DAPPU-304735
DAPPU-304798
DAPPU-304801
DAPPU-304893
DAPPU-304899
DAPPU-304910
DAPPU-304917
DAPPU-304921
DAPPU-304934
DAPPU-304936
DAPPU-304982
DAPPU-305021
DAPPU-305191
DAPPU-305300
DAPPU-305316
DAPPU-305330
DAPPU-305381
DAPPU-305406
DAPPU-305459
DAPPU-305506
DAPPU-305539
DAPPU-305543
DAPPU-305544
DAPPU-305561
DAPPU-305599
DAPPU-305636
DAPPU-305640
DAPPU-305671
DAPPU-305782

NCBI_GNO_94254
NCBI_GNO_336254
NCBI_GNO_522254
NCBI_GNO_202263
NCBI_GNO_208954
NCBI_GNO_320283
NCBI_GNO_592283
NCBI_GNO_182284
NCBI_GNO_248284
NCBI_GNO_90293
NCBI_GNO_362293
NCBI_GNO_52983
NCBI_GNO_148983
NCBI_GNO_330033
NCBI_GNO_700033
NCBI_GNO_934033
NCBI_GNO_756034
NCBI_GNO_762034
NCBI_GNO_1092034
NCBI_GNO_1108034
NCBI_GNO_50993
NCBI_GNO_58994
NCBI_GNO_288313
NCBI_GNO_404313
NCBI_GNO_434313
NCBI_GNO_120313
NCBI_GNO_122313
NCBI_GNO_48323
NCBI_GNO_54323
NCBI_GNO_324343
NCBI_GNO_414353
NCBI_GNO_352353
NCBI_GNO_536353
NCBI_GNO_76364
NCBI_GNO_226364
NCBI_GNO_486043
NCBI_GNO_1114043
NCBI_GNO_1602043
NCBI_GNO_1672043
NCBI_GNO_1712043
NCBI_GNO_1186044
NCBI_GNO_324043
NCBI_GNO_562044
NCBI_GNO_590044
NCBI_GNO_734044
NCBI_GNO_506363

CG11856
CG1882
CG7261
CG2677
CG9249
CG5374
CG17158
CG4152
CG10210
CG7010
CG4561
CG11963
CG11679
CG10673
CG16916
CG7361
CG6759
CG4147
CG5602
CG33158
CG10652
CG10882
CG4510
CG8327
CG10166
CG5161
CG5231
CG18174
CG4206
CG11847
CG11779
CG8064
CG8863
CG1598
CG5991
CG3645
CG4258
CG6155
CG3931
CG5183
CG3178
CG4166
CG3735
CG5517
CG6015
CG9245

KOG3092	DAPPU-305830
KOG3187	DAPPU-305850
KOG0687	DAPPU-305955
KOG0418	DAPPU-305966
KOG0096	DAPPU-305970
KOG1241	DAPPU-306007
KOG2004	DAPPU-306039
KOG0477	DAPPU-306072
KOG1255	DAPPU-306118
KOG2848	DAPPU-306184
KOG0264	DAPPU-306287
KOG1698	DAPPU-306295
KOG1018	DAPPU-306296
KOG2217	DAPPU-306323
KOG2915	DAPPU-306325
KOG2387	DAPPU-306334
KOG0729	DAPPU-306359
KOG0359	DAPPU-306375
KOG2981	DAPPU-306423
KOG0184	DAPPU-306433
KOG1351	DAPPU-306451
KOG2916	DAPPU-306457
KOG2700	DAPPU-306459
KOG1567	DAPPU-306462
KOG2481	DAPPU-306492
KOG2759	DAPPU-306505
KOG0110	DAPPU-306569
KOG3181	DAPPU-306633
KOG1781	DAPPU-306642
KOG2696	DAPPU-306646
KOG3274	DAPPU-306670
KOG0559	DAPPU-306760
KOG2253	DAPPU-306802
KOG0364	DAPPU-306806
KOG3368	DAPPU-306826
KOG2537	DAPPU-306844
KOG0260	DAPPU-306846
KOG1906	DAPPU-306880
KOG1300	DAPPU-306883
KOG1331	DAPPU-306906
KOG0337	DAPPU-306922
KOG1342	DAPPU-306940
KOG1145	DAPPU-306984
KOG4020	DAPPU-307032
KOG0817	DAPPU-307101
KOG1148	DAPPU-307141

NCBI_GNO_156373	CG15224
NCBI_GNO_250373	CG6746
NCBI_GNO_120383	CG5378
NCBI_GNO_232383	CG8284
NCBI_GNO_274383	CG1404
NCBI_GNO_132384	CG2637
NCBI_GNO_264384	CG8798
NCBI_GNO_556384	CG7538
NCBI_GNO_390393	CG1065
NCBI_GNO_634393	CG3812
NCBI_GNO_728403	CG4236
NCBI_GNO_784403	CG8039
NCBI_GNO_786403	CG5292
NCBI_GNO_202413	CG6686
NCBI_GNO_254413	CG14544
NCBI_GNO_132413	CG6854
NCBI_GNO_126053	CG1341
NCBI_GNO_354053	CG8231
NCBI_GNO_1026053	CG6877
NCBI_GNO_1188053	CG1519
NCBI_GNO_1334053	CG17369
NCBI_GNO_1426053	CG9946
NCBI_GNO_1438053	CG3590
NCBI_GNO_1472053	CG8975
NCBI_GNO_322053	CG4364
NCBI_GNO_448053	CG17332
NCBI_GNO_660054	CG3335
NCBI_GNO_192424	CG6779
NCBI_GNO_330423	CG13277
NCBI_GNO_4423	CG2051
NCBI_GNO_198423	CG5902
NCBI_GNO_154434	CG5214
NCBI_GNO_326433	CG4119
NCBI_GNO_404433	CG8977
NCBI_GNO_640433	CG1359
NCBI_GNO_620433	CG10627
NCBI_GNO_512434	CG1554
NCBI_GNO_106444	CG11265
NCBI_GNO_110444	CG15811
NCBI_GNO_278444	CG17807
NCBI_GNO_340444	CG32344
NCBI_GNO_16453	CG7471
NCBI_GNO_384454	CG12413
NCBI_GNO_10063	CG4180
NCBI_GNO_195163	CG8627
NCBI_GNO_802064	CG10506

KOG0263
KOG1493
KOG0480
KOG1357
KOG0816
KOG1652
KOG2540
KOG3347
KOG3355
KOG3282
KOG1672
KOG2421
KOG1800
KOG1487
KOG1992
KOG2023
KOG2792
KOG3372
KOG1655
KOG1753
KOG1590
KOG0554
KOG2292
KOG0299
KOG2058
KOG3432
KOG0605
KOG2770
KOG0325
KOG0651
KOG2608
KOG1137
KOG3349
KOG4098
KOG0580
KOG0688
KOG2768
KOG1979
KOG1149
KOG3298
KOG0585
KOG2769
KOG3430
KOG2171
KOG3237
KOG3490

DAPPU-307153
DAPPU-307195
DAPPU-307300
DAPPU-307317
DAPPU-307342
DAPPU-307357
DAPPU-307441
DAPPU-307499
DAPPU-307542
DAPPU-307543
DAPPU-307585
DAPPU-307611
DAPPU-307619
DAPPU-307651
DAPPU-307683
DAPPU-307700
DAPPU-307706
DAPPU-307738
DAPPU-307757
DAPPU-307788
DAPPU-307796
DAPPU-307813
DAPPU-307851
DAPPU-307893
DAPPU-307907
DAPPU-308028
DAPPU-308031
DAPPU-308047
DAPPU-308051
DAPPU-308117
DAPPU-308173
DAPPU-308207
DAPPU-308239
DAPPU-308250
DAPPU-308251
DAPPU-308328
DAPPU-308414
DAPPU-308451
DAPPU-308493
DAPPU-308561
DAPPU-308627
DAPPU-308637
DAPPU-308639
DAPPU-308670
DAPPU-308779
DAPPU-308814

NCBI_GNO_1096063	CG7704
NULL	CG34441
NCBI_GNO_302473	CG4039
NCBI_GNO_494473	CG4162
NCBI_GNO_786473	CG1381
NCBI_GNO_918473	CG15257
NCBI_GNO_336483	CG31915
NCBI_GNO_494483	CG8816
NCBI_GNO_248493	CG12534
NCBI_GNO_260493	CG1307
NCBI_GNO_494493	CG4511
NCBI_GNO_412494	CG2818
NCBI_GNO_470494	CG12390
NCBI_GNO_268503	CG8340
NCBI_GNO_31143	CG13281
NCBI_GNO_458504	CG7398
NCBI_GNO_114513	CG8885
NCBI_GNO_64073	CG5677
NCBI_GNO_382073	CG6259
NCBI_GNO_918073	CG4046
NCBI_GNO_1068073	CG14290
NCBI_GNO_142074	CG6796
NCBI_GNO_302074	CG7748
NCBI_GNO_528074	CG33505
NCBI_GNO_1220073	CG5916
NCBI_GNO_386523	CG8210
NCBI_GNO_468524	CG8637
NCBI_GNO_126533	CG6415
NCBI_GNO_66534	CG9804
NCBI_GNO_198543	CG3455
NCBI_GNO_424543	CG1333
NCBI_GNO_472543	CG7698
NCBI_GNO_126553	CG14512
NCBI_GNO_332553	CG6302
NCBI_GNO_286574	CG3068
NCBI_GNO_96563	CG5605
NCBI_GNO_706083	CG4153
NCBI_GNO_318084	CG11482
NCBI_GNO_876083	CG4573
NCBI_GNO_290564	CG31344
NCBI_GNO_288574	CG17698
NCBI_GNO_74583	CG7757
NCBI_GNO_54583	CG6998
NCBI_GNO_583	CG1059
NCBI_GNO_302593	CG1789
CBI GNO 434593	CG12372

KOG0400
KOG1373
KOG0036
KOG0523
KOG0822
KOG3111
KOG2863
KOG3129
KOG1099
KOG2688
KOG3486
KOG3315
KOG3059
KOG1636
KOG3063
KOG1534
KOG1060
KOG3470
KOG1424
KOG1043
KOG0933
KOG2102
KOG1533
KOG2749
KOG1210
KOG1651
KOG0050
KOG0302
KOG1315
KOG2568
KOG1416
KOG2051
KOG1058
KOG1919
KOG1035
KOG0939
KOG2180
KOG0711
KOG0102
KOG2811
KOG3075
KOG1220
KOG1440
KOG1107
KOG3153
KOG3457

DAPPU-308825
DAPPU-308832
DAPPU-308837
DAPPU-308853
DAPPU-308857
DAPPU-308929
DAPPU-308938
DAPPU-309024
DAPPU-309098
DAPPU-309103
DAPPU-309158
DAPPU-309327
DAPPU-309328
DAPPU-309373
DAPPU-309382
DAPPU-309440
DAPPU-309510
DAPPU-309511
DAPPU-309652
DAPPU-309740
DAPPU-310261
DAPPU-310536
DAPPU-310542
DAPPU-310603
DAPPU-310703
DAPPU-310801
DAPPU-311294
DAPPU-311335
DAPPU-311398
DAPPU-311546
DAPPU-312712
DAPPU-312843
DAPPU-313075
DAPPU-313092
DAPPU-313217
DAPPU-313219
DAPPU-313250
DAPPU-313317
DAPPU-313359
DAPPU-313492
DAPPU-313516
DAPPU-314497
DAPPU-315618
DAPPU-315698
DAPPU-315739
DAPPU-315783

NCBI_GNO_518593
NCBI_GNO_578593
NCBI_GNO_454594
NCBI_GNO_604594
NCBI_GNO_544593
NCBI_GNO_434603
NCBI_GNO_360603
NCBI_GNO_920093
NCBI_GNO_670093
NCBI_GNO_706093
NCBI_GNO_258613
NCBI_GNO_194633
NCBI_GNO_254634
NCBI_GNO_224633
NCBI_GNO_296634
NCBI_GNO_188643
NCBI_GNO_376014
NCBI_GNO_162013
NCBI_GNO_580014
NCBI_GNO_734014
NCBI_GNO_728023
NCBI_GNO_992024
NCBI_GNO_998024
NCBI_GNO_1098024
NCBI_GNO_360034
NCBI_GNO_516034
NCBI_GNO_176043
NCBI_GNO_362044
NCBI_GNO_482044
NCBI_GNO_720044
NCBI_GNO_1024064
NCBI_GNO_288074
NCBI_GNO_212084
NCBI_GNO_234084
NCBI_GNO_416084
NCBI_GNO_418084
NCBI_GNO_460084
NCBI_GNO_1204083
NCBI_GNO_618084
NCBI_GNO_296094
NCBI_GNO_230093
NCBI_GNO_852113
NCBI_GNO_654144
NCBI_GNO_170153
NCBI_GNO_292153
NCBI_GNO_476153

CG13389
CG9539
CG32103
CG8036
CG3730
CG30499
CG7942
CG9588
CG5220
CG7351
CG2986
CG10153
CG12077
CG9193
CG14804
CG2656
CG11427
CG1890
CG14788
CG4589
CG10212
CG6413
CG10222
CG5970
CG10425
CG12013
CG6905
CG12792
CG1407
CG17660
CG9596
CG2253
CG6223
CG6187
CG1609
CG8184
CG3338
CG12389
CG8542
CG18048
CG30410
CG8073
CG7962
CG5625
CG14721
CG10130

KOG0434
KOG0733
KOG2360
KOG1620
KOG2807
KOG0969
KOG2245
KOG1968 KOG2971
KOG0250
KOG0436
KOG2754
KOG1073
KOG2992
KOG0616
KOG3222
KOG0344
KOG1625
KOG2308
KOG0962
KOG0740
KOG2554
KOG2068
KOG0313
KOG1956
KOG1131
KOG1831
KOG2111
KOG0780
KOG0219
KOG1597
KOG1349
KOG1540
KOG2201
KOG0524
KOG2020
KOG2585
KOG3022 KOG1989
KOG2438 KOG0213
KOG0152
KOG2198 KOG1268 KOG0355 KOG3327

DAPPU-316089 DAPPU-316737 DAPPU-317133 DAPPU-317135 DAPPU-317251 DAPPU-317527 DAPPU-318160 DAPPU-318220 DAPPU-318276 DAPPU-318587 DAPPU-319387 DAPPU-319543 DAPPU-319965 DAPPU-319994 DAPPU-319998 DAPPU-320031 DAPPU-321368 DAPPU-321802 DAPPU-321889 DAPPU-322547 DAPPU-322816 DAPPU-323292 DAPPU-323297 DAPPU-323838 DAPPU-324341 DAPPU-324413 DAPPU-324499 DAPPU-324944 DAPPU-325390 DAPPU-325677 DAPPU-325996 DAPPU-326467 DAPPU-326731 DAPPU-327249 DAPPU-327265 DAPPU-327633 DAPPU-327994 DAPPU-328248 DAPPU-328331 DAPPU-328680 DAPPU-328912 DAPPU-329118 DAPPU-329423 DAPPU-329474 DAPPU-329527 DAPPU-331571

NCBI_GNO_320163
NCBI_GNO_344184
NCBI_GNO_520193
NCBI_GNO_73154
NCBI_GNO_118203
NCBI_GNO_264214
NCBI_GNO_398234
NCBI_GNO_166244
NCBI_GNO_306243
NCBI_GNO_372254
NCBI_GNO_210294
NCBI_GNO_76304
NCBI_GNO_216324
NCBI_GNO_42334
NCBI_GNO_58333
NCBI_GNO_158333
NCBI_GNO_548364
NCBI_GNO_108384
NCBI_GNO_244384
NCBI_GNO_316404
NCBI_GNO_258414
NCBI_GNO_132433
NCBI_GNO_98434
NCBI_GNO_92454
NCBI_GNO_168474
NCBI_GNO_280474
NCBI_GNO_470474
NCBI_GNO_304494
NCBI_GNO_244513
NCBI_GNO_282524
NCBI_GNO_132544
NCBI_GNO_284563
NCBI_GNO_86584
NCBI_GNO_128604
NCBI_GNO_270603
NCBI_GNO_62623
NCBI_GNO_478633
NCBI_GNO_814643
NCBI_GNO_126644
NCBI_GNO_230664
NCBI_GNO_70684
NCBI_GNO_158693
NCBI_GNO_26713
NCBI_GNO_152714
NCBI_GNO_226714
NCBI_GNO_48834
115

CG11471
CG8571
CG5558
CG10082
CG11115
CG5949
CG9854
CG1119
CG11583
CG5524
CG31322
CG9022
CG10686
CG7421
CG4379
CG8891
CG5589
CG5923
CG8552
CG6339
CG3326
CG3045
CG31716
CG6724
CG10123
CG9433
CG34407
CG11975
CG4659
CG4215
CG5193
CG4406
CG2453
CG5725
CG11876
CG12234
CG2974
CG17904
CG10637
CG5463
CG2807
CG3542
CG6133
CG1345
CG10223
CG5757

KOG0442
KOG2423
KOG1596
KOG0216
KOG1491
KOG0435
KOG2574
KOG3295
KOG0537
KOG4032
KOG0131
KOG3034
KOG3438
KOG3454
KOG0351
KOG1614
KOG2930
KOG2868
KOG0812
KOG1402
KOG1361
KOG3346
KOG2086 KOG3316
KOG2050 KOG0420 KOG2884 KOG0717 KOG2728
KOG1975
KOG1240
KOG2311
KOG0620
KOG1549
KOG1336 KOG1600 KOG0804 KOG2519 KOG0201 KOG0563 KOG0462 KOG1038 KOG1556 KOG2520 KOG2711 KOG0728

DAPPU-331812
DAPPU-332475
DAPPU-333298
DAPPU-333503
DAPPU-333762
DAPPU-334969
DAPPU-337041
DAPPU-34614
DAPPU-36528
DAPPU-36719
DAPPU-40110
DAPPU-40241
DAPPU-40279
DAPPU-40364
DAPPU-40427
DAPPU-40604
DAPPU-40730
DAPPU-40876
DAPPU-41202
DAPPU-41314
DAPPU-41973
DAPPU-42659
DAPPU-42769
DAPPU-42928
DAPPU-43721
DAPPU-44414
DAPPU-44914
DAPPU-44917
DAPPU-45011
DAPPU-45556
DAPPU-45609
DAPPU-45739
DAPPU-46150
DAPPU-46336
DAPPU-46525
DAPPU-46667
DAPPU-47474
DAPPU-47502
DAPPU-47789
DAPPU-48979
DAPPU-49405
DAPPU-49577
DAPPU-49603
DAPPU-49689
DAPPU-51324
DAPPU-52572

NCBI_GNO_184844
CG3697
CG6501
CG9888
CG4033
CG1354
CG7479
CG6876
CG4651
CG2140
CG14543
CG3780
CG9286
CG10685
CG5454
CG6920
CG9606
CG16982
CG11183
CG4214
CG8782
CG10018
CG10298
CG11139
CG6196
CG1685
CG7375
CG7619
CG2790
CG5629
CG3688
CG9746
CG4610
CG31137
CG12264
CG4199
CG5887
CG5555
CG8648
CG5169
CG12529
CG1410
CG4644
CG3416
CG10890
CG9042
CG2241

KOG2467	DAPPU-52799
KOG2268	DAPPU-53510
KOG2036	DAPPU-54191
KOG1253	DAPPU-54762
KOG0243	DAPPU-55076
KOG3233	DAPPU-56706
KOG4018	DAPPU-5678
KOG1380	DAPPU-57149
KOG1135	DAPPU-58164
KOG1463	DAPPU-58294
KOG1783	DAPPU-59069
KOG1381	DAPPU-59083
KOG2989	DAPPU-59672
KOG2877	DAPPU-60250
KOG1725	DAPPU-61104
KOG1272	DAPPU-61337
KOG2841	DAPPU-61546
KOG3000	DAPPU-62015
KOG2241	DAPPU-62407
KOG1656	DAPPU-62579
KOG1461	DAPPU-62668
KOG2322	DAPPU-63064
KOG3172	DAPPU-63450
KOG2280	DAPPU-63503
KOG3405	DAPPU-64901
KOG0202	DAPPU-65262
KOG1274	DAPPU-65744
KOG0996	DAPPU-67196
KOG0876	DAPPU-67591
KOG0371	DAPPU-68048
KOG0009	DAPPU-93183
KOG1626	DAPPU-93571
KOG2659	DAPPU-93654
KOG3386	DAPPU-93662
KOG3325	DAPPU-93995
KOG0270	DAPPU-96073
KOG0813	DAPPU-96363
KOG2779	DAPPU-96817
KOG2804	DAPPU-97573
KOG1670	DAPPU-98425
KOG0556	DAPPU-99304
KOG3020	DAPPU-99659
KOG0185	DAPPU-99667
KOG3257	DAPPU-99708

NCBI_GNO_322313	CG3011
NCBI_GNO_388343	CG11859
NCBI_GNO_560363	CG1994
NCBI_GNO_88384	CG6388
NCBI_GNO_374394	CG9191
NCBI_GNO_396454	CG5380
NCBI_GNO_170763	CG5515
NCBI_GNO_298473	CG5037
NCBI_GNO_268513	CG1957
NCBI_GNO_378523	CG10149
NCBI_GNO_48554	CG9344
NCBI_GNO_110554	CG9613
NCBI_GNO_150584	CG8435
NCBI_GNO_38603	CG6016
NCBI_GNO_488633	CG8331
NCBI_GNO_182643	CG2260
NCBI_GNO_412644	CG10215
NCBI_GNO_86683	CG3265
NCBI_GNO_460693	CG15100
NCBI_GNO_60713	CG8055
NCBI_GNO_162714	CG3806
NCBI_GNO_296743	CG3798
NCBI_GNO_142773	CG8427
NCBI_GNO_104774	CG8454
NCBI_GNO_40873	CG1163
NCBI_GNO_164903	CG3725
NCBI_GNO_130944	CG13350
NCBI_GNO_418843	CG11397
NCBI_GNO_297184	CG8905
NCBI_GNO_135244	CG7109
NCBI_GNO_462513	CG15697
NCBI_GNO_110713	CG4634
NCBI_GNO_170783	CG6617
NCBI_GNO_310813	CG3977
NCBI_GNO_376013	CG4764
NCBI_GNO_510044	CG6751
NCBI_GNO_1562043	CG4365
NCBI_GNO_1180053	CG7436
NCBI_GNO_250074	CG18330
NCBI_GNO_582093	CG32859
NCBI_GNO_830113	CG3821
NCBI_GNO_916123	CG3358
NCBI_GNO_942123	CG12000
NCBI_GNO_1000123	CG3351

Table S16. Fifty predicted Daphnia pulex miRNA

miRNA name	Scaffold	Pre-miRNA Start position	Pre-miRNA End position	Strand	Mature miRNA Start position	Mature miRNA End position
dpul-bantam	scaffold_115	370155	370238	1	55	77
dpul-let-7	scaffold_71	446440	446534	-1	14	35
dpul-mir-1	scaffold_1	1720872	1720960	-1	57	78
dpul-mir-10	scaffold_7	304805	304905	-1	22	42
dpul-mir-100	scaffold_71	446641	446740	-1	21	43
dpul-mir-1175	scaffold_113	97584	97667	1	53	76
dpul-mir-12	scaffold_1	1847835	1847917	-1	13	35
dpul-mir-124	scaffold_120	76886	76970	1	55	77
dpul-mir-125	scaffold_71	445340	445450	-1	24	45
dpul-mir-125b-as	scaffold_71	445352	445433	1	55	76
dpul-mir-133	scaffold_1	1708481	1708584	-1	67	88
dpul-mir-137	scaffold_92	410926	411003	1	49	70
dpul-mir-13b	scaffold_80	240721	240800	1	51	73
dpul-mir-153	scaffold_3	3560633	3560719	-1	53	72
dpul-mir-193	scaffold_167	85443	85550	-1	73	94
dpul-mir-2-1	scaffold_80	240857	240946	1	55	77
dpul-mir-2-2	scaffold_80	241036	241112	1	48	70
dpul-mir-210	scaffold_51	480329	480413	-1	51	71
dpul-mir-219	scaffold_253	93588	93666	-1	11	33
dpul-mir-252a	scaffold_285	66051	66144	1	16	37
dpul-mir-252b	scaffold_8	127361	127465	1	20	42
dpul-mir-263b	scaffold_87	475808	475882	1	11	30
dpul-mir-275	scaffold_4	1790732	1790817	1	51	73
dpul-mir-276	scaffold_15	755622	755692	1	46	67
dpul-mir-277	scaffold_4	1242957	1243058	-1	61	85
dpul-mir-279	scaffold_43	177495	177579	1	52	70
dpul-mir-281	scaffold_11	1065349	1065415	-1	1	21
dpul-mir-283	scaffold_1	1848733	1848832	-1	21	40
dpul-mir-29	scaffold_1	332494	332591	1	62	83
dpul-mir-309	scaffold_24	361460	361528	-1	44	65
dpul-mir-315	scaffold_58	431897	431975	1	12	33
dpul-mir-317	scaffold_4	1243950	1244040	-1	56	80
dpul-mir-33	scaffold_90	265090	265171	-1	7	28
dpul-mir-34	scaffold_4	1242031	1242127	-1	14	35
dpul-mir-36	scaffold_32	68509	68591	-1	51	70
dpul-mir-7-1	scaffold_11571	1020	1108	-1	15	37
dpul-mir-7-2	scaffold_191	112539	112627	-1	15	37
dpul-mir-71	scaffold_80	240421	240502	1	10	31
dpul-mir-8	scaffold_131	139395	139479	1	52	74
dpul-mir-87-1	scaffold_1	2190890	2190989	1	70	89
dpul-mir-87-2	scaffold_1	2191051	2191151	1	71	90
			118			

dpul-mir-92b	scaffold_38	876312	876410	1	60	81
dpul-mir-92c	scaffold_38	876134	876234	1	61	82
dpul-mir-965	scaffold_32	27762	27867	-1	65	86
dpul-mir-981	scaffold_2	1450976	1451073	-1	62	83
dpul-mir-993	scaffold_7	282304	282393	1	57	79
dpul-mir-9a	scaffold_2	1526199	1526285	1	15	37
dpul-mir-9b	scaffold_32	69569	69641	-1	9	31
dpul-mir-iab-4	scaffold_7	515533	515617	1	15	36
dpul-mir-iab-4as	scaffold_7	515541	515609	-1	6	28

Table S17. Comparative analysis of transposable elements (TEs) in Daphnia pulex. Among arthropods, D. pulex is similar in terms of repeat content, with most families being present in low copy number. Daphnia pulex does, however, contain a large number of novel TE families [S172] and many, diverse families for which there is evidence of possible recent activity [S173].

	Daphnia	Drosophila	Aedes	Anopheles	Apis	Mus
Proportion of \quad DNA transposons genome (euchromatin)	0.70\%	$0.31 \%^{1}$	20\%	n/a	~1\%	0.88\%
Retrotransposons	8.66\%	$3.47 \%^{1}$	26.5\%	n/a	almost none	37.29\%
Total	9.4\%	$5.3 \%^{2}$	47\%	16\%	1\%	38.55\%
Highest copy number family	gypsy	roo ${ }^{1}$	Felai-B	Sine200	Mariner	LINE1
References		${ }^{1}[\mathrm{~S} 174]$ $\left.{ }^{2} \mathrm{~S} 175\right]$	[S176]	[S177]	[S178]	[S179]

Table S18. Classification and distribution of transposable elements in Daphnia pulex. The D. pulex genome contains representatives of 10 of the known superfamilies of DNA transposons (see also [S173]), including Helitrons which are found in tandem arrays. Also, D. pulex has the highest number of families of Copia elements of which we are aware described to date (44) compared with other arthropod genomes (see also [S172]). In addition, 15 families of DIRS elements were found in this study, a group previously annotated mainly in fish genomes which have not been found in other arthropod genomes (except Tribolium castaneum). Copy number estimates are based on RepeatMasker [http://www.repeatmasker.org] output (masked regions $>50 \mathrm{bp}$ in length, $>70 \%$ similarity, and $>20 \%$ of the length of the query).

Class Subclass \begin{tabular}{c}

Superfamily of families Copy number | Proportion of |
| :---: |
| genome (\%) |

\end{tabular}

DNA Transposons	TIRs	CACTA	10	109	0.0536
		hAT	6	33	0.0180
		Merlin	1	26	0.0160
		Mutator	10	195	0.0657
		P element	9	70	0.0411
		PIF	2	15	0.0061
		TTAA	3	685	0.2321
		Tc1/mariner	7	217	0.0676
		SUBTOTAL	48	1,350	0.5003
	Helitrons	Helitron	4	573	0.2005
	Maverick	Maverick	4	5	0.0038
SUBTOTAL			56	1,928	0.7046
Retrotransposons	LTR retrotransposons	BEL	26	793	1.8249
		Copia	44	600	1.1596
		DIRS	15	218	0.2715
		Gypsy	56	2,163	4.7192
		SUBTOTAL	141	3,774	7.9752
	Non-LTR retrotransposons	I	19	633	0.2163
		LOA	16	244	0.0872
		L1	3	138	0.0787
		L2	27	593	0.2246
		NeSL	8	104	0.0270
		SINEs	5	404	0.0520
		SUBTOTAL	78	2,116	0.6858
SUBTOTAL			219	5,890	8.6610
TOTAL			275	7,821	9.3656

D. Attributes of a Compact Genome

Table 19. Gene richness within a comparatively small genome. Various features of the Daphnia pulex genome compared to those of Drosophila melanogaster (relatively small arthropod genome), Apis mellifera (somewhat larger arthropod genome), Caenorhabditis elegans (small, gene-rich genome) and Mus musculus (large, gene-rich genome). Daphnia pulex values for the number of genes, gene span, intron size and intergenic size are outside the 95% confidence intervals when randomly sampling six other arthropod genomes.

	Daphnia	Apis	Drosophila	Caenorhabditis	Mus
Genome size in Mbp^{1}	200 (150)	235 (150)	180 (120)	100 (100)	$3,450(2,600)$
Number of genes	31,000+	17,000	13,700	20,100	27,600
Avg. span of a coding gene in bp	2,300	9,900	4,000	3,000	32,000
Avg. number of exons/gene	6.6	7.1	4.0	6.0	8.0
Avg. number of introns/100 aa^{2}	1.24	1.10	0.55	1.23	1.49
Avg. exon size in bp ${ }^{3}$	210	240	410	200	280
Avg. UTR size in bp ${ }^{4}$	370	340	800	260	NA
Avg. intron size in bp^{5}	170	770	660	290	2,800
Proportion of long introns ${ }^{6}$	10\%	36\%	27\%	33\%	85\%
Avg. intergenic size in bp	4,000	21,600	5,400	2,400	78,000
Total fraction TE ${ }^{\prime}$	8.8\%	1\%	5.3\%	NA	38.5\%
Number of STRs ${ }^{\text {8 }}$	65,211	188,101	58,808	13,617	1,562,965
Avg. STR length in bp	19.2	23.7	30.2	26.4	35.7
${ }^{1}$ Numbers in parentheses indicate euchromatic genome size.					
2 "aa" abbreviates amino acid. Calculated from NCBI's genomes mapview data sets					
${ }^{3}$ Distribution for D. melanogaster is strongly bimodal.					
${ }^{4}$ UTR size is biased by counting cases where length $=0 \mathrm{bp}$.					
${ }^{5}$ Intron size is non-normally distributed. The distributions in all species except D. pulex are bimodal.					
${ }^{6}$ Proportion of the number of introns that is larger than average exon size. See Figure S13.					
7 "TE" abbreviates transposable elements. References for TE statistics are listed in Table S17.					
${ }^{8}$ Short Tandem Repeat (microsatellite) loci [S180].					

Table S20. Species used in the study of introns. Abbreviations are used in Figure S15.

Species	Abbreviation	Source
Daphnia pulex	Dappu	http://genome.jgi-psf.org/Dappu1/Dappu1.home.html
Aedes aegypti	Aedae	http://www.vectorbase.org/
Anopheles gambiae	Anoga	http://www.ncbi.nlm.nih.gov/
Apis mellifera	Apime	http://www.ncbi.nlm.nih.gov/
Drosophila melanogaster	Drome	http://www.ncbi.nlm.nih.gov/
Drosophila pseudoobscura	Drops	ftp://tp.flybase.net/genomes/
Nematostella vectensis	Nemve	http://genome.jgi-psf.org/Nemve1/Nemve1.home.html
Danio rerio	Danre	http://www.ncbi.nlm.nih.gov/
Homo sapiens	Homsa	http://www.ncbi.nlm.nih.gov/

Table S21. Number and density (per 100 amino acids) of introns for nine species are calculated by dividing the number of introns present by the number of total amino acids (residues) in the proteins for all proteins in orthologous sets. Daphnia pulex has the greatest intron density among the arthropods, followed by Apis mellifera, for which genomic data are currently available, but a significantly lower intron density than that in vertebrates and, especially, in the only available cnidarian.

Species	Residue	Introns	Density	Rank
Daphnia pulex	$1,409,089$	18,485	1.311	1
Apis mellifera	$1,681,706$	18,827	1.119	2
Anopheles gambiae	$1,465,363$	10,590	0.722	3
Aedes aegypti	$1,619,969$	10,482	0.647	4
Drosophila pseudoobscura	$1,801,498$	11,084	0.615	5
Drosophila melanogaster	$1,846,871$	10,594	0.573	6
Homo sapiens	$1,770,781$	32,535	1.837	-
Danio rerio	$1,638,418$	30,674	1.872	-
Nematostella vectensis	$1,358,638$	26,604	1.958	-

Table S22. Conservation of Daphnia pulex introns. A conserved intron is one whose position is shared by orthologous genes from at least two of the animal species listed in the table.

Species	Conserved introns	Variable introns	\% conserved	Rank
Drosophila melanogaster	1,300	4,652	21.84	4
Drosophila pseudoobscura	1,277	4,675	21.45	5
Anopheles gambiae	1,418	4,534	23.82	3
Aedes aegypti	1,440	4,512	24.19	2
Apis mellifera	2,882	3,070	48.42	1
Homo sapiens	3,411	2,541	57.31	-
Danio rerio	3,392	2,560	56.99	-
Nematostella vectensis	3,213	2,739	53.98	-

Table S23. Conservation of intron positions between Daphnia pulex and other animals. The table shows the percentage and the raw numbers (in parentheses) of shared intron positions in a set of 9 animal genomes including D. pulex for all pairs of annotated orthologous protein-coding genes (above the diagonal) and for pairs of orthologous genes confirmed with ESTs (at least one D. pulex EST per gene; below the diagonal). Abbreviations are given in Table S20.

	Dappu	Drome	Drops	Anoga	Aedae	Apime	Homsa	Danre	Nemve
Dappu	-	31.93	31.48	34.47	34.63	55.54	47.85	47.26	43.25
		(2600)	(2554)	(2836)	(2880)	(5764)	(6822)	(6784)	(6426)
Drome	32.61	-	94.99	58.28	58.94	38.10	25.00	24.79	22.01
	(2156)		(4134)	(2604)	(2686)	(2522)	(2624)	(2626)	(244)
Drops	32.10	95.15	-	55.25	58.70	37.62	24.77	24.58	21.78
	(2116)	(3338)		(2584)	(2656)	(2478)	(2592)	(2596)	(2410)
Anoga	35.50	58.59	58.41	-	88.77	40.49	26.75	26.69	23.88
	(2378)	(2118)	(2100)		(4120)	(2714)	(2830)	(2850)	(2670)
Aedae	35.52	59.43	59.10	88.82	-	40.58	27.18	26.99	23.89
	(2402)	(2186)	(2162)	(3344)		(2756)	(2900)	(2906)	(2692)
Apime	56.59	38.87	38.34	41.27	41.23	-	45.28	44.76	40.26
	(4768)	(2076)	(2040)	(2240)	(2264)		(5764)	(5742)	(5368)
Homsa	48.65	25.41	25.09	27.32	27.68	45.62	-	94.88	73.35
	(5628)	(2156)	(2124)	(2342)	(2390)	(4698)		(15850)	(12622)
Danre	48.26	25.25	24.96	27.31	27.50	45.29	95.32	-	72.54
	(5628)	(2166)	(2136)	(2366)	(2400)	(4706)	(12900)		(12554)
Nemve	44.42	22.51	22.25	24.51	24.56	41.09	73.55	73.10	
	(5380)	(2032)	(2004)	(2234)	(2254)	(4454)	(10284)	(10290)	

Table S24. Maximum Likelihood reconstruction of intron gain and loss events in arthropods and three other metazoans.

Node	No. introns	No. losses	No. gains	Gain/loss ratio
Metazoa	N/A	N/A	N/A	N/A
Coelomata	8,162	N/A	N/A	N/A
Arthropoda	5,163	3,666	667	0.18
Insecta	4,396	767	0	0
Vertebrata	8,367	586	791	1.35
Diptera	2,918	2,033	555	0.27
Drosophilidae	2,207	997	286	0.29
Culicidae	2,408	714	204	0.29
Daphnia pulex	5,952	1,047	1,836	1.75
Drosophila melanogaster	2,192	59	44	0.75
Drosophila pseudoobscura	2,160	83	36	0.43
Anopheles gambiae	2,276	208	76	0.37
Aedes aegypti	2,365	153	111	0.73
Apis mellifera	4,427	874	905	1.04
Homo sapiens	8,304	192	129	0.67
Danio rerio	8,402	257	292	1.14
Nematostella vectensis	8,905	N/A	N/A	N/A

E. Origin and Preservation of Daphnia pulex Genes

Table S25. Similarity of Daphnia pulex genes and 12 other genome-sequenced arthropods to human and other model eukaryote reference proteins. Reference proteins are all UniProtSwissProt curated entries of 6 model species, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Mus musculus and Saccharomyces cerevisiae, accessed on 2010 January from www.uniprot.org. Arthropod proteome sets are current as of December 2009 [S54]. BlastP of SwissProt reference proteins to arthropod proteins is used with cutoff at evalue $=1 e^{-5}$. Results are summarized to indicate closest arthropod matches to reference proteins in 4 ways: A. Counts of closest matching proteins. B. Alignment to reference proteins (average and sum of aminos) C. Percent of reference proteins found (of any found genes) D. Summary from other orthology assessments. Daphnia pulex has best matches and longest alignments to all non-arthropod gene sets, and Tribolium castaneum has the longest of the insects. Daphnia pulex has significantly greater best matches to proteins than Tribolium castaneum (\mathbf{A}, p-value $<1 \mathrm{e}^{-15}$ using Chi-square). Daphnia pulex has statistically longer alignments than Tribolium castaneum to each reference species, whether non-matched genes are included or the subset where both species have reference gene matches. The Wilcoxon rank order test for paired ortholog genes measures this, with p-value $<1 e^{-3}$ for human genes, and p value $<1 e^{-5}$ for the other non-arthropod models (B). Similarly 1% more human and 1% to 5% more non-arthropod genes are found in Daphnia pulex than Tribolium castaneum or others (\mathbf{C}, p -value $<1 \mathrm{e}^{-15}$). Related studies have compared arthropod genes to reference proteins with similar results (D). Using phylogenetic orthology methods with alignment and tree construction, Phylomedb [S181] and PHiGs [S45] both find Daphnia > Tribolium > other insects for alignment to human genes. Ixodes scapularis genes have a high proportion of best matches (A), but are poorer overall matches (B,C). Ixodes scapularis proteins are shorter than expected and missing many expected orthologs, possibly an artifact of a fragmented genome assembly.

A. Counts of best match to reference proteins

Arthropod	Arabidopsis	Caenorhabditis	Drosophila	Homo	Mus	Saccharomyces
Daphnia pulex	$1,004^{*}$	573^{*}	0	$3,286^{*}$	$2,849^{*}$	714^{*}
Ixodes scapularis	447	279	0	2,465	2,180	322
Tribolium castaneum	524	283	8	1,969	1,707	403
Apis mellifera	482	235	2	1,724	1,486	318
Nasonia vitripennis	506	249	7	1,606	1,412	374
Pediculus humanus	410	204	0	1,593	1,352	282
Acyrthosiphon pisum	496	166	2	1,286	763	266
Aedes aegypti	291	122	1	696	560	202
Anopheles gambiae	282	135	0	622	550	195
Drosophila melanogaster	330	134	2925	563	463	220
D. mojavensis	350	137	30	514	469	193
Culex quinquefasciatus	253	103	3	410	368	156
D. pseudoobscura	243	104	54	383	314	171
Reference	Arabidopsis	Caenorhabditis	Drosophila	Homo	Mus	Saccharomyces
Ref_found	5,029	2,492	3,035	1,5345	1,3004	3,575
Ref_input	8,823	3,278	3,052	2,0276	1,6214	6,912
* p-value $<1 e^{-15}$ for Daphnia pulex vs Tribolium castaneum						

B. Alignment to reference proteins, average aligned amino acids / protein.

Arthropod	Arabidopsis	Caenorhabditis	Drosophila	Homo	Mus	Saccharomyces	Mean
Daphnia pulex	$130^{* *}$	$186^{* *}$	216	188^{*}	$191^{* *}$	$149^{* *}$	$169^{* *}$
Tribolium castaneum	126	181	250	187	188	147	166
Nasonia vitripennis	125	179	239	183	185	145	163
Apis mellifera	123	178	239	184	186	141	162
Pediculus humanus	123	177	231	184	185	139	162
Drosophila melanogaster	126	181	586	178	180	141	161
Drosophila mojavensis	125	177	427	175	177	142	159
Anopheles gambiae	123	178	278	177	179	139	159
Aedes aegypti	123	176	271	174	176	140	158
Drosophila pseudoobscura	124	175	454	173	175	140	157
Acyrthosiphon pisum	124	172	216	172	172	139	156
Culex quinquefasciatus	119	168	254	165	167	133	150
Ixodes scapularis	109	154	165	157	161	117	140
Mean	123	176	294	177	179	139	159

** p -value $<1 \mathrm{e}^{-5}$; * p -value $<1 \mathrm{e}^{-3}$ for Daphnia pulex vs Tribolium castaneum. Mean column excludes Drosophila melanogaster

C. Percent of reference proteins found (blastp cut-off $1 \mathbf{e}^{-5}$)

Arthropod	Arabidopsis	Caenorhabditis	Drosophila	Homo	Mus	Saccharomyces	Mean
Daphnia pulex	88.1*	94.9*	83.9	90.4*	91.5*	90.4*	90.3*
Tribolium	85.7	93.3	90.0	89.7	90.7	85.9	89.5
castaneum							
Nasonia vitripennis	85.7	93.0	88.7	88.9	89.8	86.0	88.8
Apis mellifera	83.5	92.7	88.8	88.9	90.1	86.0	88.6
Drosophila melanogaster	86.9	93.1	99.2	87.6	88.7	84.7	88.7
Anopheles gambiae	85.1	92.2	90.7	87.7	88.8	83.9	87.9
Drosophila	85.8	92.2	97.5	86.8	87.9	84.5	87.9
pseudoobscura							
Aedes aegypti	84.0	92.2	90.8	87.6	88.7	84.3	87.7
Pediculus humanus	81.7	92.3	86.4	89.0	89.8	83.7	87.9
Drosophila	85.0	92.1	96.6	86.8	87.9	84.6	87.8
mojavensis							
Acyrthosiphon pisum	85.3	91.2	84.9	86.2	87.2	83.5	86.4
Culex	83.5	91.3	90.4	86.9	88.0	82.1	86.9
quinquefasciatus							
Ixodes scapularis	80.1	90.5	79.1	87.7	88.8	77.8	85.8
Mean	84.6	92.4	89.8	88.0	89.1	84.4	87.8
Ref_found	5029	2492	3035	15345	13004	3575	

* p-value < $1 \mathrm{e}^{-15}$ for Daphnia pulex vs Tribolium castaneum. Mean column excludes Drosophila melanogaster

D. Other orthology assessments, best match to human genes count

Phylomedb results (Acyrthosiphon pisum analysis) are for human gene trees with all of 6 arthropod species, $\mathrm{n}=6,281$.
This set is produced only for gene families including Acyrthosiphon pisum, so only groups having all 6 arthropods are counted here. PhIGs results (s50.3, 2007 data) for human gene trees with at least 1 of 4 arthropod species, $n=14,818$, using an early Tribolium castaneum gene subset ($\sim 1 / 2$ current).

	Phylomedb Arthropod	Human	\% Best	Arthropod	PHiGs Human
Daphnia	2,888	46	Daphnia	9,156	\%est
Tribolium	1,324	21	Tribolium	2,623	18
Pediculus	1,117	18	Drosophila	1,262	9
Acyrthosiphon	441	7	Anopheles	2,649	18
Drosophila	191	3			
Anopheles	320	5			

Table S26. Gene families in Daphnia pulex with and without recognizable InterPro protein domains that have expanded relative to gene families in insects. Statistically significant differences are marked in bold for D . pulex counts $>$ insect counts with $\mathrm{p}<0.05$ based on 2,000 random permutations of exact probability. Others are groups with $2+$ Daphnia pulex genes for 11 Insect genes. iAve, iMax are average, maximum other (insect) gene counts for the group. G is log-likelihood G-score (chi-square like) of abundance differences for all species. Results indicated that 483 orthologous gene families are overly-represented in Daphnia ($p<0.05$). Based on iMax scores $=0$, we count 379 (or 78%) expanded gene families that are unique to the Daphnia lineage. To test whether Daphnia duplicated genes are significantly biased towards genes without homologs, we compared the number of duplicates in 13 other arthropod genomes. The average frequency of unique duplicates is 0.104 . The expected number of unique Daphnia duplicates is 1,503 , thus giving the predicted total of 14,486 duplicate genes for the Daphnia genome. The observed number of lineage-specific duplicated genes in the Daphnia genome $(2,326)$ is significantly greater than expected $\left(X^{2}(d f=1)=450.55, p<0.0001\right)$.

Gene families that are found to have expanded independently among insects with an aquatic larval stage (mosquitoes) are indicated ($¥$). Gene sets were compared from within the genomes of 11 insects (Acyrthosiphon pisum, Pediculus humanus, Aedes aegypti, Anopheles gambiae, Culex quinquefasciatus, Apis mellifera, Nasonia vitripennis, Tribolium castaneum, Drosophila melanogaster, D. pseudoobscura and D. mojavensis), Ixodes scapularis and D. pulex. To find coexpanded gene families in the Daphnia and mosquito lineages, D. pulex, A. aegypti, A. gambiae and C. quinquefasciatus (plus I. scapularis) were removed from the calculation of the terrestrial insect species average, and then over-abundant gene groups were tabulated for these four taxa relative to terrestrial insects.

ARP2 gene group ID	No. of species	No. of genes	Daphnia pulex gene count	iAve		G	Description
G19	2	133	132	0	0	612	neurexin IV; src=ixodes_ISCW023368-PA
G24	1	123	123	0	0	570	hypothetical protein
G53	1	91	91	0	0	409	
G37	12	107	89	1	2	347	Alpha-1,3-fucosyltransferase; alpha1,3-fucosyltransferase b homologue; glycoprotein A
G49	10	92	82	1	2	333	hypothetical protein; cuticle protein; cpr50cb
G64	2	81	80	0	1	351	hypothetical protein
G67	2	80	79	0	1	346	
G78	1	75	75	0	0	329	hypothetical protein; jmjc domain-containing histone demethylation protein; kdm4a
G81	1	74	74	0	0	324	
G69	2	77	73	0	4	312	hypothetical protein; btb/poz domain-containing protein; mgc154338 protein
G83	1	73	73	0	0	319	
G105	2	64	62	0	2	261	
G79	14	74	60	1	2	248	denn domain-containing protein; tubulin-specific chaperone D
G110	3	62	59	0	2	244	
G113	1	59	59	0	0	250	hypothetical protein

G149	1	52	52	0	0	216	hypothetical protein
G121	2	58	47	1	11	195	
G180	1	47	47	0	0	192	hypothetical protein
G199	1	45	45	0	0	182	hypothetical protein
G200	1	45	45	0	0	182	
G232	1	40	40	0	0	159	
G233	1	40	40	0	0	159	hypothetical protein; spz; spaetzle-like cytokine
G94	12	69	39	2	8	119	pupal cuticle protein; hypothetical protein; edg78e
G254	1	38	38	0	0	149	hypothetical protein
G268	1	37	37	0	0	145	cathepsin I-like
G276	1	36	36	0	0	140	
G277	1	36	36	0	0	140	
G296	1	35	35	0	0	135	
G309	1	34	34	0	0	131	hypothetical protein; malate dehydrogenase
G310	1	34	34	0	0	131	hypothetical protein;
G328	1	33	33	0	0	126	
G329	1	33	33	0	0	126	
G330	1	33	33	0	0	126	lactosylceramide; alpha-lactosylceramide
G379	1	31	31	0	0	117	
G380	1	31	31	0	0	117	hypothetical protein; btb/poz domain-containing protein; mgc154338 protein
G406	1	30	30	0	0	112	
G97	5	67	29	3	22	137	hypothetical protein
G425	1	29	29	0	0	108	hypothetical protein
G426	1	29	29	0	0	108	hypothetical protein
G159	13	50	27	1	2	86	cral/trio domain-containing protein
G349	3	32	27	0	4	96	
G375	5	31	27	0	1	93	brain chitinase and chia; vegfr-a splice form a; tyrosineprotein kinase
G481	1	27	27	0	0	98	cytochrome p450
G482	1	27	27	0	0	98	hypothetical protein; malate dehydrogenase
G483	1	27	27	0	0	98	hypothetical protein
G484	1	27	27	0	0	98	hypothetical protein
G526	1	26	26	0	0	94	hypothetical protein
G527	1	26	26	0	0	94	
G27	13	119	25	8	18	57	glucosyl/glucuronosyl transferases; gustatory receptor; class b scavenger receptor cd36 domain
G404	6	30	25	0	1	83	F-box only protein 21; src=daphnia_NCBI_GNO_116234
G579	1	25	25	0	0	90	membrane glycoprotein lig-1
G580	1	25	25	0	0	90	hypothetical protein
G42	13	102	23	7	23	80	histone h3 type
G578	2	25	23	0	0	79	proclotting enzyme precursor; src=ixodes_ISCW000320-PA
G687	1	23	23	0	0	81	hypothetical protein
G689	1	23	23	0	0	81	trypsin alpha precursor
G690	1	23	23	0	0	81	hypothetical protein
G691	1	23	23	0	0	81	hypothetical protein
G686	2	23	22	0	1	75	ankyrin repeat protein
G762	1	22	22	0	0	76	hypothetical protein
							131

G763	1	22	22	0	0	76	
G765	1	22	22	0	0	76	hypothetical protein
G766	1	22	22	0	0	76	
G139¥	13	54	21	3	6	47	class a rhodopsin-like g-protein coupled receptor gprop1
G842	1	21	21	0	0	72	hypothetical protein
G843	1	21	21	0	0	72	
G844	1	21	21	0	0	72	hypothetical protein
G845	1	21	21	0	0	72	
G846	1	21	21	0	0	72	bestrophin; bestrophin-2
G148	14	51	20	2	4	51	carbonic anhydrase; wd and tetratricopeptide repeats protein; cytoplasmic carbonic anhydrase
G227¥	14	40	20	2	3	58	conserved hypothetical protein; src=ixodes_ISCW009102-PA
G345	11	32	20	1	2	54	secreted protein; hypothetical protein
G760	3	22	20	0	1	65	transcriptional regulator ycf27
G988	1	20	20	0	0	68	hypothetical protein
G989	1	20	20	0	0	68	
G990	1	20	20	0	0	68	
G991	1	20	20	0	0	68	heat shock protein; inositol receptor
G992	1	20	20	0	0	68	clip-domain serine protease; lumbrokinase-31 precursor; clipdomain serine protease subfamily D
G269	14	36	19	1	2	55	chorion peroxidase precursor; peroxidase precursor; chorion peroxidase precursor ec contains chorion peroxidase light chain
G420	4	29	19	1	8	68	hypothetical protein; transposase; centromere protein B
G761	4	22	19	0	1	60	hypothetical protein; discoidin domain receptor; discoidin domain-containing receptor 2 precursor
G1166	1	19	19	0	0	63	hypothetical protein
G1167	1	19	19	0	0	63	
G1168	1	19	19	0	0	63	hypothetical protein
G1170	1	19	19	0	0	63	hypothetical protein
G1172	1	19	19	0	0	63	hypothetical protein
G1173	1	19	19	0	0	63	hypothetical protein; jmjc domain-containing histone demethylation protein; kdm4a
G1163	2	19	18	0	1	58	hypothetical protein; solute carrier family member a3; protein star
G1169	2	19	18	0	0	58	conserved hypothetical protein; src=ixodes_ISCW020111-PA
G1441	1	18	18	0	0	59	
G1442	1	18	18	0	0	59	hypothetical protein
G1443	1	18	18	0	0	59	hypothetical protein
G1444	1	18	18	0	0	59	hypothetical protein
G1445	1	18	18	0	0	59	hypothetical protein
G107	14	61	17	4	13	52	protease m 1 zinc metalloprotease; alanyl aminopeptidase; aminopeptidase n precursor
G178	8	47	17	2	17	77	transposase; src=ixodes_ISCW007041-PA
G427	4	29	17	1	10	66	Gly d 3; src=daphnia_NCBI_GNO_158563
G1845	1	17	17	0	0	55	
G1846	1	17	17	0	0	55	hypothetical protein
G1849	1	17	17	0	0	55	
G1850	1	17	17	0	0	55	hypothetical protein

G1851	1	17	17	0	0	55	hypothetical protein
G1852	1	17	17	0	0	55	lactosylceramide
G1853	1	17	17	0	0	55	
G1854	1	17	17	0	0	55	
G1855	1	17	17	0	0	55	hypothetical protein; solute carrier family member a3; protein star
G1856	1	17	17	0	0	55	brain chitinase and chia; vegfr-a splice form a; tyrosineprotein kinase
G1857	1	17	17	0	0	55	hypothetical protein
G73	14	73	16	5	11	27	glucose dehydrogenase precursor
G164¥	14	47	16	2	5	36	high choriolytic enzyme; zinc metalloproteinase nas-15 precursor; meprin a subunit beta
G759	4	22	16	0	3	49	hypothetical protein; jmjc domain-containing histone demethylation protein; kdm4a
G1161	3	19	16	0	2	49	hypothetical protein
G1831	2	17	16	0	1	50	hypothetical protein
G1838	2	17	16	0	1	50	lactosylceramide
G1847	2	17	16	0	0	50	conserved hypothetical protein; src=ixodes_ISCW020342-PA
G2462	1	16	16	0	0	51	hypothetical protein
G2463	1	16	16	0	0	51	hypothetical protein
G2464	1	16	16	0	0	51	
G2465	1	16	16	0	0	51	hypothetical protein
G2466	1	16	16	0	0	51	di-domain hemoglobin precursor
G74	12	74	15	5	13	45	serine-type enodpeptidase; src=aedes_AAEL003060-PA
G193	14	43	15	2	4	30	abc transporter; atp-binding cassette sub-family a member; nod factor export atp-binding protein I
G207	14	43	15	2	4	30	dna-directed rna polymerase II largest subunit
G306	13	34	15	1	4	33	gastric triacylglycerol lipase precursor; lipase 1 precursor; lysosomal acid lipase
G510	11	26	15	1	2	36	hypothetical protein
G2461	2	16	15	0	0	46	hypothetical protein
G3483	1	15	15	0	0	46	hypothetical protein
G3484	1	15	15	0	0	46	hypothetical protein
G3485	1	15	15	0	0	46	hypothetical protein
G3486	1	15	15	0	0	46	hypothetical protein
G3487	1	15	15	0	0	46	
G3488	1	15	15	0	0	46	hypothetical protein; transposase; centromere protein B
G3489	1	15	15	0	0	46	
G3490	1	15	15	0	0	46	hypothetical protein
G3491	1	15	15	0	0	46	clip-domain serine protease; lumbrokinase-31 precursor; clipdomain serine protease subfamily D
G3493	1	15	15	0	0	46	glucosyl/glucuronosyl transferases; gustatory receptor; class b scavenger receptor cd36 domain
G688	3	23	14	0	3	48	conserved hypothetical protein; src=ixodes_ISCW004589-PA
G1836	4	17	14	0	1	40	conserved hypothetical protein; src=culex_CPIJ016633
G3469	2	15	14	0	1	42	
G3476	2	15	14	0	1	42	hypothetical protein
G3492	2	15	14	0	1	42	Hypothetical protein
G4919	1	14	14	0	0	42	hypothetical protein

G4920	1	14	14	0	0	42	
G4921	1	14	14	0	0	42	r2d2; tar rna binding protein
G4922	1	14	14	0	0	42	hypothetical protein
G4923	1	14	14	0	0	42	
G4924	1	14	14	0	0	42	tudor domain-containing protein
G4925	1	14	14	0	0	42	hypothetical protein
G4926	1	14	14	0	0	42	hypothetical protein
G4927	1	14	14	0	0	42	hypothetical protein
G187	14	45	13	3	4	22	bumetanide-sensitive na-k-cl cotransport protein
G219	13	41	13	2	5	25	hypothetical protein; cytochrome p450 cyp15a1; cyp304a1
G229¥	14	32	13	2	4	27	tribolium castaneum heat shock protein
G324	13	33	13	2	3	25	lactosylceramide; alpha-lactosylceramide
G343	12	32	13	2	3	28	pancreatic triacylglycerol lipase; ves g 1 allergen precursor pancreatic lipase related protein 1
G441	13	27	13	1	2	27	class b secretin-like g-protein coupled receptor gprmth4; class b secretin-like g-protein coupled receptor gprmth1; class b secretin-like g-protein coupled receptor gprmth3
G2457	3	16	13	0	1	38	abc transporter; atp-binding cassette sub-family a member; nod factor export atp-binding protein I
G5963	1	13	13	0	0	38	hypothetical protein
G5964	1	13	13	0	0	38	hypothetical protein
G5965	1	13	13	0	0	38	hypothetical protein
G5966	1	13	13	0	0	38	hypothetical protein
G5967	1	13	13	0	0	38	
G5968	1	13	13	0	0	38	hypothetical protein
G5969	1	13	13	0	0	38	hypothetical protein
G5970	1	13	13	0	0	38	
G5971	1	13	13	0	0	38	hypothetical protein
G5972	1	13	13	0	0	38	hypothetical protein
G5973	1	13	13	0	0	38	hypothetical protein
G5974	1	13	13	0	0	38	hypothetical protein
G5975	1	13	13	0	0	38	hypothetical protein
G5976	1	13	13	0	0	38	hypothetical protein
G5977	1	13	13	0	0	38	hypothetical protein
G212	13	40	12	2	4	22	cral/trio domain-containing protein
G299	13	33	12	2	3	22	amp dependent coa ligase; acyl-coa synthetase
G376	5	31	12	2	15	62	hypothetical protein; mariner transposase; set domain and marinertransposase fusion
G3465	3	15	12	0	2	34	polyprotein; hypothetical protein; hypothetical protein k02a2.6
G3470	2	15	12	0	3	36	hypothetical protein
G5959	2	13	12	0	1	34	hypothetical protein
G5962	2	13	12	0	1	34	c-type lectin ctl - mannose binding.; serine protease; c-type lectin ctl - mannose binding. transcript A
G6719	1	12	12	0	0	34	hypothetical protein;
G6720	1	12	12	0	0	34	denn domain-containing protein; tubulin-specific chaperone D
G6721	1	12	12	0	0	34	ubiquitin-protein e3 ligase; hypothetical protein
G6722	1	12	12	0	0	34	hypothetical protein

G6723	1	12	12	0	0	34	hypothetical protein
G6724	1	12	12	0	0	34	hypothetical protein; mariner transposase; set domain and marinertransposase fusion
G6725	1	12	12	0	0	34	hypothetical protein
G6727	1	12	12	0	0	34	
G6728	1	12	12	0	0	34	hypothetical protein
G6729	1	12	12	0	0	34	denn domain-containing protein; tubulin-specific chaperone D
G6730	1	12	12	0	0	34	
G6731	1	12	12	0	0	34	
G6732	1	12	12	0	0	34	hypothetical protein
G6734	1	12	12	0	0	34	
G6735	1	12	12	0	0	34	hypothetical protein
G6736	1	12	12	0	0	34	
G6737	1	12	12	0	0	34	
G6738	1	12	12	0	0	34	hypothetical protein
G6739	1	12	12	0	0	34	
G6740	1	12	12	0	0	34	hypothetical protein
G6741	1	12	12	0	0	34	rna-binding protein precursor; hypothetical protein; rnabinding protein
G192	13	45	11	3	5	19	zinc carboxypeptidase; zinc carboxypeptidase a; zinc carboxypeptidase a 1 precursor
G246	14	36	11	2	3	19	atp-binding cassette sub-family g member; abc transporter
G671	13	23	11	1	1	21	queuine tRNA-ribosyltransferase; src=culex_CPIJ003941
G1848	2	17	11	0	0	38	sulfotransferase sult; bile salt sulfotransferase; hypothetical protein
G4910	3	14	11	0	2	30	hypothetical protein
G6718	2	12	11	0	1	30	hypothetical protein
G7291	1	11	11	0	0	31	
G7292	1	11	11	0	0	31	
G7293	1	11	11	0	0	31	
G7294	1	11	11	0	0	31	
G7295	1	11	11	0	0	31	hypothetical protein
G7296	1	11	11	0	0	31	hypothetical protein
G7297	1	11	11	0	0	31	hypothetical protein
G7298	1	11	11	0	0	31	
G7299	1	11	11	0	0	31	hypothetical protein
G7300	1	11	11	0	0	31	hypothetical protein
G7302	1	11	11	0	0	31	hypothetical protein
G7303	1	11	11	0	0	31	
G7304	1	11	11	0	0	31	hypothetical protein
G7305	1	11	11	0	0	31	hypothetical protein
G7306	1	11	11	0	0	31	hypothetical protein
G301¥	12	28	10	1	3	19	receptor-type tyrosine-protein phosphatase alpha precursor hypothetical protein; roundabout
G764	2	22	10	1	12	51	hypothetical protein
G1223	7	18	10	1	2	24	hypothetical protein
G6712	3	12	10	0	1	26	serine/threonine-protein kinase mph1

G7267	2	11	10	0	1	27	hypothetical protein
G7752	1	10	10	0	0	27	hypothetical protein
G7753	1	10	10	0	0	27	hypothetical protein
G7754	1	10	10	0	0	27	
G7755	1	10	10	0	0	27	hypothetical protein
G7756	1	10	10	0	0	27	hypothetical protein
G7757	1	10	10	0	0	27	sulfate transporter
G7758	1	10	10	0	0	27	hypothetical protein
G7759	1	10	10	0	0	27	hypothetical protein
G7760	1	10	10	0	0	27	hypothetical protein
G7761	1	10	10	0	0	27	hypothetical protein
G7762	1	10	10	0	0	27	hypothetical protein
G7763	1	10	10	0	0	27	hypothetical protein
G7764	1	10	10	0	0	27	hypothetical protein
G7765	1	10	10	0	0	27	hypothetical protein
G7766	1	10	10	0	0	27	hypothetical protein
G7767	1	10	10	0	0	27	hypothetical protein
G7768	1	10	10	0	0	27	
G7769	1	10	10	0	0	27	hypothetical protein
G7771	1	10	10	0	0	27	hypothetical protein
G7772	1	10	10	0	0	27	
G7774	1	10	10	0	0	27	brain chitinase and chia; vegfr-a splice form a; tyrosineprotein kinase
G7775	1	10	10	0	0	27	hypothetical protein
G7776	1	10	10	0	0	27	hypothetical protein
G7777	1	10	10	0	0	27	hypothetical protein
G271	13	32	9	2	5	21	glutathione s-transferase; glutathione s-transferase ec classsigma
G600	11	19	9	1	1	17	timeless protein
G660	12	22	9	1	2	16	Idl receptor ligand-binding repeat bearing protein; hypothetical protein; pro-epidermal growth factor
G969	12	20	9	1	1	16	athalia rosae coleseed sawfly/abc membrane transporter
G1440	7	18	9	1	3	22	peritrophic membrane chitin binding protein
G7773	2	10	9	0	1	23	neutral endopeptidase
G8296	1	9	9	0	0	23	
G8297	1	9	9	0	0	23	hypothetical protein
G8298	1	9	9	0	0	23	
G8299	1	9	9	0	0	23	hypothetical protein
G8300	1	9	9	0	0	23	
G8301	1	9	9	0	0	23	hypothetical protein
G8302	1	9	9	0	0	23	hypothetical protein
G8303	1	9	9	0	0	23	hypothetical protein
G8304	1	9	9	0	0	23	hypothetical protein
G8305	1	9	9	0	0	23	
G8306	1	9	9	0	0	23	hypothetical protein
G8307	1	9	9	0	0	23	hypothetical protein
G8308	1	9	9	0	0	23	
G8309	1	9	9	0	0	23	hypothetical protein

G8310	1	9	9	0	0	23	hypothetical protein
G8311	1	9	9	0	0	23	hypothetical protein
G8312	1	9	9	0	0	23	hypothetical protein
G8313	1	9	9	0	0	23	chromosome 7 scaf14703
G8314	1	9	9	0	0	23	hypothetical protein
G8315	1	9	9	0	0	23	hypothetical protein
G8316	1	9	9	0	0	23	c-type lectin ctl - mannose binding.; serine protease; c-type lectin ctl - mannose binding. transcript A
G8317	1	9	9	0	0	23	hypothetical protein
G8318	1	9	9	0	0	23	hypothetical protein
G8319	1	9	9	0	0	23	hypothetical protein
G8320	1	9	9	0	0	23	hypothetical protein
G8321	1	9	9	0	0	23	hypothetical protein
G8322	1	9	9	0	0	23	hypothetical protein
G8323	1	9	9	0	0	23	
G8324	1	9	9	0	0	23	hypothetical protein
G8325	1	9	9	0	0	23	hypothetical protein
G8326	1	9	9	0	0	23	hypothetical protein
G8327	1	9	9	0	0	23	hypothetical protein
G8328	1	9	9	0	0	23	chromosome 7 scaf14703
G8329	1	9	9	0	0	23	hypothetical protein
G8330	1	9	9	0	0	23	hypothetical protein
G8331	1	9	9	0	0	23	hypothetical protein
G8333	1	9	9	0	0	23	hypothetical protein; cuticular protein; structural constituent of cuticle
G8334	1	9	9	0	0	23	hypothetical protein
G8335	1	9	9	0	0	23	hypothetical protein
G8336	1	9	9	0	0	23	hypothetical protein
G8337	1	9	9	0	0	23	hypothetical protein
G166	13	49	8	3	10	21	cytochrome p450; corpora allata cytochrome p450; cyp4ac3
G302	14	32	8	2	2	11	acyl-coa-binding domain-containing protein; hypothetical protein; acyl-coa-binding protein
G604	14	24	8	1	3	17	transcription elongation factor spt6
G1422	6	18	8	1	6	25	hypothetical protein; transposase; centromere protein B
G1902	8	16	8	1	2	17	para-nitrobenzyl esterase
G6733	4	12	8	0	2	19	hypothetical protein
G7698	2	10	8	0	2	20	
G8215	2	9	8	0	1	19	hypothetical protein; transposase; centromere protein B
G8236	2	9	8	0	1	19	hypothetical protein
G8275	2	9	8	0	1	19	
G8287	2	9	8	0	1	19	hypothetical protein
G8295	2	9	8	0	1	19	
G8332	1	8	8	0	0	20	hypothetical protein
G8873	1	8	8	0	0	20	hypothetical protein
G8874	1	8	8	0	0	20	hypothetical protein
G8875	1	8	8	0	0	20	hypothetical protein
G8876	1	8	8	0	0	20	hypothetical protein
G8877	1	8	8	0	0	20	hypothetical protein

G8878	1	8	8	0	0	20	hypothetical protein
G8879	1	8	8	0	0	20	hypothetical protein
G8880	1	8	8	0	0	20	
G8881	1	8	8	0	0	20	hypothetical protein
G8882	1	8	8	0	0	20	
G8883	1	8	8	0	0	20	hypothetical protein
G8884	1	8	8	0	0	20	hypothetical protein; vitellogenin-1 precursor; hemelipoglycoprotein precursor
G8885	1	8	8	0	0	20	hypothetical protein
G8886	1	8	8	0	0	20	4 days neonate male adipose cdna
G8887	1	8	8	0	0	20	hypothetical protein
G8888	1	8	8	0	0	20	hypothetical protein
G8890	1	8	8	0	0	20	
G8891	1	8	8	0	0	20	hypothetical protein
G8892	1	8	8	0	0	20	hypothetical protein
G8893	1	8	8	0	0	20	
G8894	1	8	8	0	0	20	hypothetical protein
G8897	1	8	8	0	0	20	hypothetical protein
G8898	1	8	8	0	0	20	hypothetical protein
G8899	1	8	8	0	0	20	hypothetical protein
G8901	1	8	8	0	0	20	
G8902	1	8	8	0	0	20	hypothetical protein
G8903	1	8	8	0	0	20	sugar transporter; gastric caeca sugar transporter
G8904	1	8	8	0	0	20	
G8905	1	8	8	0	0	20	hypothetical protein
G650	14	23	7	1	2	13	beta-1,4-n-acetylgalactosaminyl transferase bre-4; beta-1,4galactosyltransferase
G736	14	22	7	1	3	14	hypothetical protein
G779	14	21	7	1	1	13	regulator of g protein signaling
G825	14	21	7	1	2	13	zinc carboxypeptidase; zinc carboxypeptidase a; zinc carboxypeptidase a 1 precursor ec
G1339	12	18	7	1	1	11	low-density lipoprotein receptor Idl
G2467	4	16	7	1	6	24	lactosylceramide; alpha-lactosylceramide
G7261	4	11	7	0	2	16	hypothetical protein LOC100163706; src=aphid_ncbi_hmm240084
G7877	3	9	7	0	1	16	Lactosylceramide
G8808	2	8	7	0	1	16	hypothetical protein
G8850	2	8	7	0	1	16	hypothetical protein
G8853	2	8	7	0	1	16	hypothetical protein
G8889	2	8	7	0	0	16	hypothetical protein; src=ixodes_ISCW013637-PA
G9537	1	7	7	0	0	16	hypothetical protein
G9538	1	7	7	0	0	16	hypothetical protein
G9539	1	7	7	0	0	16	hypothetical protein
G9541	1	7	7	0	0	16	chitinase
G9542	1	7	7	0	0	16	vacuolar protein sorting
G9543	1	7	7	0	0	16	hypothetical protein
G9544	1	7	7	0	0	16	hypothetical protein
G9545	1	7	7	0	0	16	hypothetical protein

G9546	1	7	7	0	0	16	hypothetical protein
G9548	1	7	7	0	0	16	
G9549	1	7	7	0	0	16	bms1l protein
G9550	1	7	7	0	0	16	hypothetical protein
G9551	1	7	7	0	0	16	
G9552	1	7	7	0	0	16	hypothetical protein
G9553	1	7	7	0	0	16	hypothetical protein
G9554	1	7	7	0	0	16	hypothetical protein
G9555	1	7	7	0	0	16	hypothetical protein
G9556	1	7	7	0	0	16	hypothetical protein
G9557	1	7	7	0	0	16	hypothetical protein
G9558	1	7	7	0	0	16	
G9559	1	7	7	0	0	16	hypothetical protein
G9560	1	7	7	0	0	16	hypothetical protein
G9561	1	7	7	0	0	16	hypothetical protein
G9562	1	7	7	0	0	16	hypothetical protein
G9563	1	7	7	0	0	16	hypothetical protein
G9564	1	7	7	0	0	16	hypothetical protein
G9565	1	7	7	0	0	16	hypothetical protein
G9566	1	7	7	0	0	16	
G9567	1	7	7	0	0	16	
G9568	1	7	7	0	0	16	hypothetical protein
G9569	1	7	7	0	0	16	hypothetical protein
G9570	1	7	7	0	0	16	hypothetical protein
G9571	1	7	7	0	0	16	hypothetical protein
G9572	1	7	7	0	0	16	
G9573	1	7	7	0	0	16	hypothetical protein
G9574	1	7	7	0	0	16	abc transporter; atp-binding cassette sub-family a member; nod factor export atp-binding protein I
G9575	1	7	7	0	0	16	
G9576	1	7	7	0	0	16	hypothetical protein
G9577	1	7	7	0	0	16	hypothetical protein
G9578	1	7	7	0	0	16	hypothetical protein
G9579	1	7	7	0	0	16	hypothetical protein
G9580	1	7	7	0	0	16	hypothetical protein
G9581	1	7	7	0	0	16	
G9582	1	7	7	0	0	16	hypothetical protein
G9583	1	7	7	0	0	16	hypothetical protein
G9584	1	7	7	0	0	16	hypothetical protein
G9585	1	7	7	0	0	16	
G9586	1	7	7	0	0	16	hypothetical protein
G9587	1	7	7	0	0	16	hypothetical protein
G9588	1	7	7	0	0	16	glucosyl/glucuronosyl transferases; gustatory receptor; class b scavenger receptor cd36 domain
G9589	1	7	7	0	0	16	hypothetical protein
G9590	1	7	7	0	0	16	hypothetical protein
G9591	1	7	7	0	0	16	peroxinectin precursor
G9593	1	7	7	0	0	16	hypothetical protein

G9595	1	7	7	0	0	16	hypothetical protein
G9596	1	7	7	0	0	16	
G9598	1	7	7	0	0	16	hypothetical protein
G9599	1	7	7	0	0	16	hypothetical protein
G9600	1	7	7	0	0	16	hypothetical protein
G9601	1	7	7	0	0	16	
G9602	1	7	7	0	0	16	hypothetical protein
G9605	1	7	7	0	0	16	hypothetical protein
G394¥	14	28	6	2	3	9	scp-like extracellular protein; cysteine-rich venom protein; cysteine-rich secretory protein-2
G901	14	20	6	1	2	10	prolyl alpha-1 subunit precursor
G951	14	20	6	1	1	10	dna topoisomerase II
G1086	11	17	6	1	2	10	hypothetical protein
G1434	5	18	6	1	6	22	nfx1-type zinc finger-containing protein 1; nfx1-type zinc finger-containing protein; splicing endonuclease positive effector sen1
G5951	3	13	6	1	5	20	hypothetical protein
G10425	1	6	6	0	0	13	hypothetical protein
G10426	1	6	6	0	0	13	hypothetical protein
G10427	1	6	6	0	0	13	hypothetical protein
G10428	1	6	6	0	0	13	hypothetical protein
G10429	1	6	6	0	0	13	hypothetical protein
G10430	1	6	6	0	0	13	hypothetical protein
G10432	1	6	6	0	0	13	hypothetical protein
G10433	1	6	6	0	0	13	
G10434	1	6	6	0	0	13	
G10435	1	6	6	0	0	13	hypothetical protein
G10437	1	6	6	0	0	13	hypothetical protein
G10438	1	6	6	0	0	13	hypothetical protein
G10439	1	6	6	0	0	13	
G10440	1	6	6	0	0	13	atp-dependent rna helicase kurz
G10441	1	6	6	0	0	13	hypothetical protein
G10442	1	6	6	0	0	13	hypothetical protein
G10443	1	6	6	0	0	13	hypothetical protein
G10444	1	6	6	0	0	13	hypothetical protein
G10445	1	6	6	0	0	13	hypothetical protein
G10446	1	6	6	0	0	13	hypothetical protein
G10447	1	6	6	0	0	13	
G10448	1	6	6	0	0	13	hypothetical protein
G10449	1	6	6	0	0	13	hypothetical protein
G10450	1	6	6	0	0	13	hypothetical protein
G10451	1	6	6	0	0	13	
G10452	1	6	6	0	0	13	hypothetical protein
G10453	1	6	6	0	0	13	hypothetical protein
G10454	1	6	6	0	0	13	hypothetical protein
G10455	1	6	6	0	0	13	hypothetical protein
G10456	1	6	6	0	0	13	hypothetical protein
G10458	1	6	6	0	0	13	hypothetical protein

G10460	1	6	6	0	0	13	hypothetical protein
G10461	1	6	6	0	0	13	hypothetical protein
G10462	1	6	6	0	0	13	hypothetical protein
G10463	1	6	6	0	0	13	hypothetical protein
G10464	1	6	6	0	0	13	
G10466	1	6	6	0	0	13	hypothetical protein
G10467	1	6	6	0	0	13	hypothetical protein
G10468	1	6	6	0	0	13	hypothetical protein
G10469	1	6	6	0	0	13	hypothetical protein
G10470	1	6	6	0	0	13	
G10471	1	6	6	0	0	13	hypothetical protein
G10472	1	6	6	0	0	13	hypothetical protein
G10474	1	6	6	0	0	13	mannan endo-1
G10476	1	6	6	0	0	13	hypothetical protein
G10477	1	6	6	0	0	13	hypothetical protein
G10478	1	6	6	0	0	13	hypothetical protein
G10479	1	6	6	0	0	13	hypothetical protein
G10480	1	6	6	0	0	13	hypothetical protein; cuticle protein; cpr50cb
G10481	1	6	6	0	0	13	replication protein a; hypothetical protein
G10482	1	6	6	0	0	13	hypothetical protein
G10483	1	6	6	0	0	13	
G10484	1	6	6	0	0	13	hypothetical protein
G10485	1	6	6	0	0	13	hypothetical protein
G10486	1	6	6	0	0	13	hypothetical protein
G10487	1	6	6	0	0	13	hypothetical protein
G10488	1	6	6	0	0	13	hypothetical protein
G10489	1	6	6	0	0	13	hypothetical protein
G10490	1	6	6	0	0	13	
G10491	1	6	6	0	0	13	hypothetical protein; organic solute transporter alpha
G10492	1	6	6	0	0	13	hypothetical protein
G10494	1	6	6	0	0	13	hypothetical protein
G10496	1	6	6	0	0	13	hypothetical protein
G10497	1	6	6	0	0	13	hypothetical protein
G388	14	29	5	2	3	6	bombesin receptor subtype-3
G457	14	23	5	1	2	7	delta-9 desaturase 1; fatty acid desaturase; acyl-coa delta-9 desaturase
G588	14	24	5	2	2	7	transcriptional regulator atrx x-linked helicase ii; dna repair and recombination protein rad54b; lymphoid specific helicase
G589	14	23	5	1	2	7	n -ethylmaleimide sensitive fusion protein
G772	13	21	5	1	2	6	three prime repair exonuclease
G1054	13	19	5	1	2	6	dehydrogenase/reductase sdr family member
G1056	14	18	5	1	1	7	hypothetical protein; otopetrin
G1112	13	19	5	1	2	6	hypothetical protein
G1351	14	18	5	1	1	7	pre-mrna cleavage complex ii protein clp1
G1402	13	18	5	1	2	6	nucleoside-diphosphate kinase nbr-a
G208	14	34	4	2	3	4	myosin-rhogap protein; myosin heavy chain; glycyl-trna synthetase
G304	14	23	4	2	3	6	annexin x ; annexin ix; anxb11

G336	14	27	4	2	3	7	hypothetical protein; phosphatidylinositol transfer protein sec14; cral/trio domain-containing protein
G391	14	19	4	1	2	5	chloride channel protein
G584¥	13	24	4	2	3	6	amp dependent coa ligase; acyl-coa synthetase
G739	13	22	4	1	2	6	carbohydrate sulfotransferase; hypothetical protein
G780	13	16	4	1	1	4	sodium/hydrogen exchanger 3 nhe3
G916	13	19	4	1	2	4	calcyphosine/tpp
G954	13	20	4	1	2	4	soluble guanylate cyclase; soluble guanylyl cyclase beta subunit
G955	14	20	4	1	2	5	valacyclovir hydrolase; serine hydrolase-like
G1002	13	17	4	1	2	4	gamma-glutamyl hydrolase precursor
G1032	14	19	4	1	2	5	peroxisomal isomerase
G1198	13	17	4	1	2	5	fumarylacetoacetate hydrolase domain-containing protein
G1205	12	15	4	1	1	4	deoxythymidylate kinase thymidylate kinase
G1209	14	17	4	1	1	4	chromosome region maintenance protein
G1225	14	18	4	1	2	5	geranylgeranyl pyrophosphate synthase/polyprenyl synthetase
G1254	13	18	4	1	1	5	hypothetical protein
G1261	14	18	4	1	2	5	sa
G1272	14	18	4	1	2	5	hypothetical protein
G1277	14	18	4	1	2	5	delta-1-pyrroline-5-carboxylate dehydrogenase
G1315	14	17	4	1	1	4	phosphatidate phosphatase
G1403	14	18	4	1	2	5	short-chain dehydrogenase
G1421	13	17	4	1	2	4	ribonuclease h1; ribonuclease H
G1482	14	15	4	1	1	4	hypothetical protein
G1553	13	17	4	1	2	4	hypothetical protein
G1642	14	17	4	1	1	4	hypothetical protein
G1745	14	16	4	1	1	4	integrator complex subunit
G2044	13	16	4	1	1	4	clip-domain serine protease; lumbrokinase-31 precursor; clipdomain serine protease subfamily D
G2116	13	16	4	1	1	4	hypothetical protein
G2210	12	15	4	1	1	4	glucosyl/glucuronosyl transferases; gustatory receptor; class b scavenger receptor cd36 domain
G2334	13	16	4	1	1	4	mrna-capping-enzyme; nadh-ubiquinone oxidoreductase flavoprotein 1 ndufv1
G2582	12	15	4	1	1	4	hypothetical protein
G2848	12	15	4	1	1	4	hypothetical protein
G3076	12	15	4	1	1	4	hypothetical protein
G4690	11	14	4	1	1	5	sodium-dependent phosphate transporter
G535	14	15	3	1	1	2	methionine-r-sulfoxide reductase
G606	13	22	3	1	2	3	potassium voltage-gated channel protein shaw shaw2; voltage-gated potassium channel
G611¥	14	21	3	1	3	4	phospholipid hydroperoxide glutathione peroxidase
G618	14	17	3	1	2	3	steroid dehydrogenase; hydroxysteroid dehydrogenase
G653	14	19	3	1	2	3	adenylsulfate kinase
G711¥	14	20	3	1	3	4	hypothetical protein
G728	13	15	3	1	1	2	possible integral membrane efflux protein efpa
G733	14	18	3	1	2	3	long chain fatty acid coa-ligase
G823	13	21	3	1	2	9	hypothetical protein

G878	14	20	3	1	2	3	dual specificity protein phosphatase; jnk stimulatory phosphatase jsp1; dual-specificity protein phosphatase
G882	14	16	3	1	1	2	glycerol-3-phosphate dehydrogenase
G911	13	19	3	1	2	4	apolipoprotein d precursor; apolipoprotein D
G957	14	18	3	1	3	4	lethal2essential for life protein; proteinlethal2essential for life protein efl21; heat shock protein
G1017	14	15	3	1	1	2	ion transport peptide precursor
G1040	14	18	3	1	2	3	sodium/nucleoside cotransporter
G1052	13	17	3	1	2	3	Pug
G1084	13	19	3	1	2	3	amine oxidase; peroxisomal n1-acetyl-spermine/spermidine oxidase; peroxisomal n1-acetyl-spermine/spermidine oxidase precursor
G1095	14	19	3	1	2	3	plasma alpha-l-fucosidase precursor
G1129	14	18	3	1	2	3	sodium/calcium exchanger
G1208	14	16	3	1	1	2	hypothetical protein
G1213	14	17	3	1	2	3	integrin alpha-ps; integrin alpha2 precursor position-specific antigen 2 alpha subunit protein inflated; integrin alpha1 precursor
G1235	13	16	3	1	2	2	hypothetical protein
G1265	12	15	3	1	2	3	chitooligosaccharidolytic beta-n-acetylglucosaminidase precursor; beta-hexosaminidase subunit beta precursor n-acetyl-beta-glucosaminidase subunit beta beta-nacetylhexosaminidase subunit beta hexosaminidase subunit b; chitooligosaccharidolytic beta-n-acetylglucosaminidase
G1276	13	18	3	1	3	4	class b scavenger receptor cd36 domain. nb: previously described as scrb2; class b scavenger receptor cd36 domain
G1302	14	16	3	1	1	2	hypothetical protein
G1319	14	18	3	1	2	3	apis mellifera amt-2-like protein ,mrna; ammonium transporter iss; amt-1-like protein
G1373	14	17	3	1	2	3	fk506 binding protein; fk506-binding protein; fk506 binding protein fkbp
G1377	13	17	3	1	2	3	U4/U6.U5 tri-snRNP-associated protein; src=pediculus_PHUM534220-PA
G1387	14	18	3	1	2	3	intraflagellar transport homolog
G1395	13	16	3	1	2	2	I-lactate dehydrogenase
G1396	14	16	3	1	2	2	n6-adenosine-methyltransferase kda subunit
G1407	13	17	3	1	2	3	4-aminobutyrate aminotransferase
G1410	13	17	3	1	2	3	serine/threonine-protein kinase polo; hypothetical protein
G1473	12	15	3	1	2	3	leucine zipper-ef-hand-containing transmembrane protein
G1538	14	16	3	1	1	2	b; solute carrier family glycerol-3-phosphate transporter; dna repair and recombination protein rad54
G1605	14	16	3	1	1	2	class a rhodopsin-like g-protein coupled receptor gprdop2
G1617	14	17	3	1	2	3	Tw
G1626	13	17	3	1	3	3	trehalose-6-phosphate synthase 1
G1653	14	17	3	1	2	3	dual oxidase: peroxidase and nadph-oxidase domains
G1661	14	16	3	1	1	2	nicotinamide mononucleotide adenylyltransferase
G1693	14	16	3	1	1	2	long-chain-fatty-acid-coa ligase
G1736	13	17	3	1	2	3	importin beta-4
G1795	14	16	3	1	1	2	wiskott-aldrich syndrome gene-like protein
G1799	13	17	3	1	2	3	ancient domain protein 2 cyclin m2

G1936	14	16	3	1	1	2	40s ribosomal protein s9
G1946	12	16	3	1	2	3	kinesin-like protein kif1b; kinesin heavy chain; hypothetical protein
G1975	14	16	3	1	1	2	phosphatidylinositol catalytic subunit alpha
G2006	14	16	3	1	1	2	hypothetical protein
G2025	14	16	3	1	1	2	wd repeat protein
G2035	14	16	3	1	1	2	retina aberrant in pattern; wd repeat-containing protein slp1
G2050	14	16	3	1	1	2	gtp-binding protein di-ras2
G2052	14	16	3	1	1	2	hypothetical protein
G2090	14	16	3	1	1	2	ufm1-conjugating enzyme 1 ubiquitin-fold modifierconjugating enzyme 1
G2107	14	16	3	1	1	2	alcohol dehydrogenase class
G2125	14	16	3	1	1	2	endoribonuclease dcr-1; dicer-1
G2132	13	16	3	1	2	2	integrator complex subunit 7 int7;
G2142	13	15	3	1	1	2	branchiostoma peroxiredoxin v protein
G2143	14	16	3	1	1	2	hypothetical protein
G2184	14	16	3	1	1	2	5-aminolevulinic acid synthase
G2211	14	16	3	1	1	2	leucine-rich repeat serine/threonine-protein kinase
G2249	12	16	3	1	2	3	adenylate cyclase
G2264	14	16	3	1	1	2	tetratricopeptide repeat protein; o-linked n-acetylglucosamine transferase; sxc
G2361	11	16	3	1	2	5	phospholipid-transporting atpase
G2405	14	16	3	1	1	2	1-acyl-glycerol-3-phosphate acyltransferase
G2618	13	15	3	1	1	2	nadph oxidase
G2667	13	15	3	1	1	2	hypothetical protein
G2729	13	15	3	1	1	2	dna-directed rna polymerase iii subunit F
G2782	13	15	3	1	1	2	myo inositol monophosphatase
G2896	12	14	3	1	1	3	beta-1,3-galactosyltransferase
G3077	12	15	3	1	2	3	dna-directed rna polymerase iii subunit G
G3141	12	15	3	1	2	3	short-chain dehydrogenase
G3720	12	14	3	1	1	3	hypothetical protein
G3798	12	14	3	1	1	3	xaao aminopeptidase
G3931	12	14	3	1	1	3	name=CG6865-PA; parent=FBgn0036817; src=drosmel_CG6865-PA
G4720	12	14	3	1	1	3	karyopherin importin alpha

Table S27. Species used in the study of gene family expansions history (see Figure 1C).

Species Name	Source	File Name / Version	\# of (predicted) genes
Daphnia pulex	JGI	Daphnia_FrozenGeneCatalog_2007_07_03.aa.fasta	30,940
Drosophila pseudoobscura FlyBase	dpse-all-translation-r2.3.fasta	16,158	
Drosophila melanogaster	Ref 5	http://insects.eugenes.org/arthropods/data/	13,738
Apis mellifera	NCBI Gnomon	http://insects.eugenes.org/arthropods/data/	17,182
Anopheles gambiae	Ensembl r50	Anopheles_gambiae.AgamP3.50.pep.all.fa *	12,457
Aedes aegypti	Ensembl r50	Aedes_aegypti.AaegL1.50.pep.all.fa *	15,419
Nematostella vectensis	JGI	proteins.Nemve1FilteredModels1.fasta	27,273
Homo sapiens	Ensembl r50	Homo_sapiens.NCBI36.50.pep.all.fa *	21,785
Danio rerio	Ensembl r50	Danio_rerio.ZFISH7.50.pep.all.fa *	21,322
Caenorhabditis elegans	Ensembl r50	Caenorhabditis_elegans.WS190.50.pep.all.fa *	20,176
Tribolium castaneum	Beetlebase rel3 http://insects.eugenes.org/arthropods/data/	16,422	

Table S28. EvolMap reconstruction of gene gain and loss events in arthropods and four other metazoans. Ancestor name = the common ancestor of the species for a given row. Sym-bets $=$ the number of symmetrical best alignments detected between the two descendants of the given node, as specified by the species phylogeny (Figure 1C). Present loci $=$ the estimated number of genes present at the specified node, by accounting for gene families that were detected in earlier ancestors. Loss $=$ the number of gene loss events estimated along the specified branch. Paralogs = the estimated number of duplication events along the branch, for genes having considerable sequence similarity with other members of the gene family within the same genome. Diverged paralogs $=$ the number of genes that have duplicated and diverged more than the orthologous genes, and thus are assumed to have evolved under relaxed or positive selection after the gene duplication event. Ambiguous gains $=$ the estimated number of genes originating at the specified branch that have no significant similarity to other gene families. Total gains $=$ the sum of paralogs, diverged paralogs and ambiguous gains. No scoring genes is calculated only for each of the modern species = the number of genes that have no sequence similarity above a minimum threshold ($p>10^{-4}$). AVG and STD of sym-bet $=$ the average and standard deviation [S182] for the similarity estimates between orthologous members of the gene families, where a higher value indicates greater sequence conservation between the orthologous genes. Abbreviations: Anaga, Anopheles gambiae; Aedae, Aedes aegypti; Drome, Drosophila melanogaster; Drops, Drosophila pseudoobscura; Apime, Apis mellifera; cele, Caenorhabditis elegans; Dappu, Daphnia pulex; Homsa, Homo sapiens; Danre, Danio rerio; Nemve, Nematostella vectensis; Trica, Tribolium castaneum.

Ancestor name	Sym-bets	Present loc	Loss	Paralogs	Diverged Paralogs	Ambiguous gains	Total Gains	No scoring genes	AVG Symbet	$\begin{aligned} & \text { STD } \\ & \text { Sym- } \\ & \text { bet } \end{aligned}$
homsa; danre; cele; dappu; apime; trica; aedae; anoga; drome; drops; nemve	7,423									
homsa; danre; cele; dappu; apime; trica; aedae; anoga; drome; drops	6,764	8,679	17	86	877	310	1,273	0	538	104
homsa; danre	10,873	12,232	681	2,263	1,207	764	4,234	0	702	130
homsa	21,785	19,633	359	2,276	3,637	1,847	7,760	2,152		
danre	21,322	20,869	1,000	3,280	4,405	1,952	9,637	453		
cele; dappu; apime; trica; aedae; anoga; drome; drops	4,877	7,846	1,295	66	332	64	462	0	515	100
cele	20,176	15,762	2,643	2,050	2,634	5,875	10,559	4,414		
dappu; apime; trica; aedae; anoga; drome; drops	6,895	8,685	393	458	503	271	1,232	0	588	123
dappu	30,940	25,030	1,079	5,076	5,537	6,811	17,424	5,910		
apime; trica; aedae; anoga; drome; drops	7,698	9,161	756	96	819	317	1,232	0	602	122
apime	17,182	11,385	1,062	1,420	777	1,089	3,286	5,797		
trica; aedae; anoga; drome; drops	7,665	9,385	439	87	423	153	663	0	602	123
trica	16,422	12,839	914	1,824	1,566	978	4,368	3,583		
aedae; anoga; drome; drops	8,072	9,323	863	78	431	292	801	0	628	127
aedae; anoga	8,935	10,148	497	275	654	393	1,322	0	749	133
aedae	15,419	14,278	493	1,876	1,527	1,220	4,623	1,141		
anoga	12,457	11,438	720	642	707	661	2,010	1,019		
drome; drops	11,584	11,963	799	497	1,484	1,458	3,439	0	804	126
drome	13,738	13,002	196	258	560	417	1,235	736		
drops	16,158	14,626	183	728	835	1,283	2,846	1,532		
nemve	27,273	24,743	0	6,843	6,333	4,144	17,320	2,530		

Table S29. Gene duplication and duplicate gene birth rates in the Daphnia pulex, Caenorhabditis elegans and Homo sapiens genomes. The birth rates of gene duplicates were calculated using the number of single-pair duplicates in the youngest cohort ($\mathrm{K}_{\mathrm{s}}<0.01$), the baseline number of single copy genes and the synonymous substitution rate $\left(K_{s}\right)$, and giving units of duplications/gene/ K_{s}. Birth rates are estimated by (Number of single pair duplicates $<\mathrm{K}_{\mathrm{s}}$.01)/(Number of single copy genes + Number of single pair duplicate gene pairs).

Single copy genes	16,285	13,768	15,002
Duplicate genes	14,655	6,350	7,678
Total genes	30,940	20,118	22680
Birth rate	0.0093	0.0033	0.0073

Table S30. Large fraction of Daphnia pulex duplicated genes. The large gene inventory is attributed to over 900 localized tandem gene duplication (TGD) clusters of 3 or more loci. Representative genomes are compared: Drosophila melanogaster, Caenorhabditis elegans and Mus musculus. The same method at identifying TGDs was applied to all species (see SOM). By using different criteria, Woollard [S183] reports 402 gene clusters for Caenorhabditis elegans, instead of 680 clusters by our measures.

	Total \# duplicated genes	Total \# 3+ tandem duplicated genes	Total \# 3+ gene clusters
Daphnia pulex	$13,972 / 28,093(50 \%)$	$5,400 / 27,000(20 \%)$	919
Drosophila melanogaster	$4,497 / 13,391(34 \%)$	$1,500 / 13,500(11 \%)$	168
Caenorhabditis elegans	$8,674 / 19,692(44 \%)$	$3,000 / 20,000(15 \%)$	680
Mus musculus	$10,244 / 18,871(54 \%)$		

Table S31. Gene families that are expanded and/or shared between Daphnia pulex and other aquatic (vertebrate) species compared to average differences found in terrestrial animals. Thirty-six eukaryotic genomes are compared by superfamily assignments [S83], including 18 invertebrates and 17 vertebrates of which 14 taxa are aquatic and 21 taxa are terrestrial. Daphnia pulex is the only invertebrate that exclusively lives in water and with a draft genome sequence data. Three gene families are expanded in the D. pulex genome and have significant aquatic versus terrestrial average differences (indicated by \dagger), while the remaining 26 gene families have significant invertebrate versus vertebrate average differences. Significant ($p<0.05$) t-test results of root mean square deviation from expected gene count (genome \times family) contingency table are listed between aquatic/terrestrial groups.

SuperFamily ID	Protein Domain	Aquatic Invertebrate Gene Count	Aquatic Vertebrate Gene Count	Terrestrial Invertebrate Gene Count	Terrestrial Vertebrate Gene Count	T Statistic	$\begin{gathered} \text { Degrees } \\ \text { of } \\ \text { Freedom } \end{gathered}$	P-Value
sf51665 \dagger	Xylose isomerase	2.86	1.57	1.18	1	4.97	28	3.03E-05
sf10164	3 Thrombospondin Cterminal domain	8.71	10.29	2.18	6.8	4.24	15.8	0.0006475
sf52426	Cryptochrome/photolyase, N -terminal domain	1.86	2.86	1	1	3.62	18.9	0.001834
sf55528	Matrix metalloproteases, catalytic domain	19.86	27.14	4.18	24.9	3.45	26.3	0.001902
sf10364	8 TSP type-3 repeat	14	16.14	3.18	11.1	3.53	15.1	0.00297
sf55935	Guanido kinase catalytic domain	12.71	10.71	4.36	6.4	3.48	16.2	0.003031
sf82904	Noggin	1.86	3.71	1.09	2	3.34	21.1	0.003122
sf48035	Guanido kinase N terminal domain	9	9.86	3.36	6.1	3.46	16.5	0.003139
sf81320 \dagger	Rhodopsin-like	24.3	41.9	11.8	17.1	3.44	16.5	0.003218
sf48174	Cryptochrome/photolyase FAD-binding domain	5	11	2.91	3.5	3.28	18.8	0.003981
sf52592	G proteins	162	291	104	240	3.36	14.6	0.004475
sf52769	Arginase-like amidino hydrolases	5.86	7.29	2.36	4.7	2.99	17.3	0.008169
sf53496	Prolyl oligopeptidase, Cterminal domain	3	3.86	1.73	2.7	2.66	32.8	0.01189
sf47502	Calmodulin-like	41	64.4	20.9	54	2.71	17.3	0.01472
sf10207	9 Putative alpha-Lfucosidase, catalytic domain	9.71	5.43	2.73	4	2.67	14.8	0.0177
sf11043	6 Ornithine cyclodeaminase-like (Pfam 02423)	2.57	2.14	1.18	1.8	2.51	24.2	0.01922
sf52468	Deoxyhypusine synthase, DHS	4.86	3.43	1.82	2.6	2.57	16.7	0.02022
sf63708	Ganglioside M2 (gm2) activator	2.14	2.57	1.09	2	2.46	18.3	0.02394
sf51557	Adenosine deaminase (ADA)	2.71	3.43	1.45	2.4	2.39	25.2	0.02447

sf64357	Synatpobrevin N-terminal domain	3.29	6.86	2.91	2.6	2.37	26.9	0.02543
sf53452†	beta 1,4 galactosyltransferase (b4GalT1)	14.86	12.71	5.73	11.3	2.39	20.1	0.0267
sf49266	Fibronectin type III	7.71	68	4	157.7	-2.32	28.1	0.02766
sf63608	Leukotriene A4 hydrolase C-terminal domain	3.14	2.57	1.36	2.1	2.34	20.2	0.02937
sf49600	TRAF domain	14	10.43	2.64	11	2.33	14.9	0.03421
sf46887	Methionine aminopeptidase, insert domain	3.14	3.71	1.55	3.3	2.2	31.7	0.03487
sf82283	Homocysteine Smethyltransferase	12.14	4.29	1.82	5.3	2.3	14.8	0.03649
sf81287	ML domain	2.86	2.86	1.55	1.9	2.15	21.2	0.04344
sf52002	R1 subunit of ribonucleotide reductase, C-terminal domain	2.86	3.43	1.82	2.3	2.1	26.8	0.04524
sf63984	Sir2 family of transcriptional regulators	8.29	9.29	4.73	7.8	2.07	24.1	0.04946

Table S32. Part A. Forty-six Daphnia pulex opsin genes belonging to 6 major clades. Part B. Additional Metazoan Opsins in Figure S21.

Part A.

Protein ID	Name in Figure S21	Location in genome assembly	Opsin subfamily	Major clade
Dappu-214454	BLOP	scaffold_53:628972-627385	Rhabdomeric	UV (Blue)
Dappu-303450	UVOP	scaffold_21:242254-243735	Rhabdomeric	UV
Dappu-14112	UNOP1	scaffold_95:369266-373273	Rhabdomeric	Unknown
Dappu-60874	UNOP2	scaffold_95:441206-436847	Rhabdomeric	Unknown
Dappu-307031	LOPA1	scaffold_598:27649-26145	Rhabdomeric	LongA
Dappu-307030	LOPA2	scaffold_598:19709-18148	Rhabdomeric	LongA
Dappu-67015	LOPA3	scaffold_598:16355-14836	Rhabdomeric	LongA
Dappu-306275	LOPA4	scaffold_47:938824-940341	Rhabdomeric	LongA
New	LOPA5N	scaffold_174:66413-66609	Rhabdomeric	LongA
Dappu-302464	LOPA6	scaffold_174:68557-70212	Rhabdomeric	LongA
Dappu-335676	LOPA71	scaffold_696:761-2619	Rhabdomeric	LongA
Dappu-93838	LOPA8	scaffold_696:4556-6206	Rhabdomeric	LongA
Dappu-93844	LOPA9	scaffold_776:5823-4192	Rhabdomeric	LongA
Dappu-93844	LOPA10	scaffold_776:1944-678	Rhabdomeric	LongA
Dappu-54168	LOPB1	scaffold_40:709566-708143	Rhabdomeric	LongB
Dappu-305771	LOPB2	scaffold_40:716215-717823	Rhabdomeric	LongB
Dappu-198385	LOPB3	scaffold-40:722122-723709	Rhabdomeric	LongB
Dappu-305803	LOPB4	scaffold_40:728027-729621	Rhabdomeric	LongB
Dappu-106095	LOPB5	scaffold_40:732744-734341	Rhabdomeric	LongB
Dappu-305772	LOPB6	scaffold_40:737671-739173	Rhabdomeric	LongB
Dappu-321382	LOPB7	scaffold_40:742430-743903	Rhabdomeric	LongB
Dappu-43742	LOPB8	scaffold_6:1902006-1900546	Rhabdomeric	LongB
Dappu-216106	LOPB9	scaffold_78:111258-112698	Rhabdomeric	LongB
New	LOPB10	scaffold_78:114113-114451	Rhabdomeric	LongB
Dappu-326257	LOPB11	scaffold_78:119912-120349	Rhabdomeric	LongB
Dappu-254506	LOPB12	scaffold_78:123902-124674	Rhabdomeric	LongB
Dappu-326259	LOPB13	scaffold_78:126986-128343	Rhabdomeric	LongB
New	LOPB14	scaffold_78:133375-134342	Rhabdomeric	LongB
Dappu-326260	LOPB15	scaffold_78:142739-144179	Rhabdomeric	LongB
Dappu-24963	ARTHROPSIN1	scaffold_14:758164-761748	Rhabdomeric	Arthropsin
Dappu-47717	ARTHROPSIN2	scaffold_14:766741-771298	Rhabdomeric	Arthropsin
Dappu-24264	ARTHROPSIN3	scaffold_14:779460-783216	Rhabdomeric	Arthropsin
Dappu-23519	ARTHROPSIN4	scaffold_14:847788-844292	Rhabdomeric	Arthropsin
Dappu-2566	ARTHROPSIN5	scaffold_14:839526-835973	Rhabdomeric	Arthropsin
Dappu-47520	ARTHROPSIN6	scaffold_13:689696-688112	Rhabdomeric	Arthropsin
Dappu-223107	ARTHROPSIN7	scaffold_13:962643-964536	Rhabdomeric	Arthropsin
Dappu-47330	ARTHROPSIN8	scaffold_13:1021380-1023187	Rhabdomeric	Arthropsin
Dappu-312425	PTEROPSIN1	scaffold_6:1015520-1013655	Ciliary	Pteropsin
Dappu-312424/235776	PTEROPSIN2P	scaffold_6:1009166-1007372	Ciliary	Pteropsin

Dappu-307122
Dappu-97105
Dappu-51511
Dappu-51298/103328
Dappu-51251
Dappu-243539
Dappu-303264

PTEROPSIN3
PTEROPSIN4
PTEROPSIN5P
PTEROPSIN6
PTEROPSIN7
PTEROPSIN8
PTEROPSIN9

scaffold_6:1006658-1004665	Ciliary	Pteropsin
scaffold_6:767483-770451	Ciliary	Pteropsin
scaffold_25:431410-435620	Ciliary	Pteropsin
scaffold_25:446147-452002	Ciliary	Pteropsin
scaffold_25:460743-464047	Ciliary	Pteropsin
scaffold_25:484111-488573	Ciliary	Pteropsin
scaffold_2:3695086-3691119	Ciliary	Pteropsin

Part B.

Gene Name	Species	Accession
Bombyx UNOP	Bombyx mori	BGIBMGA012539-PA (silkdb.org)
Anolis pinopsin	Anolis carolinensis	AAD32622
Anopheles op1 4	Anopheles gambiae	XP_001238567
Anopheles op7	Anopheles gambiae	XP_001688790
Anopheles op10	Anopheles gambiae	XP_308329
Anopheles op8	Anopheles gambiae	XP_312478
Anopheles pteropsin 12	Anopheles gambiae	XP_312502.2
Anopheles pteropsin 11	Anopheles gambiae	XP_312503
Anopheles op9	Anopheles gambiae	XP_319247
Anopheles op6	Anopheles gambiae	XP_322000
Bombyx pteropsin	Bombyx mori	BGIBMGA008437-PA (silkdb.org)
Bombyx Lop1	Bombyx mori	BGIBMGA007787-PA (silkdb.org)
Apis Uvop	Apis mellifera	NP_001011605 XP_392791
Apis Blop	Apis mellifera	NP_001011606 XP_392042
Apis Lop1	Apis mellifera	NP_001011639 XP_397397
Apis pteropsin	Apis mellifera	NP_001035057
Apis Lop2	Apis mellifera	NP_001071293
Bombyx Lop2	Bombyx mori Branchinella	NP_001036882
Branchinella BAG80984	kugenumaensis	BAG80984
Branchinella kugenumaensis	Branchinella	
BAG80985	kugenumaensis	BAG80985
Branchinella kugenumaensis	Branchinella	
BAG80986	kugenumaensis	BAG80986
Branchinella kugenumaensis	Branchinella	
BAG80987	kugenumaensis	BAG80987
Branchinella kugenumaensis	Branchinella	
BAG80988	kugenumaensis	BAG80988
Branchinella kugenumaensis	Branchinella	
BAG80989	kugenumaensis	BAG80989
Branchinella kugenumaensis	Branchinella	
BAG80990	kugenumaensis	BAG80990
Branchinella kugenumaensis	Branchinella	
BAG80991	kugenumaensis	BAG80991
Branchinella kugenumaensis	Branchinella	
BAG80992	kugenumaensis	BAG80992
Branchinella kugenumaensis	Branchinella	
BAG80993	kugenumaensis	BAG80993

Branchinella kugenumaensis	Branchinella	
BAG80994	kugenumaensis	BAG80994
Branchinella kugenumaensis	Branchinella	
BAG80995	kugenumaensis	BAG80995
Branchinella kugenumaensis	Branchinella	
BAG80996	kugenumaensis	BAG80996
Branchinella kugenumaensis	Branchinella	
BAG80997	kugenumaensis	BAG80997
Amphioxus1	Branchiostoma belcheri	BAC76019
Amphioxus2	Branchiostoma belcheri	BAC76020
Amphioxus4	Branchiostoma belcheri	BAC76021
Amphioxus5	Branchiostoma belcheri	BAC76022.1
Amphioxus6	Branchiostoma belcheri	BAC76024
Amphioxus melanopsin	Branchiostoma belcheri	Q4R114 Listed in paper as AB525082 - but not found in
Hasarius pteropsin	Branchiostoma belcheri	Genbank
Amphioxus 3	Branchiostoma belcheri	C76023
Bufo pinopsin	Bufo japonicus	AAF12820
Ciona opsin1	Ciona intestinalis	NP_001027727
Anopheles op5	Anopheles gambiae	AGAP001162-RA (Anopheles genome on Ensembl)
Danio red	Danio rerio	AAD20549.1
Danio green1	Danio rerio	AAD24752
Danio peropsin	Danio rerio	NP_001004654
Danio Encephalopsin	Danio rerio	NP_001104634 XP_690306
Danio blue	Danio rerio	NP_571267
Danio UV	Danio rerio	NP_571394.1
Danio rod	Danio rerio	P35359.2
Drosophilia rh4	Drosophila melanogaster	NP_476701
Drosophilia rh5	Drosophila melanogaster	NP_477096
Drosophilia rh7	Drosophila melanogaster	NP_524035
Drosophilia rh6	Drosophila melanogaster	NP_524368
Drosophilia rh2	Drosophila melanogaster	NP_524398.1
Drosophilia rh1	Drosophila melanogaster	NP_524407.1
Drosophilia rh3	Drosophila melanogaster	NP_524411
Gallus melanopsin	Gallus gallus	NP_989956
Gallus pinopsin	Gallus gallus	NP_990740
Hemigrapsus rh1	Hemigrapsus sanguineus	Q25157.1
Hemigrapsus rh2	Hemigrapsus sanguineus	Q25158
Homo Encephalopsin	Homo sapiens	NP_055137
Homo melanopsin	homo sapiens	NP_150598
Homo RGR	Homo sapiens	NP_001012738.1
Homo peropsin	Homo sapiens	NP_006574
Homo neuropsin	Homo sapiens	NP_859528 XP_166440
Ictalurus parapinopsin	Ictalurus punctatus	042266
Limulus ops5	Limulus polyphemus	ACO05013
Limulus lateral	Limulus polyphemus	P35360
Loligo GQ	Loligo forbesi	P24603
Bombyx Uvop	Manduca sexta	002465

Bombyx Blop	Manduca sexta	096107
Megoura rh1	Megoura viciae	AAG17119
Megoura UV	Megoura viciae	AAG17120
Mizuhopecten GQ	Mizuhopecten yessoensis	015973
Mizuhopecten GO	Mizuhopecten yessoensis	O15974
Papillo Rh3	Papilio glaucus	AAD29445.1
Papillo Rh1	Papilio glaucus	AAD34220.1
Papillo Rh2	Papilio glaucus	AAD34221
Papillo Rh4	Papilio glaucus	AAD34224
Papilio Rh5	Papilio glaucus	AAD34222
Papilio rh6	Papilio glaucus Pediculus humanus	AAD34223
Pediculus UV	corporis Pediculus humanus	XP_002422743
PhLopFix	corporis Pediculus humanus	XP_002427337
Pediculus UNOPN	corporis	XP_002432663
Petromyzon pinopsin	Petromyzon marinus	042490
Platynereis c	Platynereis dumerilii	AAV63834
Platynereis GQ	Platynereis dumerilii	CAC86665
Procambarus P35356	Procambarus clarkii	P35356
Salmo VA	Salmo salar	NP_001117098
Schistocerca 2	Schistocerca gregaria	Q26495
Schistocerca 1	Schistocerca gregaria	Q94741
Schistosoma GQ	Schistosoma mansoni	AAF73286
Takifugu TMT	Takifugu rubripes	NP_001027778
Tetradon RGR	Tetraodon nigroviridis	CAF98663.1
Fugu melanopsin	Tetraodon nigroviridis	CAF99228
Tertradon neuropsin	Tetraodon nigroviridis	CAG13006.1
Tigriopus californicus	Tigriopus californicus	HQ180268
Todarodes retinochrome	Todarodes pacificus	P23820
Tribolium pteropsin	Tribolium castaneum	EFA01685
Tribolium Lop	Tribolium castaneum	NP_001155991 XP_973147
Tribolium UV	Tribolium castaneum	XP_970344
Triops granarius BAG80976	Triops granarius	BAG80976
Triops granarius BAG80977	Triops granarius	BAG80977
Triops granarius BAG80978	Triops granarius	BAG80978
Triops granarius BAG80979	Triops granarius	BAG80979
Triops longicaudatus BAG80981	Triops longicaudatus	BAG80981
Triops longicaudatus BAG80982	Triops longicaudatus	BAG80982
Triops longicaudatus BAG80983	Triops longicaudatus	BAG80983
Triops longicaudatus BAG80998	Triops longicaudatus	BAG80998
Triops longicaudatus BAG80999	Triops longicaudatus	BAG80999
Vargula tsujii	Vargula tsugii	HQ180267
Xenopus melanopsin	Xenopus laevis	NP_001079143

F. Consequence Daphnia's Genome Structure

Table S33. Summary of gene conversion features as a function of the number of genes within the genomes of Daphnia pulex and five selected Drosophila species. Conversion rate is given as converted pairs of paralogs/total pairs of paralogs analyzed.

	Daphnia pulex	Drosophila melanogaster	Drosophila yakuba	Drosophila pseudoobscura virilis	Drosophila	Drosophila grimshawi
No. Conversion events	7,007	190	223	313	246	377
No. Converted pairs	6,086	138	194	244	186	301
No. Converted genes	6,213	233	337	407	305	483
Events/Pair	1.15	1.38	1.15	1.28	1.32	1.25
Total pairs analyzed	55,362	1,790	2,239	2,128	1,576	2,269
Total genes analyzed	13,330	1,905	2,747	2,501	1,960	2,683
\% Converted genes	46.61	12.23	12.27	16.27	15.56	18
Gene conversion rate	10.99	7.71	8.66	11.47	11.8	13.27

Table S34. Summary of genome-wide gene conversion features among Daphnia and five selected Drosophila species.

Converted	Daphnia pulex	Drosophila melanogaster	Drosophila yakuba	Drosophila pseudoobscura	Drosophila	Drosophila grimshawi
Same strand	1,105	89	102	119	113	153
Opposite strand	392	33	53	43	43	49

Non-converted						
Same strand	3,881	908	1,023	829	733	852
Opposite strand	2,133	285	351	304	289	350

Fisher's 2-tail	$5.51 \mathrm{E}-12$	0.4382	0.0267	1	0.924	0.1773

Table S35. Summary of genome-wide gene conversion features as a function of the location of paralogs on scaffolds or Müller elements among Daphnia and five selected Drosophila species.

	Daphnia pulex	Drosophila melanogaster	Drosoph yakuba	Drosophila pseudoobscura	Droso virilis	Drosophila grimshawi
Converted intraelement/scaffold	1,497	122	155	162	156	202
Converted interelement/scaffold	4,589	16	22	40	18	18
Total converted	6,086	138	177	202	174	220
Non-converted intraelement/scaffold	6,014	1,193	1,374	1,133	1,022	1,202
Non-converted interelement/scaffold	43,262	459	480	517	357	344
Total non-converted	49,276	1,652	1,854	1,650	1,379	1,546
Total intraelement/scaffold	7,511	1,315	1,529	1,295	1,178	1,404
Total interelement/scaffold	47,851	475	502	557	375	362
\% Converted intraelement/scaffold	24.6	88.41	87.57	80.2	89.66	91.82
\% Non-converted intraelement/scaffold	12.2	72.22	74.11	68.67	74.11	77.75

Table S36. Summary of genome-wide gene conversion (conv.) features as a function of the size of conversion tracts among Daphnia and five selected Drosophila species. Minimum and maximum values represent the shortest and longest converted tract found by Geneconv [S99].

	Daphnia pulex	Drosophila melanogaster	Drosophila yakuba	Drosophila pseudoobscura virilis	Drosophila	Drosophila grimshawi
Average (bp)	169	186	192	180	182	297
Median (bp)	109	83	81	95	81	167
Minimum (bp)	20	14	11	7	11	10
Maximum (bp)	2413	2213	2837	1287	3079	2437
Total converted bp	$1,180,733$	35,322	42,711	56,443	44,888	111,907
Total bp converted pairs	$7,004,873$	385,800	518,349	644,846	518,080	861,115
Total bp screened	$14,140,570$	$3,454,328$	$4,005,419$	$3,764,802$	$3,251,664$	$3,957,669$
\% Tract/conv. pairs	16.86	9.16	8.24	8.75	8.66	13
\% Tract/all pairs	8.35	0.92	0.94	1.28	1.19	2.32

Table S37. Summary of genome-wide gene conversion (conv.) features as a function of the size of gene families among Daphnia and five selected Drosophila species. The asterisk indicates that the average of Daphnia converted families has been calculated after removing the largest family with 4,007 genes (the average would otherwise be ~ 11 genes per family).

	Daphnia pulex	Drosophila melanogaster	Drosophila yakuba	Drosophila pseudoobscura virilis	Drosophila	Drosophila grimshawi
No. Conv. gene families	942	99	144	169	131	211
Average family size conv.	7.63^{*}	3.28	2.99	2.97	2.97	2.9
\% Conv. of family size 2	26.22%	57.80%	61.10%	55.60%	55.70%	68.20%
\% Nonconv. of family size 260.43%	80.00%	85.70%	82.90%	84.10%	83.50%	

Table S38. Summary of genome- wide gene conversion features as a function of the distance of intra-element or intra-scaffold paralogs among Daphnia and five selected Drosophila species.

Converted	Daphnia pulex	Drosophila melanogaster	Drosophila yakuba	Drosophila pseudoobscura virilis	Drosophila	Drosophila grimshawi
Average distance (bp)	110,881	294,326	$1,027,163$	134,591	281,609	153,547
Median distance (bp)	16,060	1,797	2,601	2,325	2,360	2,530
Non-converted						
Average distance (bp)	268,781	$1,508,835$	$1,415,872$	$1,434,743$	$1,183,649$	620,793
Median distance (bp)	63,275	4,915	4,847	7,128	7,493	5,478

Table S39. Homologous di-domain hemoglobin genes (Hb) of Daphnia pulex and Daphnia magna. Daphnia magna hemoglobin gene cluster contig assembly NCBI accession number is AB518060.

Daphnia pulex gene	Location in genome assembly	Daphnia magna gene	Location in contig assembly	\% identity
Dpul-Hb1 (Dappu-96311)	scaffold_4:23666681-2368249	Dmag-Hb1	$553 . .2095$	73.1
Dpul-Hb2 (Dappu-230332)	scaffold_4:2370110-2374287	Dmag-Hb2	$4360 . .5875$	73.2
Dpul-Hb3 (Dappu-311662)	scaffold_4:2372773-2374287	Dmag-Hb3	$7071 . .8561$	70.6
Dpul-Hb4 (Dappu-234836)	scaffold_4:2376081-2377561	Dmag-Hb4	$10541 . .12024$	71.7
Dpul-Hb5 (Dappu-234837)	scaffold_4:2380765-2382213	Dmag-Hb5	$15384 . .16893$	71.2
Dpul-Hb6 (Dappu-234838)	scaffold_4:2383418-2384965			
Dpul-Hb7 (Dappu-234839)	scaffold_4:2386115-2387624	Dmag-Hb7	$19734 . .21224$	70.7
Dpul-Hb8 (Dappu-230333)	scaffold_4:2388769-2390272	Dmag-Hb8	$22483 . .24059$	71.8
Dpul-Hb9 (Dappu-210408)	scaffold_17:410538-409010			
Dpul-Hb10 (Dappu-92880)	scaffold_36:522846-524214			
Dpul-Hb11 (Dappu-93831)	scaffold_452:2493-3859			

G. Evolutionary Diversification of Duplicated Genes

Table S40. The number of paralog pairs that differ unambiguously in their expression patterns among 0 to 12 conditions as a function of genetic divergence measured as nucleotide substitutions at synonymous sites (K_{s}).

$\mathrm{K}_{\text {s }}$	Number of Conditions												
	0	1	2	3	4	5	6	7	8	9	10	11	12
0-0.05	14	7	4	3	1	0	0	1	0	0	0	0	0
0.05-0.1	35	31	8	9	2	1	0	0	0	0	0	0	0
0.1-0.5	729	468	215	118	54	40	23	10	3	4	1	2	2
0.5-1	940	604	414	227	163	95	61	33	25	12	8	3	22
1-2	1106	792	596	563	443	364	224	161	125	63	25	16	11
2-3	520	458	394	373	325	239	208	172	106	51	27	7	7
3-5	264	260	274	225	246	188	174	145	93	53	24	16	10

Table S41. Chi-square tests for associations between paralogs ($\mathrm{K}_{\mathrm{s}}<2$) sharing expression patterns across 12 conditions tested on microarrays and \mathbf{A}. their genomic arrangements (dispersed or clustered); B. whether gene conversion signatures are detected.

A.	Expression Patterns		\% Different	Clustered $\mathrm{X}^{2}=0.027 ; p=0.869$
Genomic Arrangement	Same	Different		
Dispersed	2396	5125	68.1	
Clustered	428	932	68.5	
B.	Expression Patterns			$G C X^{2}=11.9 ; p=0.00055$
Gene Conversion (GC)	Same	Different	\% Different	
No Signature	2426	5414	69.1	
Signature of GC	398	643	61.8	

Table S42. The number of paralog pairs that have the same expression patterns and that have different expression patterns among 0 to 12 conditions as a function of genetic divergence measured as nucleotide substitutions at synonymous sites $\left(\mathrm{K}_{\mathrm{s}}\right)$, comparing sets that include and that exclude genes showing signatures of gene conversion.

	All paralog pairs				Paralog pairs excluding gene conversions			
K_{s}	Same	Different	\% Different	P-value	Same	Different	\% Different	P -value
0-0.05	14	16	53.3	1.0000	11	11	50.0	1.0000
0.05-0.1	35	51	59.3	0.2840	23	38	62.3	0.2020
0.1-0.5	729	940	56.3	0.0003	540	729	57.4	0.0002
0.5-1	940	1667	63.9	0.0000	807	1445	64.2	0.0000
1-2	1106	3383	75.4	0.0000	1045	3191	75.3	0.0000
2-3	520	2367	82.0	0.0000	504	2315	82.1	0.0000
3-5	264	1708	86.6	0.0000	261	1689	86.6	0.0000

H. Functional Significance of Expanded Gene Families

Table S43. Metabolic pathways (classified by KEGG and highlighted in Figure 4) containing expanded metabolic genes in the Daphnia pulex genome compared to insects and vertebrates. The number of gene copies is indicated for identified enzymes. "Highlighted pathway ID" refers to panels $A-G$ in Figure 4 where pathway " H " corresponds to the enzymes not listed in any panels.

Highlighted pathway ID	$\begin{aligned} & \text { KEGG map } \\ & \text { ID } \end{aligned}$	KEGG name	Enzyme commission No.	Enzyme name	No. gene copies
H	map00040	Pentose and glucuronate interconversions	2.4.1.17	glucuronosyltransferase	24
-	map00040	Pentose and glucuronate interconversions	5.3.1.5	xylose isomerase	6
-	map00072	Synthesis and degradation of ketone bodies	1.1.1.30	3-hydroxybutyrate dehydrogenase	8
-	map00100	Biosynthesis of steroids	1.14.13.72	methylsterol monooxygenase	11
-	map00120	Bile acid biosynthesis	3.1.1.13	sterol esterase	28
E	map00150	Androgen and estrogen metabolism	2.4.1.17	glucuronosyltransferase	24
E	map00150	Androgen and estrogen metabolism	2.8.2.4	estrone sulfotransferase	7
H	map00230	Purine metabolism	2.7.7.6	DNA-directed RNA polymerase	105
H	map00240	Pyrimidine metabolism	2.7.7.6	DNA-directed RNA polymerase	105
G	map00330	Arginine and proline metabolism	1.14.11.2	procollagen-proline dioxygenase	12
G	map00330	Arginine and proline metabolism	1.5.1.12	1-pyrroline-5-carboxylate dehydrogenase	6
H	map00480	Glutathione metabolism	3.4.11.2	membrane alanyl aminopeptidase	26
-	map00500	Starch and sucrose metabolism	2.4.1.15	alpha,alpha-trehalose-phosphate synthase (UDP-forming)	4
-	map00510	N -Glycan biosynthesis	2.4.1.38	beta- N -acetylglucosaminylglycopeptide beta-1,4-galactosyltransferase	11
-	map00512	O-Glycan biosynthesis	2.4.1.122	glycoprotein- N -acetylgalactosamine 3-beta-galactosyltransferase	16
A	map00530	Aminosugars metabolism	3.2.1.14	chitinase	15
A	map00530	Aminosugars metabolism	3.2.1.52	beta- N -acetylhexosaminidase	10
H	map00531	Glycosaminoglycan degradation	3.2.1.52	beta- N -acetylhexosaminidase	10
-	map00561	Glycerolipid metabolism	3.1.1.3	triacylglycerol lipase	37
-	map00590	Arachidonic acid metabolism	5.3.99.2	prostaglandin-D synthase	11
-	map00600	Sphingolipid metabolism	2.4.1.47	N -acylsphingosine galactosyltransferase	18
F	map00601	Glycosphingolipid biosynthesis - lactoseries	2.4.1.206	lactosylceramide 1,3-N-acetyl-beta-Dglucosaminyltransferase	9
F	map00601	Glycosphingolipid biosynthesis - lactoseries	2.4.1.65	3-galactosyl- N -acetylglucosaminide 4-alpha-L-fucosyltransferase	7

Glycosphingolipid
F map00602 biosynthesis - neolactoseries
Glycosphingolipid
F map00602 biosynthesis - neolactoseries
Glycosphingolipid
F map00602 biosynthesis - neolactoseries
F map00603 Glycosphingolipid biosynthesis - globoseries
F map00603 $\begin{aligned} & \text { Glycosphingolipid } \\ & \text { biosynthesis - globoseries }\end{aligned}$
Glycosphingolipid
H map00604 biosynthesis ganglioseries

- map00630 $\begin{aligned} & \text { Glyoxylate and } \\ & \text { dicarboxylate metabolism }\end{aligned}$
- map00650 Butanoate metabolism
- map00670 One carbon pool by folate
- map00680 Methane metabolism
- map00680 Methane metabolism
- map00720 Reductive carboxylate

D map00920 Sulfur metabolism
map00940
Phenylpropanoid biosynthesis
Phenylpropanoid biosynthesis
2.4.1.152
2.4.1.206
2.4.1.65
2.4.1.228
3.2.1.52
3.2.1.52

6.3.4.3

1.1.1.30 3-hydroxybutyrate dehydrogenase
6.3.4.3 formate--tetrahydrofolate ligase
1.1.1.284 $\begin{aligned} & \text { S-(hydroxymethyl)glutathione } \\ & \text { dehydrogenase }\end{aligned}$
1.11.1.7 peroxidase 38
2.7.9.2 pyruvate, water dikinase 2
2.8.2.4 estrone sulfotransferase 7
1.11.1.7 peroxidase 38
6.2.1.12 4-coumarate--CoA ligase 12

Table S44. Metabolic pathways (classified by KEGG and highlighted in Figure 4) containing expanded metabolic genes in the arthropod genomes compared to vertebrate genomes. The number of gene copies is indicated for identified enzymes. "Highlighted pathway ID" refers to panels A-G in Figure 4 where pathway " H " corresponds to the enzymes not listed in any panels.

Highlighted pathway ID	KEGG map $_{\text {KEGG name }}$	Enzyme commission No.	Enzyme name	No. gene copies
-	map00040 Pentose and glucuronate	2.4.1.17	glucuronosyltransferase	24
-	map00100 Biosynthesis of steroids	1.14.13.72	methylsterol monooxygenase	11
-	map00120 Bile acid biosynthesis	3.1.1.13	sterol esterase	28
-	map00150 Androgen and estrogen metabolism	2.4.1.17	glucuronosyltransferase	24
-	map00150 Androgen and estrogen metabolism	2.8.2.4	estrone sulfotransferase	7
-	map00230 Purine metabolism	2.7.7.6	DNA-directed RNA polymerase	105
H	map00230 Purine metabolism	4.6.1.2	guanylate cyclase	16
-	map00240 Pyrimidine metabolism	2.7.7.6	DNA-directed RNA polymerase	105
-	map00251 Glutamate metabolism	1.4.1.13	glutamate synthase (NADPH)	1
-	map00340 Histidine metabolism	4.1.1.22	histidine decarboxylase	7
H	map00340 Histidine metabolism	4.1.1.28	aromatic-L-amino-acid decarboxylase	7
B	map00350 Tyrosine metabolism	1.14.17.1	dopamine beta-monooxygenase	5
B	map00350 Tyrosine metabolism	4.1.1.25	tyrosine decarboxylase	7
B	map00350 Tyrosine metabolism gamma-	4.1.1.28	aromatic-L-amino-acid decarboxylase	7
-	map00361 Hexachlorocyclohexane degradation	3.1.3.1	alkaline phosphatase	6
H	map00380 Tryptophan metabolism	4.1.1.28	aromatic-L-amino-acid decarboxylase	7
-	map00480 Glutathione metabolism	3.4.11.2	membrane alanyl aminopeptidase	26
-	map00500 Starch and sucrose metabolism	2.4.1.15	alpha,alpha-trehalose-phosphate synthase (UDP-forming)	4
-	map00500 Starch and sucrose metabolism	3.2.1.20	alpha-glucosidase	11
-	map00512 O-Glycan biosynthesis	2.4.1.122	glycoprotein-N-acetylgalactosamine 3-beta-galactosyltransferase	16
A	map00530 Aminosugars metabolism	2.4.1.16	chitin synthase	3
-	map00530 Aminosugars metabolism	3.2.1.14	chitinase	15
-	map00530 Aminosugars metabolism	3.2.1.52	beta- N -acetylhexosaminidase	10
-	map00531 Glycosaminoglycan degradation	3.2.1.52	beta-N-acetylhexosaminidase	10
-	map00561 Glycerolipid metabolism	3.1.1.3	triacylglycerol lipase	37
-	map00562 Inositol phosphate metabolism	3.1.3.62	multiple inositol-polyphosphate phosphatase	6
-	map00564 Glycerophospholipid metabolism	1.1.99.5	glycerol-3-phosphate dehydrogenase	7
C	map00590 Arachidonic acid metabolism	5.3.99.2	prostaglandin-D synthase	11

C map00590 Arachidonic acid metabolism
map00600 Sphingolipid metabolism
map00601
Glycosphingolipid biosynthesis - lactoseries Glycosphingolipid
map00602 biosynthesis - neolactoseries Glycosphingolipid
map00602 biosynthesis - neolactoseries
Glycosphingolipid biosynthesis - globoseries
Glycosphingolipid biosynthesis - globoseries
Glycosphingolipid biosynthesis - ganglioseries
map00790 Folate biosynthesis

- map00790 Folate biosynthesis
- map00920 Sulfur metabolism
map00940
Phenylpropanoid
biosynthesis
5.3.99.5 thromboxane-A synthase 2
2.4.1.47 N-acylsphingosine 18 galactosyltransferase
2.4 .1 .65 3-galactosyl-N-acetylglucosaminide 4- alpha-L-fucosyltransferase4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase3-galactosyl-N-acetylglucosaminide 4-alpha-L-fucosyltransferaselactosylceramide 4-alpha-galactosyltransferase
3.2.1.52 beta-N-acetylhexosaminidase 10
3.2.1.52 beta-N-acetylhexosaminidase 102-amino-4-hydroxy-6-
2.7.6.3 hydroxymethyldihydropteridine 3diphosphokinase
3.1.3.1 alkaline phosphatase 6
2.8.2.4 estrone sulfotransferase 7
6.2.1.12 4-coumarate--CoA ligase 12

Table S45. Ninety-six (96) Daphnia pulex genes from three lineage-specific gene family expansions that are part of the glycosphingolipid biosynthesis neo-lactoseries metabolic pathway.

Enzyme 2.4.1.152

(Alpha-1,3-fucosyltransferase C, Glycosyl transferase, family 10)
Dappu-104196
Dappu-106945
Dappu-107642
Dappu-111600
Dappu-116054
Dappu-13230
Dappu-13713
Dappu-15329
Dappu-19438
Dappu-198878
Dappu-219820
Dappu-221393
Dappu-227431
Dappu-23160
Dappu-236411
Dappu-241186
Dappu-244685
Dappu-24623
Dappu-248921
Dappu-251980
Dappu-25363
Dappu-253741
Dappu-25935
Dappu-260055
Dappu-260935
Dappu-266638
Dappu-266923
Dappu-266928
Dappu-272135
Dappu-302400
Dappu-302457
Dappu-302634
Dappu-302891
Dappu-308012
Dappu-311402
Dappu-312894
Dappu-313010
Dappu-313025
Dappu-315506
Dappu-315514
Dappu-316372
Dappu-316572
Dappu-316587
Dappu-316980
Dappu-318584
Dappu-319378
Dappu-325563
Dappu-325685

Location in genome assembly

```
scaffold_29:516567-518088
scaffold_46:224049-225221
scaffold_51:725267-726313
scaffold_87:116388-117590
scaffold_173:170541-171871
scaffold_356:21642-22727
scaffold_68:176859-177731
scaffold_356:7770-8810
scaffold_10031:420-1163
scaffold_46:232818-234380
scaffold_1396:115-1342
scaffold_4:3007607-3011002
scaffold_76:225531-227364
scaffold_14:1100902-1106527
scaffold_7:1456987-1458048
scaffold_18:353961-355160
scaffold_29:499533-504745
scaffold_7:2167295-2168158
scaffold_46:242704-243900
scaffold_61:720217-721224
scaffold_29:601986-605294
scaffold_72:252130-254074
scaffold_34:56787-57719
scaffold_132:222649-224187
scaffold_145:50678-51847
scaffold_332:14980-18089
scaffold_356:19512-21162
scaffold_356:31731-32948
scaffold_2299:6593-7516
scaffold_17:1454152-1456089
scaffold_173:167951-169157
scaffold_18:1062894-1063732
scaffold_19:1404773-1406891
scaffold_72:235616-236979
scaffold_4:1049624-1050748
scaffold_7:1448864-1450036
scaffold_7:2093696-2094982
scaffold_7:2168985-2170223
scaffold_14:1098141-1099795
scaffold_14:1115817-1116902
scaffold_17:640256-641443
scaffold_17:1457020-1458114
scaffold_18:11511-12227
scaffold_18:1352486-1353631
scaffold_25:756640-757413
scaffold_29:538303-540175
scaffold_71:175007-191884
scaffold_72:213716-214915
```

Dappu-328684
Dappu-331779
Dappu-331784
Dappu-334524
Dappu-336888
Dappu-3750
Dappu-3751
Dappu-3818
Dappu-4083
Dappu-4136
Dappu-4141
Dappu-41601
Dappu-48653
Dappu-49176
Dappu-49339
Dappu-52155
Dappu-53630
Dappu-55591
Dappu-56240
Dappu-58299
Dappu-58316
Dappu-58354
Dappu-60056
Dappu-60476
Dappu-63087
Dappu-64359
Dappu-65379
Dappu-66309
Dappu-66315
Dappu-67044
Dappu-67045
Dappu-67046
Dappu-68594

Enzyme 2.4.1.206

(Beta-1,3-galactosyltransferase 5, Glycosyl transferase, family 31)

Dappu-111641
Dappu-14718
Dappu-241308
Dappu-241507
Dappu-314238
Dappu-316941
Dappu-325474
Dappu-56803

Enzyme 2.4.1.65

(alpha 1,3-fucosyltransferase, Glycosyl transferase, family 10)
Dappu-202947
Dappu-26234
Dappu-58283
Dappu-58437
Dappu-61832
Dappu-64347
Dappu-64409
scaffold_107:160375-162469
scaffold_173:181964-182991
scaffold_173:195174-196654
scaffold_356:27899-29071
scaffold_1221:450-1589
scaffold_356:11019-11912
scaffold_66:364793-365776
scaffold_183:114080-114946
scaffold_52:670620-671612
scaffold_13:1294763-1295593
scaffold_18:1250655-1251494
scaffold_3:2506282-2507324
scaffold_17:1277138-1280333
scaffold_18:13927-17142
scaffold_18:1253253-1254113
scaffold_29:856285-857325
scaffold_36:644234-645364
scaffold_50:689973-690977
scaffold_54:717402-718004
scaffold_72:221080-222066
scaffold_72:239493-240638
scaffold_72:216595-217752
scaffold_87:9135-10897
scaffold_90:365213-366334
scaffold_132:309467-310211
scaffold_173:192910-193980
scaffold_216:159136-160098
scaffold_332:35690-36814
scaffold_332:27798-28952
scaffold_604:27130-28257
scaffold_604:41549-42619
scaffold_604:35948-36971
scaffold_1936:6389-7141
scaffold_87:215283-216322
scaffold_59:689162-689806
scaffold_18:724825-725889
scaffold_18:1240340-1242342
scaffold_10:1875122-1876652
scaffold_18:1246144-1247416
scaffold_70:418642-420376
scaffold_59:685045-685659

Table S46. Alignment of Enzyme 2.4.1.65 Daphnia proteins, with Tribolium castaneum and Ixodes scapularis orthologs, using MUSCLE [S58].

Protein ID

Description

Dappu-61832
Dappu-64347
Dappu-26234
Dappu-58283
Dappu-64409
Dappu-58437
Dappu-202947
Ixodes_ISCW003580
Tribolium_TC014343 MP

 - - PRLSARRLCLVIFFFGGVTVLVTLHHRL

Dappu-61832
Dappu-64347
Dappu-26234
Dappu-58283
Dappu-64409
Dappu-58437
Dappu-202947
Ixodes_ISCW003580
YQQNSKELDSDDSANFVVINNDESKIPSAD--NNVRINNTTISSNILRRHGL---PWYIK Tribolium_TC014343 TWPSTKSRIPSSDEDELLIHTTAPSLPVVE QQDADLQDQPNVLEPKLLLQQQSYAVPQDSHKGTVRRDGRQMEKRVESGSGSSERPWYMK EHETEQPPKSQEKAWFFG

Dappu-61832
Dappu-64347
Dappu-26234
Dappu-58283
Dappu-64409
Dappu-58437
Dappu-202947
Ixodes_ISCW003580 Tribolium_TC014343 GGTLFPTASKGLPRLFP-DQTDGDRIIEQLMYVPEDYQGFDTP----------EKVILA

Dappu-61832
Dappu-64347
Dappu-26234
Dappu-58283
Dappu-64409
Dappu-58437
Dappu-202947
Ixodes_ISCW003580

Dappu-61832
Dappu-64347
Dappu-26234
Dappu-58283
Dappu-64409
Dappu-58437

Tribolium_TC014343 YNGLGTWGQ-RSGPGSF--HGCPVSRCSLTDDR---SRAADADAILYKDH---FIHPPV

WP
RRT-PQQRYVFWLLESAGWPEYLPMHTSSLGNFFNWTLTYRWDSDMVMPYG-Y NRSLHQQRYIFWLLESAGWPEYL--DTKPLGNFFNWTLTYRWDSDMVMPYG-YVRPTGNV RRS-PQQRYVFWILESAEWREYL--NTSTLGNFFNWTLTYRWDSDMIMPYG-YVRPTGNV RRT-PQQRYLFWLLESAGWPEYL--NTSQLGNFFNWTLTYRWDSDMVMPYG-Y------RRS-PQQRYVFWILESAGWPEYL--NTSTLGNFFNWTLTYRWDSDMVMPYG-YVRPTGNV

Dappu-202947
Ixodes_ISCW003580
Tribolium_TC014343

Dappu-61832
Dappu-64347
Dappu-26234
Dappu-58283
Dappu-64409
Dappu-58437
Dappu-202947
Ixodes_ISCW003580
Tribolium_TC014343
PRP-PHQIWIMYMLECPLHTQYI----REKDVFNWTATYKSDSELVTPYEKWVYFDDKV RRP-WQQVWILYLLECPYHTQTF----AHFRDTFNWTATYRHDSDIVAPYEKFVRYDDLD SRP-FNQVWIMYFLECPYHTQSI----KFPDVINWTATYRRDSDLVAPYERWTYFDPQV
*
------------------ASRSEHQLFVMVSDESPQHSR----------- - IDIFGKC ------DQLKQLMSVQKMNYAAGKTKMASWMVSNCGAHSNRLQMVKILQKYIQVDVYGVC PLHPSDDQMKELLSNQKVNYATAKTKMAAWMVSNCGSHSSRNEMVNIIKKYIQVDVYGAC PLHPSENQLKQLMSNQKVNYAAGKAKMASWMVSSCFSHSSRHEMVKILQKYIQVDIYGAC ----------QLMSVQKMNYAAGKTKMAAWMVSNCGSHSNRKEMVSLLQKYIQVDVYGAC PLHPSENQLKQLMSDQKVNYAAGKTKMAAWFVSNCVAKSNRNEMVKILQKYIQIDVYGVC RRKP-----------VTTNFAANKTKKVAWFVSNCGAKNNRLEYAHALQKHIDVDIYGSC PVAEA----------SRVLPNHNKTKKVAWFVSNCAARNQRLQYARKLGAHIEVDIFGAC RQKV-----------QNRDYSANKTKKVAWFVSNCGARNGRLAYARELSKYIQVDIYGMC

GKPFCSFDQL-----NDCYQRIEIDYKFYLSFENSLCRDYITEKFF-NLLDRNIVPIVYG GNLTCPKENS-----DRCNNLLD-EYKFYLSAENSLCADYVSEKFY-RALKTDIIPVVYG GTMSCPKEAGVDNSSEDCRDMVGKTYKFYMSLENSLCRDYISEKLF-GMLHRPIIPIVCG GTKTCPKKEDENNSSEECRDVAGGNYKFYMALENSLCHEYISEKFF-GMLHRPIIPVVFG GPLKCPKEVGVDNSSEDCRDMAGQNYKFYMALENSLCRDYISEKFF-GMLQRPVIPVVFG GNLTCPKEVGVDNSSEDCRDMAGENYKFYMALENSLCHEYISEKFF-GMLHRPVIPVVFG GTKNCPRHSG-----DHCLDILSTEYKFYLAFENSNCRDYITEKFYVNGLGSKVLPIVMG GPLKCPRARA-----GHCFDILDREYKFYLAFENSNCKDYITEKFFVNGLGRDVVPIAMG GPLACPRSD------KKCFDLLDREYKFYLAFENSNCRDYITEKFYVNGLGQNVLPIVMG

A--GNYEAIAPPHSYIDALKY-TPVQLAKYLDILDKNDTLYNEYFWWKPFYKLMA----G--ADYAAYAPPHSYIHVADFASPKQLAEYLLLLDKNEALYLKYFEWKKDYDVLRGPLD-L-HDYYDKIAPPHSFINAAKFENMQKLADYLILLDKNDTLYNEYFWWKPH
L-HDHYDKIAPPHSYINAAKFENMRQLADYLILLDRNDTLYNEYFWWKPHFESRYKQKDV L-HNHYDQMAPAHSFINAAKFENMRQLADYLILLDRNDTLYNEYFWWKPHFESRYKQKDV L-HDHYDKIAPPHSFINAAKFENMRQLADYLILLDRNDTLYNEYFWWKPHFESRYKQKDV APRADYEKHAPEHSFIHVDDFATPKELADYLHLLNSNDTLYNEYFEWKETGQFIN GRPEDYRRASPDHSFVHVEDFPSEKALADYLHVLDRNDSLYNEYFRWKGSGEFIN ARPEDYQRSAPEGSYIHVDEFAGPAELAAYLNRLDKDSTLYNSYFKWKGTGQFIN

```
    * :* *:: . .: ** ** *: :.:** .** **
```

Dappu-61832
Dappu-64347
Dappu-26234
Dappu-58283
Dappu-64409
Dappu-58437
Dappu-202947
Ixodes_ISCW003580
NIAFCQLCQQLNQ-PRTHVQWYHDIDAWYDGGNHCHKPNRFKVPYTFSYFIIIGRM-----GWCDLCAKLND-PQEPAKVYQSMAEWWYDEVPCYPGESFIKTVLNHIQ----------

NIGMCHLCASLHN-KDLPPKVYPNMTDWWESKSSCISTPLIS-------------------NIGMCHLCASLHN-KDMPPKVYANMTOWWDEOSFCINSPPIS NIGMCHLCASLHN-KEMPAKVYPNMTHWWDEQSSCINSPPIL-------------------TYFFCRLCSMLHEAPYSPPRYYDDFNEWWRGGTNCIKGSWRDLENHQRNKKNKKKVGGDG TYFWCRLCAMLHA-PPVP-KVYPDIGAWWSGPGTCNSNRWSKFKTKKDSVGYVFT----Tribolium_TC014343 TFFWCRLCAMLHA-PRVH-RHYDDINDWWRGPGVCSSKSWRNADFV

Table S47. Alignment of Enzyme 2.4.1.206 Daphnia proteins, with Tribolium castaneum and Ixodes scapularis orthologs, using MUSCLE [S58].

Protein ID

Description

Ixodes_ISCW018107
Tribolium_TC014213
Tribolium_TC008953
Ixodes_ISCW003730
Dappu-325474
Dappu-241507
Dappu-241308
Dappu-111641
Dappu-316941
Dappu-314238
Dappu-56803
Dappu-14718

Ixodes_ISCW018107
Tribolium_TC014213
Tribolium_TC008953
Ixodes_ISCW003730
Dappu-325474
Dappu-241507
Dappu-241308
Dappu-111641
Dappu-316941
Dappu-314238
Dappu-56803
Dappu-14718

Ixodes_ISCW018107 SHPPGLHEDVNP---YPFGYVLNKPDL---C
-ATGSKILVLI Tribolium_TC014213 SGGSSEAPQLPAVRTLTNATNSSQPDLTRGVAAEIIYEAGHVDVSSQICPELGRDLKLLI Tribolium_TC008953
 Ixodes_ISCW003730
Dappu-325474
Dappu-241507
Dappu-241308
Dappu-111641
Dappu-316941
Dappu-314238
Dappu-56803
Dappu-14718
----------LLYVFGVP-------------- KSKHWRTHAHFRQHRFSSRATPAMA -YVAYITSPQLTTTASPLRTLVSSEIRAFQGNTTQAEVAKNMTVAPPSSN
-F-----------------------NTTRTTHYVLN
-----------F--
----------FGYGLLYRPLSFGS--------- - LAGRPRPDMSWLLAQQDIRQL---
IRYNKVVIEKKFLSDYMVSVWDTRIIDEEAEKAKPIKDRMQDYIRYSVARLGLHEL----
-----------LFDYLAFH-LRDK----------EYDGIENYIRFMTANLGLKSLPISS
-----------IISSLVVPSLINT------------PYPGVANYTLYETARLGLLI-----
-----------FFDYLANHLRDT-------------PYPGVGNYIRYTVARLGLAPL---

-----------FFEYLASQLRDT------------RYPGVETHTRYVVAKTRRKYL---

--

Dappu-316941
Dappu-314238
Dappu-56803
Dappu-14718

Ixodes_ISCW018107 DSLHADIVQGNFTDCYRNLTFKSVMMVRWASASCPG-AEFVLKIDDDVLLNVWDFAPTLS Tribolium_TC014213 QYLYGDIIRGKFRDTYDNLTLKTISMLEWVDNYCPK-AAFVLKTDDDMFINVSRLLAFIA Tribolium_TC008953 SDRFGDIIQERFIDSYNNLTLKSVFMLKLVSSYCANSTKYLLKIDDDMFVNMIPVVRMLR Ixodes_ISCW003730 SRLFGDVIQADFMDTYNNLTVKSVVLLKWTGQQCPQ-TRYILKTDDDMYVNVPNLVSYLN Dappu-325474 Dappu-241507 Dappu-241308 Dappu-111641 Dappu-316941 Dappu-314238 Dappu-56803
Dappu-14718
AVV--SAPENFEKRNIIRQTWRTHLN-LEYHEKLMNIIGFAFILGMSD-KNVTQIKIEEE AVI--SAPKYFHKRDIIRRTWQRHLQ-MQSDLNSMNLAGFGFIVGLTQGDDGIQKRIEDE -----------------------------------MARFGFFLGQTR-NDSIQKRIEEE ALI--SAPDHFKERNDIRETWLIHLK-SVLEKNLLGMARFDFFLGQTR-NDSIQKRIEEE *.: SDKNKDVVQVDMMDNGKNDSLKLAAIFNWVQQFCTN-VDVVFKMDENF--EIATLKKFGS SETFGDILQVNMIDRYVDLSVKLASLFNWVDTYCPR-VDFVLKVDDDVYVNVHNLATVLH SKTHDDIIQFEMLDTHRNLPLKMAGLFNWVNTICPK-LDFLLKLDDEMYLNVHVLANFVN ANTHGDMIQIGISDFYRNLSLKVAGLFHWLYSNCAR-VDFVAKLDDDVYVNVRNLARFVQ SKTHKDILQIEIPDIYYRLAVKVAGLFNWLHRYCAQ-IDFLLKVDDDVYVNVRNLAHFVN GKTYGDILQIEMIDDYYNLTFKVVGLLNWVNDHCSR-VDYVLKVDDDVYVNTHNLVAVMN SQKHGDIVQIEMDDSYRNLTLKGIAVLNWVRQHCAK-VDLVFKVDDDVYVNVHNLVHFVR SQKHGDIVQIEMDDSYRNLTLKGIAVLNWVRQHCAK-VDLVFKVDDDVYVNVHNLVHFVR

Ixodes_ISCW018107 ALHGV---DRTIWGL-------LAQ---RWTPERNPRSKWYVSWGMYQNATYP-DFLTGP Tribolium_TC014213 KHSPE---QRTIYGR-------LAK---KWKPIRNKKSKYYISPNQYKPAVFP-DFTTGP Tribolium_TC008953 DRNST---TDLLMGK-------LIC---RARPIKDTTSKWYSPRYMYPHHVYP-NYVSGT Ixodes_ISCW003730 KKGG----RKMLLGC-------LIS---GATPIRDWTSKWYVPPFVYPHHTYP-DYLSGT Dappu-325474 Dappu-241507 Dappu-241308 Dappu-111641 Dappu-316941 Dappu-314238 Dappu-56803
Dappu-14718

Ixodes_ISCW018107 Tribolíum_TC014213 Tribolium_TC008953 Ixodes_ISCW003730 Dappu-325474 Dappu-241507 ALTEKEIPDTFVYG-------VKG---DIRPQR-EAGKRMITMEEFPWTTFP-AYFNGL SLTVA---DQSIYGR------QCG---GMIPDR-KGGKWMTSYENWPWHKFP-IYFQGA TYRQLG--KMTIFGQSPRKGYPFIN---NWGPQR--SGMHEIALEEWPWNTYP-NYVNGP TYRHQS--NQSMFGS-------AAG---NLWPAR--DGKWNMTFEDWPWNEYP-PYFLGP EQKVQPSINQTLFGS-------YIGYGRDYIPDR--EGKHFISYEEWPWTRYP-RFFNGP NLNSS---EHSMYGS------FA----EGLPNR--GGKWYISFEDWPWSNYP-TYFRGA SNYQS-- NNSVFGH------ AWG---ETYPHRYKDSKYYISLEEYPWSNYPYNWLSGP SNYQS---NNSVFGY-------VWS---EPYPNRYKDSKYYIPLEEYPWRHYP-NYVNGP

SYLLSGDSVPLLARASDSVPYLYLEDVFLTGLVAEKAGVRRVHNDGFLN-----YRKFFT AYLLPARLSKELYVAALNHTYFKLEDVFVTGIVANSLKIKRVHAPEFLN----KRVSLT GYVMSVDVAEKLYKAALKTPIFHLEDVYTTGLCAKRAGVRPKNNPLFTY-----QSMNYD GYVMSGDVLGQLFRTALETPFFYMEDIFVTGMVAQKVGIKPVNYDAFKF----YKRKNN AYFITGNMIVPLMAAFQTVPMLPLEDVYL-GICIIKSDMKRYTYCG-------RDINNS GVVIAGSAVRPILSAMQVTPYFIWEDMYLVGLCAAKAKVQLRTSNQ-
AYLIHQTAILPLLAAIQTTPIMPFEDIYITGICSEKAGVVTQYSSGYNR AVLFPSSTILPLLAALQTTPMMPIDDVYYSGMCTEKAGVVLRFSTNSTR------GVVISGNSILSLLAAMQTTPIMTSDDVYYIGICTEKTNITLHFSSKSTSVFSMECPDLSR AILMPGITIGPLLAASQTTPFLPFDDTFLTGLCTAKAAITVRISDRFFV---GGATEVPE AYFMHASVVIPLLAASQTTPLHPFEDVFLTGMCREKAGVKIRNSIDQRQ------QLWFM AYFMHASVVIPLLAASQTIPFNPFEDVFLTGLCTEKASV-
Dappu-14718

Ixodes_ISCW018107 PCTTPRVIASHGYTPLYLRHVW-
Tribolium_TC014213 PCSVQKGISIHMVKGVEQYDLWKKLHDVAAKCKK
Tribolium_TC008953 VCLYMRLYTAHRFTPSDIRKTYTLLKD--SNVTRECTYHRGRSNLSVNWLMNNILKVNKP Ixodes_ISCW003730 PCVFRKLITAHIMTPSELRSMWSRVRDRRIKCS
Dappu-325474
Dappu-241507
Dappu-241308
Dappu-111641
Dappu-316941
Dappu-314238
Dappu-56803
Dappu-14718

Table S48. Alignment of Enzyme 2.4.1.152 Daphnia proteins, with Tribolium castaneum and Ixodes scapularis orthologs, using MUSCLE [S58].
Protein ID Description

Dappu-328684
Dappu-244685
Dappu-104196
Dappu-319378
Ixodes_ISCW004236
Ixodes_ISCW024758
Ixodes_ISCW023318
Dappu-41601
Dappu-48653
Dappu-331779
Dappu-67046
Dappu-55591
Dappu-334524
Dappu-302891
Dappu-60476
Tribolium_TC008651
Tribolium_TC008652
Dappu-227431
Dappu-251980
Ixodes_ISCW003590
Dappu-318584
Dappu-316980
Dappu-312894
Dappu-236411
Dappu-60056
Dappu-3751
Dappu-107642
Dappu-253741
Dappu-13230
Dappu-219820
Dappu-315514
Dappu-25363
Dappu-315506
Dappu-25935
Dappu-260935
Dappu-19438
Dappu-52155
Dappu-302634
Dappu-66315
Dappu-66309
Dappu-302400
Dappu-56240
Dappu-65379
Dappu-4136
Dappu-266638
Dappu-13713
Dappu-4141
Dappu-266923
Dappu-272135
Dappu-116054
Dappu-331784
Dappu-67045
-----------MHIFKTLFSQLDRHRVFYLLWLLFLLNVFTFKQLTLNEDDVDSKELVI
-- -- -MNNRRRFQNVFYKLNLHRVLYPLWLFFLFNVFTLKQLTIDETENEVKELDIVKHI
----MNNRRRFQNVFYKLNRHRVLYPLWLFFLFNVFTLKQLTIDETENVEVKELDIVKHI
SLPRKGRSCPIWPKMTPSVRTSIFILTSLLLLLWLFSFSAFRPTFRQIVGVWSPVKWSYY
---------------LGTFWYSKSKFQRCTQESVLVNGSNENVYMNRLENVMYNYSLWT

- MVHSFPVIMVTRKFAIKFIFVAVLICACFVILYVAPRLLT

-----------------------MSPYRRFVVGILIIVLLTRFYNKVAFYKNEENEK
 -------------------------------2QTIQLEQATIFLLSQYRTESTPAQTLIKR -------------------MSNNLNTVSQKRIALFATLLCILILTFFVFNTPIFHSHD

-------------------MVFILFLCISSVVAFLVYFHETNVAPSEFVNQTSTGEIVS

AAFSTKMKWSESSFQLVAALWRRKHKVLVLLFCFVFVIGVRQLDFNQEDKVIETEEKLMP

TSFIFVVCFLAFINYQHLGVTHSSILPKFSISRASQQQVSHANDAENTNNNTFKNLNKKT ----------------------------MYANNALRSTADHHVAKEEKDSDHLL

 --MVDN FHRHWIAIQSSLSKQTGFSSKIVSYWLASSFLIAIIFLYYLLLAFWDNKLLFRQNQQVVP ---LLRKRIRSKMMCRRYPGICAGRRRPWVIRPRPVVKRRPLVSRPTFRPTMTRFPCVSCGRRG ---MHFSNEKGSSASNDPTSEKIHKGPVIVRNKR --MR LKLTRLSLAKRIILVAIGIVFFLAALIRRDDDGRTSPALPNPFDSISFQPIRETNLVVNR ----------MGLSAAGLFLTSAAFLYWNEMNNQQQLITFSQSTNKDVTGKIAANVNMKI

Dappu-316572
Dappu-302457
Dappu-64359
Dappu-4083
Dappu-53630
Dappu-111600
----------------------------------MTSILHNKIGGEPTLNNWVNRNN
Dappu-15329
Dappu-58299
Dappu-248921
Dappu-325563
Dappu-23160
Dappu-221393
Dappu-3818
Dappu-58354
Dappu-311402
Dappu-106945
Dappu-198878
Dappu-313025
Dappu-313010
Dappu-24623
Dappu-58316
Dappu-308012
Dappu-67044
Dappu-260055
Dappu-63087
Dappu-316372
Dappu-68594
Dappu-325685
Dappu-3750
Dappu-336888
Dappu-266928
Dappu-49339
Dappu-316587
Dappu-241186
Dappu-49176

Dappu-328684
Dappu-244685
Dappu-104196
Dappu-319378
Ixodes_ISCW004236
Ixodes_ISCW024758
Ixodes_ISCW023318
Dappu-41601
Dappu-48653
Dappu-331779
Dappu-67046
Dappu-55591
Dappu-334524
Dappu-302891
Dappu-60476
Tribolium_TC008651 NVDDKPTFLDNNDTKTILYWTP-MFQSLN-----FYLGL----GS----KIFEK--CA-Y
Tribolium_TC008652 SVDGKPTFLGNNVTKTILYWTP-MFQSPH-----FYLGT----GS----KIFEK--CA-Y
Dappu-227431 LSEYETIKKNCSGKQLVLFWTK-FFETDD----FYVGL----GI----KPFKQ--CT-V
Dappu-251980
Ixodes_ISCW003590
Dappu-318584
Dappu-316980
Dappu-312894

Dappu-236411
Dappu-60056
Dappu-3751
Dappu-107642
Dappu-253741
Dappu-13230
Dappu-219820
Dappu-315514
Dappu-25363
Dappu-315506
Dappu-25935
Dappu-260935
Dappu-19438
Dappu-52155
Dappu-302634
Dappu-66315
Dappu-66309
Dappu-302400
Dappu-56240
Dappu-65379
Dappu-4136
Dappu-266638
Dappu-13713
Dappu-4141
Dappu-266923
Dappu-272135
Dappu-116054
Dappu-331784
Dappu-67045
Dappu-316572
Dappu-302457
Dappu-64359
Dappu-4083
Dappu-53630
Dappu-111600
Dappu-15329
Dappu-58299
Dappu-248921
Dappu-325563
Dappu-23160
Dappu-221393
Dappu-3818
Dappu-58354
Dappu-311402
Dappu-106945
Dappu-198878
Dappu-313025
Dappu-313010
Dappu-24623
Dappu-58316
Dappu-308012
Dappu-67044
Dappu-260055
Dappu-63087
Dappu-316372
Dappu-68594
Dappu-325685
Dappu-3750
Dappu-336888
Dappu-266928

AYVQRAVDSSDGEPKIILFWTK-YHGSAS-----FDFGL----GS----RPFETAGCR-V
-----------STKTILIWNP-YSRFEL-----EVFGE----GA--- - DTFTSHHCP-I
-------MEQPAEFKTILYWND-FFGIED-----FTFGL----GR---EPFIQAQCP-I
FNDIEEEEAGPSALKTILYWNS-FFAFKD-----FNFGF----GQ----QPFLDAKCP-T
NQIDLSNQSSSDALKIILLWSTWSSTMAD--------------------EPLVKARCP-VHDTCEEIRPLSHRRKTLLLWTPVSFTWSI----------------------LSPPPATPIHFDKKFIILYWTKYYHFLDF-----GNIGL----GG----KPFVTCDRAGI
IGNVSGLSAPCQRKILILYWTK-YFTSVD-----FEYGL----GR----TPFATCDDNRI
GRFRQQCPNVNYIQIIILYWTK-YFGASD-----FGFGI----GR----KSFAQCDQTCSFAOETIKOAESNKPKIILYWNK-YFNHSD-----MGFGV----GQ----EPFIKAGCK-VTTIKSTTVKQLETLKIVLYWNT-FFNQTD-----MTFGF----GR----QPFVDAGCQ-I-MQEIVETKPSPPDKVILFWTP-YYNDSD-----YTVGF----GR----DPFVKNGCQ-F--------------KTILFWTP-YYNHSD-----YTFEL----GQ----DPFIKFGCK-VMPSRLASEPKWEKLKRILYWTE-YFGTKD-----YPFKL----GD----QTFREAKCR-VNRHQRNKKDHSLMFKKILFWNS-YFSSKD-----FELGL----GR----TAFKDAGCR-IPFMTAGCR-YKEREDSSESGSSPPKRTRKSGKTAEHTQLIETAVFGFGH----------QPFLDHGCE-V------------KIKSILFWNG-PRRSEM-----TIFGT----GH----DAFVQQECP-I
EKEISANNQTSLGYKNILIWNE-ADRTET-----ANFGI----GH----DPFVEHKCE-V
NRTANVTRNNNNRYQSILIWNS-PDRIET-----SAFGL----GH----EPFIRNGCQ-V
VIDNLFPSLFLSKRKTILIWNS-AHRIET-----AAFGI----GH----EPFVQYGCE-I
TFSKITGLSNNRKNKTILIWNS-PQILDT-----APFGF----GH----EPFIAHGCE-V
-MIPWIAA---RDIKTILIWNS-AHRIET-----AAFGF----GR----QTFFQHGCD-I
LFDVFQSAPTLRENKTILIWNSAHRIETA----AFGFEL----------DSFRRHGCE-V
SVSDFLSRVTYRGNKTILIWNSAHRIETA----AFGFGY----------QPFIQHGCE-V
--------------------------------TIFGT----GH----DAFVQHGCP-V
DLVENNSTTVQGRIKTILLWNA-PQRPEV-----VIFGT---GH----DAFVQRGCP-V
QNTFQNRVLVSKRGKSILLWNS-NENERF-----FRHHS-----------------GSCG-S
FQKVHDYILQSKRGKSILLWNS-NENERF-----FRQHS--------------GSCG-S
NNIIIPKGNNNYPVKKILLWNA-SQRKEV-----RAFGV----GQ----DVFARKRCA-F
ESVESSGFIQKNVTKTILLWNG-VRRKEV-----RVFGQ----GD----QVFVNQSCP-V
SKEHHQEETEKNATKRILLWNG-SRRVEV-----QVFGK----GQ----DAFAKQNCT-Y

Dappu-49339
Dappu-316587
Dappu-241186
Dappu-49176

Dappu-328684
Dappu-244685
Dappu-104196
Dappu-319378
Ixodes_ISCW004236
Ixodes_ISCW024758
Ixodes_ISCW023318
Dappu-41601
Dappu-48653
Dappu-331779
Dappu-67046
Dappu-55591
Dappu-334524
Dappu-302891
Dappu-60476
Tribolium_TC008651
Tribolium_TC008652
Dappu-227431
Dappu-251980
Ixodes_ISCW003590
Dappu-318584
Dappu-316980
Dappu-312894
Dappu-236411
Dappu-60056
Dappu-3751
Dappu-107642
Dappu-253741
Dappu-13230
Dappu-219820
Dappu-315514
Dappu-25363
Dappu-315506
Dappu-25935
Dappu-260935
Dappu-19438
Dappu-52155
Dappu-302634
Dappu-66315
Dappu-66309
Dappu-302400
Dappu-56240
Dappu-65379
Dappu-4136
Dappu-266638
Dappu-13713
Dappu-4141
Dappu-266923
Dappu-272135
Dappu-116054
Dappu-331784
Dappu-67045
Dappu-316572
Dappu-302457

RSAQKAVKIIRNETKTILVWNG-SGRKEV-----RNFGW----GK--- -DAFINKNCP-Y
--TNCILSK-NKNI---VTPERADAIVFLYTNLCE------- LPKVHG--RQEYQRFVL
--TNCVLSK-NKTK---VIPEQADAIVFLYTNLCE------- - LPKIHG--RQGFQRFVL
--TNCVLSK-NKTK---VIPEQADAIVFLYTNLCE--------LPKIHG--RQGFQRFVL
--TNCVLSK-NKTK---VIPEQADAIVFLYTNLCE--------LPKIHG--RQGFQRFFL
--RSCILTN-DRSL-----LESSDAIVFHIRDIDM--AN----LPQR----RSPFQKWVF
--DRCYITN-DRRL-----LHSSDAVVLYGTDLDL--AD----MPWR----RYRGQKWVY
SIPPCVVTS-NRSL-----LNESDLVIFHMRDIRA--DD----LPAE---RPPGQRWAL

- - TDCFTTD-NRSM--LKTAAEFDAIVFHLRTFNI--ED----LPPT----RGQNQRWIF
- -WQCETSD-NRNH----VQDYDAVVFHLRSWSR--ND----LPQR---RSPHQRYIG
--XXXXTST-NRTD-----VHDYDAVIFHMRGSWD-PND----LPQR----RSPHQRYVF
--WQCETST-DRTN---- VHDYNAVIFHMRGSWN-PNE----LPQR---RSPHQRYVF
--WQCETSD-NRTN----VQEYDAVVIHLRTWNK--KD--- LPKL--- RSPHQRYVF
--WQCEISA-NRTD---- VHTYDAVLFHLRTWSK--ND--- LPHP--- RLANQRYVF
--YQCDIFN-RERIVDWDTLKYYDAIVFHQHGWTP--ND----VPMK----RWPHQHYIF
--WQCKTIS-DRNI---LLIESYDAVVFNQRKWTP--TD----LPVN----RSGHQRYIF
-- NNCYATY-VKNE---RPVEKFDAIIFHGVEYQEKWFG----KPQK--- RNPNQVYIF
--KNCYATY-VKNE-- LPVEKFHAIMFHAVEYQEKLFG----KPQK--- RNPNQFYIF
--FACCSTN -NRNF---- LDVSDAIIFHIRDLDL--ND--- MPPR--- RSVRQRWIF
--RNCRVTT-DRRS---NLLGKFDAIIFNMAVLHQLATDK-- LPPADT--RESHQYYIF
- -QVCLFTR-QRRH----LKSSAAILFHGKDIYL--ND--- MPSY--- RSPQQRWIF

--SNCLITY-NSTL---MPHWQFDAFLVHPPTING----------PYILKDRRPDQMFVM
--TNCLITY-NNTL---MTHDKFDAFVIHSPTQHT--------PWILKD--RRPDQMFVM
- - DNCFITN-NASL---MPHENFDAILVHPPTQKT--------PKEFKN--RRADQIFVM
--SNCKTTT-DRLL---- LNESHAIIFHSGNLNM--SD----MPPV---RFDHQRWIF
--NNCFITK-NRTW---APLHQFDSIIFNMPPLSL--YK----FPVDEH--RRPEQRYIF
--STCQVTN-DRSQ-----FNGSQVVVFSAQNLNF--SD----LPPH----RFPHQRFVF
--ATCFLTN-DRTL-----FNQSDVVIFSVQQMNL--TD----LPPY---RFAHQRFVF
--ATCYVTD-DRSL-----FNRSDVVIFSIQGMNL--TD----LPTH----RFPHQRFVF
----MNLTD--------------------------------2PTH---RFPHQRFVF
--TACLFTP-DLTL-----FNQSDVVVLSVETT----PD----FLVN--- RLPHQRFVF
--TSCIFTP-DRSL-----LNHSHVVLFFANNETKRNDA----LPEH----RQPHQRFVF
--TSCIFTA-DMSL-----IHQSDVVVLYVDTLTD--------FPLN----RRPHQRFVF
--RSCVFTT-DMSL-----INQSDVIVLHFDTLED------- FPLN---RQPHQRYVF
--KSCLFTT-DMSL-----MQQSDVVVLHFDTLED------- YPVN---RQPHQRFVF
----CLFTT-DMSL----LQQSDIVVLHFDTLED-------YPIN---RQPHQRFVF
--KGCRLIS-DRRL-----LNESDAVIFHFRNGSF--DR----LPTC----RRPDQRYVY
--HNCRLST-DRRL----LNESDAVIFHFWNDKL--DR----IPTY--- RSPHQYYVY
NGDGCVVTT-DRNL-----LNQSDAVMFHFRCFDL--ND----MPPPAW--RRPRQHFIL
N-SGCMATT-DRNL-----LNESDAVIFHFRTINV--SD----MPPPEW--RRPQQHFIF
---VCLTTM-DRGL-----VNESDAVIFHSRDLRD--ND----LPPPGW--RLPHQHYVF
----CVTTT-DRRL----LNDSDAVIFHARDLHP - -ND--- LPPPGQ--RRPHQNFVF
----CWTTT-DRGL----LNRSQAVIFHARDLDP - -DD----LPPPGW--RRPHQQFIF
--ENCLTTS-DRNL---- LNKSDAVIFHGRDLKD--SD----LPPPEW--RLPHQHFVF
--SNCLTTT-DRGL-----LNDSNAVIFHGRDLHV--QD----LPLPEW--RRPHQIFIF
----CLTTT-DRGL---- LNDSGAVIFHGRDLHV--ED----LPPPGW--RRPHQMFIF
--NNCIATS-DRSL-----LKESDGVIIHAGDYSE--ND----LPIY----RSPHQRFIF
--NNCIATS-DRSL-----LKESDGVIIHAGDYSE--ND----LPIY----RSPHQRFIF
--SNCIATN-DRRL---- FNRSDGVIIHAGDYLE--HD----LPTY----RLPHQRFIM
--SNCIATN-DRRL-----FNRSDGVIIHAGDYLE--HD----LPTY----RLPHQRFIF
- - TNCWATG-DRTL---- LEQSDAVIFHAGQFNL--SD----LPSK----RLQRQRYIF
-- TNCITTA-DRNS-----LDKSDAVIFHAFQVNS--RD----LPAQ--- RHPRQRFVF
-- TNCIATA-DRKL----LNQSDAVIFHALQVNS--RD--- LPTH--- RHPHQRFIF

Dappu-64359
Dappu-4083
Dappu-53630
Dappu-111600
Dappu-15329
Dappu-58299
Dappu-248921
Dappu-325563
Dappu-23160
Dappu-221393
Dappu-3818
Dappu-58354
Dappu-311402
Dappu-106945
Dappu-198878
Dappu-313025
Dappu-313010
Dappu-24623
Dappu-58316
Dappu-308012
Dappu-67044
Dappu-260055
Dappu-63087
Dappu-316372
Dappu-68594
Dappu-325685
Dappu-3750
Dappu-336888
Dappu-266928
Dappu-49339
Dappu-316587
Dappu-241186
Dappu-49176

Dappu-328684
Dappu-244685
Dappu-104196
Dappu-319378
Ixodes_ISCW004236
Ixodes_ISCW024758
Ixodes_ISCW023318
Dappu-41601
Dappu-48653
Dappu-331779
Dappu-67046
Dappu-55591
Dappu-334524
Dappu-302891
Dappu-60476
Tribolium_TC008651
Tribolium_TC008652
Dappu-227431
Dappu-251980
Ixodes_ISCW003590
Dappu-318584
Dappu-316980
Dappu-312894
Dappu-236411
Dappu-60056
--TNCIATA-DRKL---- LNQSDAVIFHALQVNS--RD--- LPTH--- -RHPHQRFIF
--SNCMTTD-DRQL-----LNVSDAVLFHAMDFDE--LD----FPSLVN--RRPDQRFIF
--SNCQLTD-DRSL-----LNSSDAVIFHINDFDD--RD----LPDPLD--RLAHQRFIF

- - TNCLLSD-DRRL----LDTSDAIIFHANDFNE--RD--- LPDPHR--RRPNQRFIF
- - NNCMTTT-DRNL---- VNQSDAIIFHPFDVNV--KD----LPTY---RTAHQRYIL
--TNCLTTT-DKSL-----ANQSDALIFHPNDFDV--DN----LPRH----RLAAQRYVF
--TECRIDL-EASG--- TLDTYDAIVVNFNDQFR--LID---LPEFR---RKPHQRMVF
--SDCAIFD-NETS---LPIEEYDAIVMHMCLIWL--SE----IP---------------
--SDCEIVN-SPHQYPYRPLSSFDAVIFNFNDEFW------- LTKRPHFQRQPHQRFIF
- - SDCAIFTRDTSM-- LPYEEYDAVIIHMLFLKM--FQ--- LPNFE--RRRHQRFIF
--SDCAVFN-QQSA-ASLPLEEFDAVIVQISTMWL--SD----LPENRT--RSKHQRFIF
--SDCVIFD-NETA---LPLKEYDAIVMNMHVIWL--TE----LPYFK---RRQHQRFIF
--SDCILFD-NATSPDLLPIEDYDAIILHMHELWI--TG----HPIYN---RQKYQRLIF
--SNCIVFD-QPSI-- LPLEEYDAILVHVHELWK--TR----MPDFH-- RQKHQRFVF
- - KECVVFD-NKTS--ILPLEEYDAIIIHMHELWQ--TQ--- -MPNFT-- RRAHQRLIF
- - SDCIVFD-NATSHELLPLEDYDAIIIHMHELWL--TH--- LPEFQ-- RKSHQRLIF
--SDCVVFD-NATTPELLPLEDYDAIIIHMHELWL--TQ----LPEFK---RQAHQRLIF
--SDCVVFD-NATTPELLPLEDYDAIIIHMHELWL--TQ----LPEFK---RQARQRLIF
--SDCEIVN-SPHQYPGRPLDSYDAIIFNFNDEFWL-TK----RPIFN---RQPHQRFIF
- - SDCELVN-SPYQYPGRSVESYDAIVFNINDQFGVGSR--- RPYADGNQRPATQRYVF
--SDCELVN-SPYQYPERSVDSYDAIVFNINDQFGVGSR----RPYADGNQRPATQRYVF
-- IRCEIIS-NRSE-- RPIESYDAIVVIFDDQFS--PVDPMELAEFQSESNNTNQKFVF
- - IRCEIIS-NRSE---RPIESYDAIVVIFGDDFS--PVDPMELAEFQSESNNTNQKFVF
---------------------------------------LAEFQSESNNTNQKFVF
- - TQCEIFT-DRWE-- HPLDYYDAIVVVFNDEFL--SKEDMAMPEFESG-RNPNQRLVF
--NRCEIVTSSRTE---RPIESYDAIIVVFHDELI--TSYELKMPEFPNG-RNPNQRLIF
--NGCEIVT-SRTE---RPIESYDAIIVVFHDELI--TPYELKMPEFPNG-RNPNQRLIF
--SRCEISD-NRTE---RPLEHYDAIVVVLNNEFI--SPDQLKLPEFDNK-RNASQRLVF
\qquad
--------- MTRL
- - TRCEMTD-NRSE-- RPLEHFDAIVFVLNDEFT--SPDQMMMPDFKNK-RNASQHLVL

LTDDP-PMCYPRNYFE-RNNLF---GSFFNWTISYRENADV--TWKRGWIEK------ -
LTDDP - PMCYPRNYFE-RDNHF---GSFFNWTISYRENADI--TWKRGWIEK
LTDDP-PMCYPRNYFE-RDNHF---GSFFNWTISYRENADI - -TWKRGWIEK
LTDDP-PMCYPRNYFE-RDNHF---GSFFNWTISYREKADI--TWKKGWIEK
WSMEP-PPYS-------VFAGFKYMMNMFNWTMTYRFDSDI--PVQYGQLER
WSLEP-PPHCVLR----SLTYL---NNTFNWTMTYRQDSDVLDSYVLSLTKK
LDYEA-PPHTP-----RVPDV--LKGTFNWTITYRQDSDV----- - NVLP
WSLES-PQYNMQ-----DIYPL---DGLFNWTMTYRRDSDV--IQPYGWIQP
WIMES-AAWREYMV---DNSPM---VNFFNWTFSYRWDSDI - -VSPYGYVKP
WNLES-AEWREYL----DTSQL---GNFFNWTLTYRWDSDM--VMPYGYVRP
WILES-AGWFKFL----DTSPM---GNFFNWTLTYRWDSDM--VMPYGYVRP
FSMES-SAWRAYS---VVKSM-- ENLFNWTMTYRWDSDI--VYPYGYINP-.-.-. -
WSMES-AAWRIY---- SVAPM-- AEFFNWTMTYRWDSDV- -VAPYGYVRP-------
LSMES-SAWRFV---- DTKSM-- -ANFFNRTMTYRRDSDI--FNPYGWFKS-------
WSRES-PGWRYV-----NTNTM---AEFFNWTMTYRWDSDI - -AYPYGWI-
SNQES-PVNT----PS-FIRDF---DNFYNWTMTYRLDSDI - - LRPYGFLVK SNKES-PVNT----PS-FIKDF-- -NNFYNWTMTYRLDSDI - - LRPYGFLIK
YLQES-PLHTPN---- ILYDL---SNVFNWTMTFRMDSDI - -YTPYPVVES
FSQES-PFYHKENV---QIKDY---IGYFNWTMSYLPESNI --PYPYGRIER
FSLEP-PTATSLS----MLEKL---DELFNMTMTYRQDSDI--TTFYGYTVQ
---------------RLDAF---ENYFNWTMTYLPESDI--PLPYGRIEQ
FSTEP-PVHMY------HLQKY---ENYFNWTISYRTGSTF--QLKYGEIIA
FTTEP-PPHMP-----KLDKF---ENFFNWTMTYRSGSTF--QLKYGEIVP
FSNEP-PDHMPS-----DMKSF---DNYFNWTMTYRRGSDF--HLKYGEIIP
YSFTS-PVNLA------PIPKF--LQDKFNWTMTYRRDSDIIHRYPFGAMVA

Dappu-3751
Dappu-107642
Dappu-253741
Dappu-13230
Dappu-219820
Dappu-315514
Dappu-25363
Dappu-315506
Dappu-25935
Dappu-260935
Dappu-19438
Dappu-52155
Dappu-302634
Dappu-66315
Dappu-66309
Dappu-302400
Dappu-56240
Dappu-65379
Dappu-4136
Dappu-266638
Dappu-13713
Dappu-4141
Dappu-266923
Dappu-272135
Dappu-116054
Dappu-331784
Dappu-67045
Dappu-316572
Dappu-302457
Dappu-64359
Dappu-4083
Dappu-53630
Dappu-111600
Dappu-15329
Dappu-58299
Dappu-248921
Dappu-325563
Dappu-23160
Dappu-221393
Dappu-3818
Dappu-58354
Dappu-311402
Dappu-106945
Dappu-198878
Dappu-313025
Dappu-313010
Dappu-24623
Dappu-58316
Dappu-308012
Dappu-67044
Dappu-260055
Dappu-63087
Dappu-316372
Dappu-68594
Dappu-325685
Dappu-3750
Dappu-336888
Dappu-266928
Dappu-49339
Dappu-316587

FSQEP-PTYIGE-----EVKLF---NHRFNWTMSYATHADI--RYHYGEIIP FEMES-PVNTDPQSMLDPRTRF--- SFFNWTMTYRLDSDIVQRDSYGFVVP YEMES TTDPLPLLYNRTRY----GFFNWTMTYRLDSDIVNRDAYGLVVP YEMES TTDYRPLLHNQTRF---GFFNWTMTYRLDSDIVNRDPYGIVLP-.-.-.-. YEMES TTDYRPLLHNQTRF----GFFNWTMTYRLDSDIVNRDPYGIVLP FVMES NTVDIPML-RNNLT--RYNYFNWTMSYRRDSDIVLRDFLGAVVSKNNLNDQY VARHASIESDSLISALTEDDRI--RYNFFNWTMTYRRDSDIVFRESFGAIKN AQLES-PDNTKMATI--NDPRL--RYDYFNWTMTYRRDSDIFLRDYYGSVIK YHFES-PENTASDFM--DDPRF - -RYGYFNWTMTYRRDSDIFLRDYYGSLVA YHFES-PDNTASELM--NDSNF--RYDYFNWTMTYRRDSDIYLRDYYGSLIA-------
FHFES-PENTASTLM--NDPRI--RYDYFNWTMTYRRDSDIFLRDFYEKLNF-------
LNFES-AIRSRSSYPWGKLP----RHFFNLTATYNLDSDFV-GLAFGGFQF
LNFES-AIRSRNHFPWRKIP-----HDFFNLTATYRLDSDFFGKMFYGFQFE
FEQES-PVHTAYYTGL-KLPLL---KDFFNRTMTYRRDSDIAYLNTHGRLRF
FEVES-PVHTYLPAL--RWPSL-- KSYFNRTMTYRRDSDV--SNIRIDSDP
FNHES HTDLNLL--RRPVF---WNYFNRTMTYRRDSDIVDLHPYET-

FLLES-PMHTDLKML--QMPLF---QNYFNRTMTYRLDSEV--VNTYGRIRT FNYES-PVHTDLA----KLRLY--FNHYFNRTMTYRRDSDVVSLHPYGRLKC FLYES HTDLEVL--QRPVF---RNYFNRTMTYRRDSDVVDLHPYGRIKC FLLES-PIHTDLGLL--QQPVF---RHYFNRTMTYRRDSDVVELHAYVFSAS FLLES-PVHT-DLELL-QRPVF---RNYFNRTMTYRRDSDVVELHAYDSAVV FNLETLPGLR-------HLPCF-SRRHFYNWTMTYRRDSDIYDARPYGALRL FNLETLPGLR-------HLPCF-SRRHFYNWTMTYRRDSDIYDARPYGALRL LLFETLPGGY-------HLPFF-ARPHFYNWTMTHRRDSDVYLSKSYGALRR NNYETLPGGN------GLPCF-SRQHFYNWTMTHRRDSDVYVNRPYGALRR FLFETLPLSRDYAVYFSRAVDY-----YFNWTMTHRRDSDVYCAQHYGKIRR FLYET-IPNTSIPCVGKCLPERQYLPHYFNWTMTHRRDSDVYVAEQYGAITP FLQYA-------------------PHYFNWTMTHRRDSDVYVAEPYGAIAP FLQYA--------------------PHYFNWTMTHRRDSDVYVAEPYGAIAP YNYET-CVGEK----- DMPVFVWTKDFFNWTMTYRRDSDIYDPHPYGSIRR YNFETMDGFQ-------DYPFFKKTKHFFNWTMTYRRDSDIYDAWTYGAIRR YNYETMVTAS-------DMPMFTQTKHFFNWTMTYRRDSDIYDVRTYGALQR FFYEA
LYYEAMASERERLSV--FTEPL-- KHFFNWTMTHRRDSDIFSSHPYGSLRR
FTQEP -PPAL-KGY-- DFRRY-- ANYFNWTMTYRTDSDI--PLTYGRITK
NFQSM-- RNYFNWTMSYRLNSDI - -RLLYGRIEP
FTIEP-PPSNEPM--- NVTGY---TNYFNWTMTYRLDSDV--PFPYGRIRP
LTQET-PVMMPL-----YISSL---DNYFNWTMTYKRNSDV--QFLYGRIEP
FAQES SMTESLP--DIFSM---RNYFNWTMSYRSNSDI--QFLYGRIQP
MTQES SMLFL----RVKTL---KNYFNWTMSYRRNSDI--QFRYGRILP
LTQEA-PTTLAI---- DVNEM-- GNYFNWTMSYRFNSDI--QLLYGRIHP------ -
LTQES-PISMHTI----DVAKM---GNLFNWTMSYKFNSDV--RLLYGRIHP
LSQES-PTTI--P
LSQES-PTTLPI---- DVTKF-- GNYFNWTMTYKLNSDV--QLLYGRVSP
LTQES-PTTMPI-----DITIL---GNYFNWTMSYRLNSDV--QLLYGRVSP
LTQES-PTTMPI---- DITEF-- GNYFNWTMSYRLNSDV--QLLYGRVSP
FTQEP-PPSIKQM----NISGY---RNYFNWTMTYRMDSDV--RFLYGRIRP
LTQEP-PPALVDQ----NLAQY---RNYFNWTMTYRMDSDV--RLLYGRIRP
LTQEP-PPALVDQ----NLAQY---RNYFNWTMTYRMDSDV--RFLYGRIRP
YTRKS-PQSLASYH---NLSEF---TGVFNWTMTYRRDSDI --PLLYGRIEP
-GVFNWTMTYKRDSDI--PLLYGRIEP
YTRKS-PQSLASYH---NVSEF---TGVFNWTMTYRRDSDI--PLLYGRIAP-------
YTRKS-PQSLASYH-- NVSEF---TGVFNWTMTYRRDSDI--PLLYGRIAP--------
FTQES-PPALRSHY---NMTRF---VHFFNWTMTYALDSDI--PLLYGRIIP-------
LTQEP-PTSLKRYY---NTSQL-- -TNFFNWTMTYRMDSDI--PFLYGRVLP
LTQEP-PTSLKRFY---NTSQL---KHFFNWTMTYRMDSDI--PFLYGRVLP
FTQEP-PPALMPYY---NTSRF---ANFFNWTMTYRMDSDI--RLLYGRFIP--------
FTQEA-PPALRPLF---NMSQL---VDIFNWTMTYRFDSDI--PFIYGRVIP
ANFFNWTMTYRINSDI--QLLYGRIIA

Dappu-241186
Dappu-49176

FTQES-PPALKSYY-- NMTQL-- - AHFFNWTMTYRMDADI--RFLYGRIIP
LTQEA-PPALKPYY---NMTRL---ANFFNWTMTYRSDADI--RLRYGRIIP

Dappu-328684
Dappu-244685
Dappu-104196
Dappu-319378
Ixodes_ISCW004236
Ixodes_ISCW024758
Ixodes_ISCW023318
Dappu-41601
Dappu-48653
Dappu-331779
Dappu-67046
Dappu-55591
Dappu-334524
Dappu-302891
Dappu-60476
Tribolium_TC008651
Tribolium_TC008652
Dappu-227431
Dappu-251980
Ixodes_ISCW003590
Dappu-318584
Dappu-316980
Dappu-312894
Dappu-236411
Dappu-60056
Dappu-3751
Dappu-107642
Dappu-253741
Dappu-13230
Dappu-219820
Dappu-315514
Dappu-25363
Dappu-315506
Dappu-25935
Dappu-260935
Dappu-19438
Dappu-52155
Dappu-302634
Dappu-66315
Dappu-66309
Dappu-302400
Dappu-56240
Dappu-65379
Dappu-4136
Dappu-266638
Dappu-13713
Dappu-4141
Dappu-266923
Dappu-272135
Dappu-116054
Dappu-331784
Dappu-67045
Dappu-316572
Dappu-302457
Dappu-64359
Dappu-4083

Dappu-53630
Dappu-111600
Dappu-15329
Dappu-58299
Dappu-248921
Dappu-325563
Dappu-23160
Dappu-221393
Dappu-3818
Dappu-58354
Dappu-311402
Dappu-106945
Dappu-198878
Dappu-313025
Dappu-313010
Dappu-24623
Dappu-58316
Dappu-308012
Dappu-67044
Dappu-260055
Dappu-63087
Dappu-316372
Dappu-68594
Dappu-325685
Dappu-3750
Dappu-336888
Dappu-266928
Dappu-49339
Dappu-316587
Dappu-241186
Dappu-49176

Dappu-328684
Dappu-244685
Dappu-104196
Dappu-319378
Ixodes_ISCW004236
Ixodes_ISCW024758
Ixodes_ISCW023318
Dappu-41601
Dappu-48653
Dappu-331779
Dappu-67046
Dappu-55591
Dappu-334524
Dappu-302891
Dappu-60476
Tribolium_TC008651
Tribolium_TC008652
Dappu-227431
Dappu-251980
Ixodes_ISCW003590
Dappu-318584
Dappu-316980
Dappu-312894
Dappu-236411
Dappu-60056
Dappu-3751
Dappu-107642

Dappu-253741
Dappu-13230
Dappu-219820
Dappu-315514
Dappu-25363
Dappu-315506
Dappu-25935
Dappu-260935
Dappu-19438
Dappu-52155
Dappu-302634
Dappu-66315
Dappu-66309
Dappu-302400
Dappu-56240
Dappu-65379
Dappu-4136
Dappu-266638
Dappu-13713
Dappu-4141
Dappu-266923
Dappu-272135
Dappu-116054
Dappu-331784
Dappu-67045
Dappu-316572
Dappu-302457
Dappu-64359
Dappu-4083
Dappu-53630
Dappu-111600
Dappu-15329
Dappu-58299
Dappu-248921
Dappu-325563
Dappu-23160
Dappu-221393
Dappu-3818
Dappu-58354
Dappu-311402
Dappu-106945
Dappu-198878
Dappu-313025
Dappu-313010
Dappu-24623
Dappu-58316
Dappu-308012
Dappu-67044
Dappu-260055
Dappu-63087
Dappu-316372
Dappu-68594
Dappu-325685
Dappu-3750
Dappu-336888
Dappu-266928
Dappu-49339
Dappu-316587
Dappu-241186
Dappu-49176

Dappu-328684
Dappu-244685
Dappu-104196
Dappu-319378
Ixodes_ISCW004236
Ixodes_ISCW024758
Ixodes_ISCW023318
Dappu-41601
Dappu-48653
Dappu-331779
Dappu-67046
Dappu-55591
Dappu-334524
Dappu-302891
Dappu-60476
Tribolium_TC008651
Tribolium_TC008652
Dappu-227431
Dappu-251980
Ixodes_ISCW003590
Dappu-318584
Dappu-316980
Dappu-312894
Dappu-236411
Dappu-60056
Dappu-3751
Dappu-107642
Dappu-253741
Dappu-13230
Dappu-219820
Dappu-315514
Dappu-25363
Dappu-315506
Dappu-25935
Dappu-260935
Dappu-19438
Dappu-52155
Dappu-302634
Dappu-66315
Dappu-66309
Dappu-302400
Dappu-56240
Dappu-65379
Dappu-4136
Dappu-266638
Dappu-13713
Dappu-4141
Dappu-266923
Dappu-272135
Dappu-116054
Dappu-331784
Dappu-67045
Dappu-316572
Dappu-302457
Dappu-64359
Dappu-4083
Dappu-53630
Dappu-111600

GPC-----GN--- LS--- CPE--- - TNGSPGEALQPCLDM- - LADNYKFV-LAFERFI GPC-----GT----KS---CPE---TNGTPTAAILPCLDM--LAENYKFV-LAFEHNV GPC-----GT----KS----CPE----TNGTPTAAILPCLDM--LAENYKFV-LAFERFI GPC-----GT----KS----CPE----TNGTPTAAILPCLDM--LAENYKFV-LAFERFI GLC-----GD----HK----CSR----SR------GTSCYSD--FERKYFFM-LAFENSI GKC-----GK----HR----CER----DT------TPRCHTL--FANNYFFL-LSFENAV GQC-----GH----LS----CLP----KM------SADCYHN--ASKVYFFY-LALENSI GDC-----GS----MA----CDR----DN-----AANCYEM--LEQDYKFY-LSFENSF GNC-----GT----MT----CPR----NI------EDECREM--AAKNYKFY-MALENSL GAC-----GT----LE----CPK----ELGVDNS-SEECRDM--AGQNYKFY-MALENSL GSC-----GN--- KK--- CPKEVGVDNS-----SEDCRDM--AGQNYKFY-MALENTL GKC-----GN----MT----CPK----KQDKSFESSDECREM--AAQRYKFY-FALENSL GTC-----GN----LT----CPK----KLDDSYESSEECRDL--AASEHKFY-LSLENSL GQC-----GN----MS----CSR----SN------PEFCRQM--LESDYKFY-LSLENTL GEC-----GN----MS----CSR----SN------PELCRKM--LERDYKFY-LSLENTL GRC-----GT----LH----CEK----NN------KEGCYDM--MERKYKFY-LSFENSI GKC-----SA----LH----CEK----DN-----TEACYDK--MERDYKFY-LSFENSI GTC-----GN----LT----CSH----SD-----HIECYKM--LERDYKFY-LAFENSI GLC-----GP----LK----CNW----NSDTGIS-HPECYDM--LEKEYKFY-LSFENSL GKC-----GK----HV----CEP----KA-----SDACYQD--AAKNYSFY-LSFENSI GKC-----GG----KDL---CPK----LKN-----DELCYDM--IEKTYKFY-LAFENSI DGC---EGGR----NI----CPR----EKN-----GQECYDS--IERDYKFY-LSFENSI GKC-----GG----QDV---CPR---EKN-----SDVCYDM--IETTYKFY-FSFENSI GQC-----GG----EDR---CPR----SQN----EDVCYDM--IEKTYKFY-FSFENSI GGC-----GH----KY----CGS-----------HEQVRDI-----PFNFFVLAFENSL GGC-----YS----LR----CPM----NESAFLS-TEPCYDL--LDSSYKFY-LAFENSF GKC-----GN----LS----C------------GDRCLEM--IRSDYKFY-VAFENSF GKC-----GN----LS----CAD------------QTRGREM--VRDHYKFY-IGFENSL GKC-----GN----LT----CSN-----------RNHCKEM--IRRDYKFY-IAFENSL GKC-----GN----LT----CSN----------RNHCKEM--IRRDYKFY-IAFENSL GRC-----GK----EQVTSICDS----ADD--- NCEEIRALRAQYKFY-LAFENSW GNC-----SS-----E----CPY-------------DCYAM--LRAEYKFY-LAFENSW GRC-----GK-----D---CPS-------------NCDDL--LRTDYKFY-LAFENSW GNC------T---KQ---CPS------------HCDDM--LRTDYKFY-LAFENSW GNC------T----QD----CPY-------------HCDEM--LRAEYKFY-LAFENSW GSC------T----KK----CPY-------------NCDEM--LRAEYKFY-LAFENSW GKC-----------LKNPKTCPR----KK------QKECDDM--LKREYLFY-LSFENSF GNC----------LENHKSCPRKKDANNQPLYYVRTECDEA--LERDYLFY-LSFENSF GGCATKPENK---------CNT-----------PRDCNLM--LSQYYRFY-LSFENSL GGCATEEEKK---------CPN---------- --RPACNPM--LGQYYRFY-FCFENSL GFC-----GNGS--HQ----CPS-----------RADCDRF--LGQNYRFY-LSFENSL GSC-----RNNGSNHT----CVN-----------RADCNVM--LGRYYRFY-LSFENSL GSCRNNGSNQ----HT----CVN----------RADCNVM--LGRYYRFY-LSFENSL GEC----HGG----HQ----CRN-----------RPECDRM--LSRHYRFY-LSFENSL GKC----GDGR--HS----CQN----------RVGCDRI--LSRHYRFY-LSFENSL GKCAN---GK----HS----CPN---------- - KSECDQM--LSRHYRFY-LSFENSL GKCANAA-GS----QQQHHSCPA----N-------QSECDRM--LSRHYRFY-LSFENSL GKC-----GT----LE----CLP----RN-----TPRCDSR--VLMKYKFY-LAAENSL GKC-----GT----LE----CLP----RN------TPRCDSR--VLMKYKFY-LAAENSL GKC-----GS----LE----CLP----YN------DPRCDTK--VLVNYRFY-LAAENSL GKC-----GS----LE---CLP---RN-----DPRCDTK--VLVNYRFY-LAAENSL GNC-----GN----LT----CLP---RN-----SDRCDNL--LDE-YKFY-LSAENSL GKC-----GT----ME----CLP----RN------SYRCENL--LDN-YKFY-LAAENSL GKC-----GT----ME----CLP----RN-----SQRCESL--LDD-YKFY-LAAENSL GKC-----GT----ME---CLP----RN-----SQRCESL--LDD-YKFY-LAAENSL GRC-----GK----LN----CLP----SR------SSKCDQL--LDS-YKFY-VAAENAI GSC-----GS----LA----CVP----VR------SDKCDVE--LLDSYKFY-VAAENAL GSC-----GS----LT----CVP----LR------SEKCDKL--LDS-YKFY-VAAENAI

Dappu-15329
Dappu-58299
Dappu-248921
Dappu-325563
Dappu-23160
Dappu-221393
Dappu-3818
Dappu-58354
Dappu-311402
Dappu-106945
Dappu-198878
Dappu-313025
Dappu-313010
Dappu-24623
Dappu-58316
Dappu-308012
Dappu-67044
Dappu-260055
Dappu-63087
Dappu-316372
Dappu-68594
Dappu-325685
Dappu-3750
Dappu-336888
Dappu-266928
Dappu-49339
Dappu-316587
Dappu-241186
Dappu-49176

CDDFVTKRFFDLLS-RDTVPIVFG-GADYTRIAPPHSFIDALSFN-PRQLADRLLE------------FQPEV-KDVV----G-QRLAAKFVHQFQIVKAVGHGEG------------CDDFVTKRFFDLLS-RDTVPIVFG-GADYKRIAPPYSFIDALSFN-PKELADHLLK----CDDFVTKRFFDLLS-RDTVPIVFG-GADYKRIAPPYSFIDALSFN-PKELADHLLK CRDYITEKFFTALR-YDMVPVVFG-GANYTRVAPSRSFIDALSFKSPKHLAEHLTR---CKDYVTEKLYYTLL-YDIIPVVFG-GANYSAVAPAGSYIDALSFESPKHLAVHLTS----CTDYITEKFYNALT-WGMVPIVMS-GANYTSVAPPRSYIDALSFQNVRHLADHLKQ---CDDYVTEKFFSVLR-LDVVPIVFG-GGNYSAISPPFSYINAQDFETAVQLADYLKM----CQDYVTEKFFAMLH-QPIIPIVYGVHDHYDQIAPTHSFINAAKFETMKQLADYLIL----CRDYITEKFFGMLQ-RPVIPVVFGLHNHYDQMAPPHSFINAAKFENMRQLADYLIL----CRDYITEKFFGMLH-RPIIPVVFGLHDHYDQMAPPHSFINAAKFENMRQLADYLIL---CRDYVTEKFFENIR-RPILPIVFGLHGDHEKLAPPHSFINAANFKNMKALANHMNL----CRDYVTEKLFAMMH-RPIIPVVYGLHDDQEKLAPPHSFINAAKFENTKALADYLIL----CEDYVTEKFFDQMR-YHIIPIVFDLHGHHARMAPSHSYINAADYQSVRELADYLTL----CEDYVTEKFFDQMR-YHIIPIVFDLHGHHARMAPPHSYINAADYQSVRELADYLTL----CEDYVTEKLYNVLQ-RNIVPIVYG-GADYNTLAPPKSVINVMDFMSVKHLVKHLKY CEDYVTEKLYNVLQ-RNIVPIVYG-GADYNTLAPPKSVINVMDFMSVKDLVKHIKY-- -CKDYVTEKFFNALL-FNVVPVVYG-GANYHALAPKNSYIDVRDFSSVHHLVKYLKF---CSHYVTEKFYSILK-LDVVPVVMG-RANYSGIAPPYSFIDALRYS-PKQLADYLLL----CRDYVTEKFFRPLL-FDLVPVVLG-GGDYVSVAPPGSYINALDFRSPAELGEYLKR----CREYVTEKFFNSIA-RNLVPIVLG-GANYSAIAPEHSYIDALAYS-PRQLAAYMKR----CDDYVTEKFFEMMS-RNVVPVVLG-GANYTALAPPHSFINALDFT-PRELANYLKQ---CEEYVTEKFFEMMG-RNIVPVVLG-GADYSAIAPPHSYISALDYT-PKQLAKYLKE----CEEYVTEKFFEMMG-RNIVPVVLG-GADYSAIAPPHSYISALDYT-PKQLAKYLKE----CTDYVSEKLYTALE-NGVVPVVYG-EADYRAYAPSYSYVNARDFGSPKELAEYLWL CNDYVTEKFFDVLQ-RRIIPIVMG-GANYSAIAPPHSYIDALQYS-PRELAEYLKL CTDYVTEKLTRALL-YDAVPIVMG-GVDYNRFAPPHSFIDVKDFDSPEQLGNYLLL---CTDYVTEKLMVGLL-YDAVPIVKG-GVDYTEFAPPHSFIDVNDFTSPKQLADYLLL---CTDYVTEKLAIGLI -YDAVPIVMG-SVDYTKFAPPHSFIDVNDFPSPKQLARYLLL

Dappu-219820 Dappu-315514 Dappu-25363 Dappu-315506 Dappu-25935 Dappu-260935 Dappu-19438 Dappu-52155 Dappu-302634 Dappu-66315 Dappu-66309 Dappu-302400 Dappu-56240 Dappu-65379 Dappu-4136 Dappu-266638 Dappu-13713 Dappu-4141 Dappu-266923 Dappu-272135 Dappu-116054 Dappu-331784 Dappu-67045
Dappu-316572
Dappu-302457
Dappu-64359
Dappu-4083
Dappu-53630
Dappu-111600
Dappu-15329
Dappu-58299
Dappu-248921
Dappu-325563
Dappu-23160
Dappu-221393
Dappu-3818
Dappu-58354
Dappu-311402
Dappu-106945
Dappu-198878
Dappu-313025
Dappu-313010
Dappu-24623
Dappu-58316
Dappu-308012
Dappu-67044
Dappu-260055
Dappu-63087
Dappu-316372
Dappu-68594
Dappu-325685
Dappu-3750
Dappu-336888
Dappu-266928
Dappu-49339
Dappu-316587
Dappu-241186
Dappu-49176

CTDYVTEKLAIGLI-YDAVPIVMG-SVDYTKFAPPHSFIDVNDFPSPKQLARYLLL----CPDYVTEKFYRTLQ-FDTVPIVLG-GAEYDRFAPPHSFINALDFSSPKQLAEYLLL----CPDYVTEKFTRPLF-HDAVPIVLG-GADYSHFGPPHSYINARDFASPKALADYLIL---CPDYITEKFIRPLV-YDSVPIVLG-GANYSHFAPPHSYINARDFDSPKELADYLIL---CPDYVTEKFIRPYL-YEAIPIFLG-GADYSKYAPRNSYINARDFDSPKQLAEYLIL----CPDYVTEKFIRPFV-YDAIPIFLG-GADYSQFAPPHSYINARDFKSPKELAHYLIL----CPDYVTEKFIRPFL-YDAVPIVLG-GADYNQFAPSNSYINAMDFGSPK-
CPDYVTEKFYRAFE-TGTVPVVFG-GANYSLFAPPHSYINARDFKTPKLLAEYLIQ---CPDYVTEKFYRAVE-MGTVPVVFG-GANYSLFAPPHSFINARDFQTPKLLAEYLVK----CPDYVTEKLYRPMA-YDTVPVVYG-GSDYSFYLPAGSYINAMDFDSPQSLANYLKK---CPDYVTEKCYRPLA-YDTVPVVYG-GSDYSLFFPAGSYINALDFDSPESLANYLKK----CPDYITEKLYRPLA-HGVVPVVYG-GSDYSFYLPAGSYVNARDFDSPQSLAEYLEK----CPDYVTEKLYRTLM-HDTVPVVYG-GANYSLYLPEGSYVNARDFDSPENLANHLKE---CPDYVTEKLYRTLM-HDTVPVVYG-GANYSLYLPEGSYVNARDFNSPENLVNHLKE---CPDYVTEKLYRALA-HDTVPVVYG-GADYSLYLPAGSYVDARDFESPQSLADHLKK---CPDYVTEKLYRPMA-YDTVPVVYG-GSDYSFYLPAGSYINAMDYDSPQSLANHLKK---CPDYVTEKLYWPLA-HDTVPVVYG-GADYSDFFPARSYVDGRHFENPEALADHLKK----CPDYITEKLYRPLA-HDTVPVVYG-GADYSLYLPVGSYVNARDFKNPEALANHLKK----CPDYVTEKFYRGFL-NDIVPVVYG-GADYSQYAPPHSYINIADFRSPKELADYLLL----CPDYVTEKFYRGFL-NDIVPVVYG-GADYSQYAPPHSYINIADFRSPKELADYLLL---CPDYVTEKFYRALM-NDIVPVVFG-GADYAQYAPPNSYVNIADFQSPKQLAEYLLL----CPDYVTEKFYRALM-NDIVPVVFG-GADYAQYAPPNSYVNIADFQSPKELAEYLLL----CADYVSEKFYRALK-TDIIPVVYG-GADYAAYAPPHSYIHVADFASPKQLAEYLLL----CPDYVSEKFYRALN-QNIVPIVYG-GADYAEYAPPHSFINIADFKSPQDLAAYLKL---CPDYVSEKFYRALT-NDIVPIVYG-GADYTDYAPPHSFINLADFASPKDLAAYLKL----CPDYVSEKFYRALT-NDIVPIVYG-GADYTDYAPPHSFINLADFASPKDLAAYLKL---CTDYVTEKFYRALS-SDIVPIVYG-GADYSSYAPPLSYIDVSDFKSPKDLADYLKL----CPDYVTEKFYRALA-ADIVPIVYG-GADYSAYAPPSSYIDAGDFKSPKALADYLKL----CPDYVTEKFYRAMA-ADIVPIVYG-GADYSEYAPPMSYIDAGDFKSPKALADYLKL----CPDYITEKFYRALE-MGVVPVVYG-GADYSAYAPPHSYINAADFESPQALADYLLL----CADYVTEKFYRALE-ADVVPIVYG-GADYSAYAPAHSYINTADFASPKALAEYLYV---CRDYVTEKFFKIIQ-RRIVPVVYG-GADYERIAPAGSYIDARRYH-PAQLADYLRR---CEDYVTEKFFEIMK-RDLIPIVYG-GAKYINIAPHHSYIDATQYT-PEGLARYLKLGRHY CPDYVTEKFYRALQ-VGAVPIVYG-GSDYSAYAPPYSFIHAADFQSPKDLADYLIL----CTDYVTEKFFEIMD-HDMIPIVYG-AANYSEIAPPHSYINALDFT-PEGLARYLQM----CEEYVTEKFFEIAN-RDIVPIVYG-GADYKRIAPPHSFIDALEFT-PEALAQYLTI----CEDYVTEKFFEIMN-HDIIPVVYG-GANYSRIAPPHSYIDALQFT-PETLAQYLKV----CTDYVTEKFFELLN-YDIIPIVYG-GANYSQLAPLHSFINALDFT-PETLAQYLKI----CNDYVTEKFFEIIN-HNIVPIVYG-GANYSQFAPHHSYINALDFT-PEKLAQYLLL----CNDYVTEKFFEIMN-HNIVPIVYG-GANYSQFAPHHSYINALDFT-PEKLAQYLLL---CTDYATEKFFEILT-HNMVPVVYG-GANYSYIAPPHSYINALDFT-PEKLAEYLKL----CTDYATEKFFEILK-HNMIPVVYG-GANYSQIAPPHSYINALDFT-PEKLAEYLKL---CTDYATEKFFEILK-HNIVPVVYG-GANYTQIAPPHSYIDALDFT-PEKLAEYLKL----CPDYVTEKFFQIMSLRDIVPVVYG-GADYAQLAPEHSYIDARQFE-PQQLAAYLKK----CQDYVTEKFFHIMSLRDIVPVVYG-GADYAQLAPGHSYIDALQFE-PKQLAAYLEM----CQDYVTEKFFHIMSLRDIVPVVYG-GADYAQLAPGHSYIDALQFE-PKQLAAYLEM----CPDYVTETFFTMMD-RDVVPVVYG-GADYTRYAPTHSYIDARQIK-PEELATYLKL---CPDYVTETFFTMMD-RDVVPVVYG-GADYTRYAPTHSYIDARQIK-PEELATYLKL----CPDYVTDTFFTMMD-RDVVPVVYG-GADYTRYAPTHSYIDARQFK-PEELATYLKI----CPDYVTDTFFTMMD-RDVVPVVYG-GADYTQFAPIHSYIDARQFK-PEELATYLKF----CKDYVTEKFFKVMD-HDIVPIVYG-AADYARHAPPHSYIHAGKFK-PKELADYLKL----CKDYVTEKFFKILD-LYMIPIVYG-GADYTQHAPPHSYIDARKFK-PKELAAYLKI---CKDYVTEKFFKILD-LYMIPIVYG-GADYTQHAPPHSYIDARKFK-PKELAAYLKI---CPDYVTEKFFKILG-QNLVPIVYG-GADYTQHAPAHSYIDALKYK-PKELAAYLQL----CPDYVTEKFFKIMG-HDIVPIVYG-GADYSRHAPPHSYIDARHFK-PKELAAYLKQ----FPDYVTEKFFKIMG-HHIVPVVYG-GADYTQHAPPHSYIDARKFK-PEELAAYLKL---CPDYVTEKFFKIMG-HHIVPIVYG-GADYTQHAPPHSYIDARKFK-PKELATYLKL----CPDYVTEKFFKIMG-HHIVPVVYG-GADYSQYAPPHSYINAREFK-PKELAAYLKL----

Dappu-328684
Dappu-244685
Dappu-104196
Dappu-319378
Ixodes_ISCW004236
Ixodes_ISCW024758
Ixodes_ISCW023318
Dappu-41601
Dappu-48653
Dappu-331779
Dappu-67046
Dappu-55591
Dappu-334524
Dappu-302891
Dappu-60476
Tribolium_TC008651
Tribolium_TC008652
Dappu-227431
Dappu-251980
Ixodes_ISCW003590
Dappu-318584
Dappu-316980
Dappu-312894
Dappu-236411
Dappu-60056
Dappu-3751
Dappu-107642
Dappu-253741
Dappu-13230
Dappu-219820
Dappu-315514
Dappu-25363
Dappu-315506
Dappu-25935
Dappu-260935
Dappu-19438
Dappu-52155
Dappu-302634
Dappu-66315
Dappu-66309
Dappu-302400
Dappu-56240
Dappu-65379
Dappu-4136
Dappu-266638
Dappu-13713
Dappu-4141
Dappu-266923
Dappu-272135
Dappu-116054
Dappu-331784
Dappu-67045
Dappu-316572
Dappu-302457
Dappu-64359
Dappu-4083
Dappu-53630
Dappu-111600
Dappu-15329
Dappu-58299

----LEKDEKHYFRHFWWKDVYKVIYTK ----LEKDEKHYFRHFWWKDVYKVIYSR---------------------PFECDLCEK							
K							
-VAKDFNLYKSYFNWKGKYDL IPWTEI-----------------							
- IAKDPL Y Y							
LISNDDI YNQYFWWKPHYRVRNHIQDLKL------------- SM-CGLCSR							
S							
----LDRNDTLYNEYFWWKPHFESRYKQKDVNI------------GM-CHLCAS							
-LDMNDTL YNEYFWWKPYFQVRDSQ							
-LNNNDTLYNEYFWWKPYFKVHDSEDEKNK-------------SM-CRLCAA							
-LDGNDTLYNEYFWWKKHYVVNN							
LEWKKDYIVETASTQ---------------TL-CTLCQK							
LEWKKDYIVETSSTR-------------- SL-CTLCQK							
LARNDSAYLHYFDWRKTPPGLSLLPRTNQ------------GW-CTLCSM							
-LDGNQTLYERYLKWKTSYIIRSGYEEMGGQ------------AL-CSLCAQ							
VAGDPEWYESFFLWKNHFKLKYEHLG -							
-VDQNDSLYAEFFWWKPHYRVVNLPQTNKE-------------- SF - CNLCAA							
----LDADDRLYAEYFWWKPHYQVANLYHTNRQ-------------VF-CHLCQA							
LDSNDTLYAEYFWWKPHYRIRNLYDTNRK------------AF-CDLCEA							
LDSNDTLYAEYFWWKPHFTVRNLYGTSR							
----LHQNDHLYQNYFSWNQDYMVDRFPTD---------------GW-CNLCQM							
LASDDKLYNEYFWWKPHFQVVKRYPFLAAN-----------AL-CSLCDK							
-LDKADSLYARYFDWRRDFTVELYQKR----------------GW-CRLCQL							
---- LSETDALYMRYFDWKRDFTVHLNLKL------------------SWWLCQL ----- LNSSEELYVGYFQWKNHYRVSLPAMD---------------- -- GW-CDLCRM							
LNNSDALYASYFDWKKDFRVVKTDMS---------------GW-CDLCQL							
--LDKSESLYASYFSWKNHYYVSVPDMY-----------------GW-CELCRM --LDKSDDLYARYFDWKRDYYVSVPDFY-----------------GW-CELCRM							
-LSRNLDLYSHFFDWKKFNLRKSS-----------------GWACKLCEM							
LMADDELYLSYFRWR							
---LMTDDELYLSYFRWRRKYVVDLAPKD---------------SW-CQLCEM							
-LMLDDELYLSYFRWRNRFTVDPKPVD---------------GM-CQLCRL							
----LMINDELYLSYFRWKQRYTVELGHLN-------------- -- - - - - - CSLCRL							
---- LMINDELYLSYFRWKQRNTVELGHLN------------------ - - - -							
----LMSDDRLYLKHFTWRRNYVVD -----LMADDELYLSYFRWRQKFAVDPSPID------------------ --							
-----LIANDTLYS ${ }^{\text {a }}$							
-LMANDTLYASYFQWRIKYVVD-------------------------------							
---- LDKNDALYRKYFDWKKNFEVINRPLN---------------- GW-CDLCEK							
-LDKNDALYRKYFDWKKNFEVINRPLN--------------- -------							
SSKYFDWKKDYEVIRKPLN------------- GW-CDLCAK							
----LANNDALYSKYFDWKKDYEVINRPPD-----------------GW-CDLCAK							
--- - LDKNEALYLKYFEWKKDYDVVRSPLD------------------------------- GW-CDLCEK							
-----LASNEALYVEYFQWKKHYAVVRSPKK-----------------GW-CDLCAK -----LASNEALYVEYFQWKKHYAVVRSPKK-----------------GWWCDCAK							
-LDENDGLYLKYFDWKXYEVVSRPVT----------------GW-CELCEK							
-LDQNDGLYLKYFDWKKDYQVVNGPVG----------------GW-CQLCEK							
-LDENDGLYLKYFDWKKDYEVVRRPVG---------------GW-CELCEK							
LYSEYLDWNKDWEINKQKQSE----------------GW-CRLCEK LYSKYFDWKKDWEVIRSPTD----------------- -- GW-CDLCEK							

Dappu-248921
Dappu-325563
Dappu-23160
Dappu-221393
Dappu-3818
Dappu-58354
Dappu-311402
Dappu-106945
Dappu-198878
Dappu-313025
Dappu-313010
Dappu-24623
Dappu-58316
Dappu-308012
Dappu-67044
Dappu-260055
Dappu-63087
Dappu-316372
Dappu-68594
Dappu-325685
Dappu-3750
Dappu-336888
Dappu-266928
Dappu-49339
Dappu-316587
Dappu-241186
Dappu-49176

Dappu-328684
Dappu-244685
Dappu-104196
Dappu-319378
Ixodes_ISCW004236
Ixodes_ISCW024758
Ixodes_ISCW023318
Dappu-41601
Dappu-48653
Dappu-331779
Dappu-67046
Dappu-55591
Dappu-334524
Dappu-302891
Dappu-60476
Tribolium_TC008651
Tribolium_TC008652
Dappu-227431
Dappu-251980
Ixodes_ISCW003590
Dappu-318584
Dappu-316980
Dappu-312894
Dappu-236411
Dappu-60056
Dappu-3751
Dappu-107642
Dappu-253741
Dappu-13230
Dappu-219820
Dappu-315514
--------LDADDTLYQEFFRWKKDYAVEAGVASMARR GF-CHLCSR
HCPRITAEISLASSILPLLAYHSSPHILESSIPSLLAYHSSLVLSSRTQLRNF-NSFSQQ
--------LDQNPKLYARYFEWKKDWIVDREPFD GW-CSLCEK
------- - LDANDTLYNEYFWWKNHYRVESGEPQMARH GF-CDLCKK
--------LDANDELYNEFFWWKSHYKVEAGLQQMARH GF-CDLCKK
--------LDANDQLYNEYFWWKGHYAVESGVEQMARH GF-CDLCKK
--------LDANDTLYNEYFWWKDHYRIESGIEQMARH GF-CDLCKK
--------LDANDNFYNEYFWWKDHYRVESGVEQMARH AF-CDLCKK
--------LDANDNFYNEYFWWKDHYRVETGVEQMARH GF-CDLCKK
--------VDSNDTLYNEYFWWKDHYEVEAGVDQMASH GF-CDLCKK
--------VDSNDTLYNEYFWWKDHYEVEAGVDQMASH GF-CDLCKK
--------VDSNDTLYNEYFWWKDHYEVEAGVDQMASH GF-CDLCKK
--------LAANETLYNEYLWWKDDYVVEAGMEEMVRR GF-CDLCRK
------- - LAANETLYNEYLWWKDDYTVEAGLEQMVRH GF-CDLCRK
------- - LAANETLYNEYLWWKDDY
--------LDANDTLYGEYFWWKDHYRNIT
--------LDANDTLYGEYFWWKDHYRVTSSKENMWRN SF-CDLCQK
--------LDANDTLYGEYFWWKDHYRVTSSEENMWHN SF-CDLSQK
--------LDANDTLYGEYFWWKDHYQVTSSEENMWRN SF-CDLC--
--------LDANQTLYEEYFWWKDHFRVESSVDDMSRH GF-CDLCQK
--------LDADDALYNEYFWWKDHYHVEFITENTSRH GF-CSLCQK
--------LDADDALYNEYFWWKDHYHVEFITENTSRH GF-CSLCQK
--------LITNETLYNEYFWWKDYYKVEFTLEDRSRH AF - CDLCQK
------- - LDADDALYNEYFWWKDHYRVEYSVDDRSRH AF-CDLCQM
--------LDANDTLYNEYFWWKDYYDVEYSIEGTTRH GF-CDMCQK
------- - LDANDTLYNEYFWWKDYYRVEYSVEDMTRH GF-CDLCQK
--------LDANDTLYNEYFWWKDYYDVEYSIEDMSRH- GF-CDLCRK
LN------ SNLPR---- -KVYRDIDAW--- -WYNS-- TKCSGPEDRGIVIRNKGNEDL
LG---------------EIRVDIR
LN-------SNLPR-----KIYRNLDDW--- WYNN---TKCSAPEDRGIVIRHNGTVDD
LH-----G-KDFREQ----TTYNDMRVW----W-EQ-E-GRCRSWNL
LY-----S-EHFRRS----TVYEDILYW----W-NA-T-SQCRVWDRYSNQLLQ
LH----E-QSPP-----RMYEDINAW---WFM
LH-----Y-DRAL------KIYDDMEKW----W-VQ-D-SHCHTPRSDNVFHIPFWKN-
LH-----N-TTLPP-----KIYRDMTEW----W-ET-K-SKCADSPHIS
LH-----N-NELPA-----KSYSNMTDW----W-EK-Q-SYCVTSPPIS
LH-----N-KDMPS-----KTYTNMTDW----W-DE-R-SACINSPPIS
LH-----D-EKLPR-----KIYSNLTDW----W-EK-K-STCIYSPTIS
LH-----D-ETLPP----KIYHNLTDW----W-DT-Q-STCIFSPKIS
LH----D-STIPS----KTYRNMTDW---W-DV-Q-SKCRSLTFVDKNTSKNDSNFY
LH-----V-PNKPS-----KIYSDMTNW----W-DI-Q-ATCQTITFSEETDFAEESDGE
LN-----E-PIKQ------KIYNDITKW----WAGK-DLDKCMVSKNGFLDKYLLQS---
H-----E-PIKQ------KIYSDITKW----WAGK-NKNKCMVNKNGFLDKYLLQS--
LN----N-DSLPS----HSYSNIHSW----W-FE-K-GQCEKDRTSIQKLAI
LN-----L-SDDRKEI---MPAADVLST----W-NP-T-TRCLNPRYVKAFHSIDRNNNR
LH-----S-DIASGRT---FTYNKFRK-----WFLE-D-ARCANWKQLLHGRA
LH-----E-TPMQE-----RKAQGLQK-----WYVD-D-SHCLVKPNFNSTQ
LH-----Y-QVGQPLLANGSTLQDVKK-----WYMD-D-SHCLDIPKFDET
LH-----T-SPIQS----SVAKGLHQ-----WYHK-D-AKCRHNPKFDET
LH-----STPLKR-----GTVNGLEK-----WYMK-E-SHCANMPIIIRN
LH-----R-PIES------QAYSDVQRW----W-AE-E-VTCTSNYHFNLTVSNNLEPVA
LH-----H-NKTE------SIYHDLAAG----W-
AN-----D-DRLPS-----RTYDDIFQW----WVDD-P-ETCNLKVGDTPIQRTS
AN-----D-DRLPP-----RVYDDILKW----WVDD-P-VNCNLPS
AH-----DSQVISS-----TTYKDILEW----WVSN
AH-----DSQVISS---- TTYKDILEW--- WVSN-TPANCSNLPPHTKFPFPEFAIKF

Dappu-25363
Dappu-315506
Dappu-25935
Dappu-260935
Dappu-19438
Dappu-52155
Dappu-302634
Dappu-66315
Dappu-66309
Dappu-302400
Dappu-56240
Dappu-65379
Dappu-4136
Dappu-266638
Dappu-13713
Dappu-4141
Dappu-266923
Dappu-272135
Dappu-116054
Dappu-331784
Dappu-67045
Dappu-316572
Dappu-302457
Dappu-64359
Dappu-4083
Dappu-53630
Dappu-111600
Dappu-15329
Dappu-58299
Dappu-248921
Dappu-325563
Dappu-23160
Dappu-221393
Dappu-3818
Dappu-58354
Dappu-311402
Dappu-106945
Dappu-198878
Dappu-313025
Dappu-313010
Dappu-24623
Dappu-58316
Dappu-308012
Dappu-67044
Dappu-260055
Dappu-63087
Dappu-316372
Dappu-68594
Dappu-325685
Dappu-3750
Dappu-336888
Dappu-266928
Dappu-49339
Dappu-316587
Dappu-241186
Dappu-49176

AH-----N-DSLPS-----KVYPDIKRW
AH-----D-DTLPA-----KTYRDIKQW----WMLD-D-GECETDSNKYF
IH-----D-SKLPP----KVYPDIKKW--- - WMS
AH----D-NTLPI----KVYHDIKQW----WMLD-A-GECESNSTKYF
LH-----T-DLRVTAA---KSYEDIGE-----WFFD-K-NTCENYQWSNVRS
LR-----N-PDVKA-----KTYANMSAW----WLGETINHTCMYAPPKSLVFNQTG
LR-----D-PKP------KMYDDIGAW----WSGE-T-INQTCLMTPPKSLVNVT
LS---- - D-KKTEE---- KIYPDIAEW--- WHGG-N-HTCLTPPPSLV--------
LN-----DRNDAEK-----KSYAVIAAW----WSGQLNNQTCFTPPPTSLV---------
LN---- -DRNDAEK-----KSYADIAAW----WSGQLTNQTCFTPPPTSLV---------
LS---- D-TQTEA---- KSYPDISSW--- LAGNVANQTCFPPPTTK

LN-----D-PTQKS-----KSYENVAKW----W-YD-D-IPCLAGSSFINSIATM
LN-----D-PTLAS-----QSYASVAKW----W-YD-D-SPCLPGSSYITSLIRSS
LN----D-ESLPR----KSYSNMGMWCIRKWYLH-E-EKERRESLADALGIFD
LN-----D-PHEPT-----KIYESMAEW----W-YD-D-VPCYPGESFIKTRLNHIQ---
LN-----D-PQLETVT---KSYADVGHW----W-IR-K-LPCYPGSSFLMSHT------
LN----D-PHWQSQR---KSYEDVAEW----W-VR-K-LPCYPGSSFLLGHM------
LN-----D-PHWQSQR---KSYEDVAEW----W-VR-K-LPCYPGSSFLSGHTSIPAS--
LN-----D-PHQRP-----KVYKDISDW----W----------------------------
LN----D-AQQKP----KVYADMTDW----WFHT-N-IPCLSGYDYLDHLLQQDAKDN
LN-----D-PQQKP-----KVYKDMTDW----WYHK-D-IACLSGYDYLDNLLQQNMTTF
LNAAAKSK-EQQPKNNSASKVYRDMAKW----YYE
LN-----R-PEEPE-----KSYEDIGT-----WFYD-K-VPCLPGSSLKNLYGEM
LH-----H-DQTV-----KTYVDLTSH----WQHP-S-DECQSPLEMNEFIFSLY
LS----S-YISSIIV-- AIFVSSGPG----F-LV-V-GPHKVIQSGILWATIVS---
LN-----D-PDANQTS---KSYRDIAKW----W-----------------------------
LH-----Q-DESV------KYYPEIRSE----W-HP-N-SQCRHLSSTWENSPQNYLTPV
LH---
LH-----QEDEGVV-----KFYPQLVSE----W-DP-K-KKCKYFDSWETQS-------
LH-----Q-DDGVT-----KYYPELLTD----W-NP-D-TVCEKVESWDIPTYPVTHRFF
LH-----H-EEGVT-----KFYPELESE----W-HP-K-TQCRYFSSWETSA-------
LH-----Q-EEGVT-----KFYSDLVSE----W-HT-K-TQCKQMSNWETSTTTQSTTTT
LH-----Q-DQGVI-----KYYSELVSE----W-HY-N-TQCHQFTSWETQS
LH----Q-DQGVI-----KYYHELVSE---W-DP-E-TKCKQMSSWEKN

LH----EANQEP-----KMYTSMASR----WNP---ARCQRPSKHGDQIKPEQNLPG
LH-----V-DNERI-----KSHPSLFPK----W-HP---GRCSRPTYKLKKSPKKFPFLK

LH-----R-DFES-----KSYQDLISY----W-DD-N-NQCVPFDPKWIF
LH----R-DFES-----KSYQDLISY----W-GD-Y-NQCVPFDPKWIF
LH-----E-DSEF------KSYAEMASD----WGDD-S-RQCA
LH-----D------------------------------------
LH-----D-IQTPF-----QSYADEGVLT---DLGD-D-SKCLPFDPNWIS
LH----E-QDDR-----KSYPDLSAE----W-GD-G-NKCKPFDPTWI
LH-----E-SDDDGHF---QTYPDMESF----W--G-N-ETCQPFDPKWIS---------
LH-----E-LKDVDY----QSYKRSG------F-----------------------------
LH-----Q-QQDGDF----RTYKELESE----W-GD-G-NKCQPFDPSWLS
LH-----Q-QQDGNF----QSNKELESE----W-GD-G-NKCQQFDSSWL

I. Expanded and Unknown Genes are Ecoresponsive Genes

Table S49. Counts of unique gene transcripts sampled from cDNA libraries partitioned into three ecological conditions. Biotic challenge includes Daphnia pulex exposed to bacterial infection, predators, juvenile hormone and varying diets. The abiotic challenge includes animals exposed to environmental toxicants, elevated UV, hypoxia, acid, salinity and calcium starvation. Standard non-ecological conditions include animals at various stages of life-history within a controlled laboratory environment. The transcribed gene counts with homology to proteins from other species, without homology to other proteomes are tabulated here, with Chi-square statistical analysis of the effects. The transcribed gene counts for loci found within tandem duplicated gene (TDG) clusters and outside of TDG clusters are tabulated below, with Chi-square statistical analysis of the effects.

Homology vs no homology	Biotic challenge			Abiotic challenge			Standard conditions		
	Homology	$\begin{gathered} \text { No } \\ \text { homology } \end{gathered}$	Total	Homology	$\begin{gathered} \text { No } \\ \text { homology } \end{gathered}$	Total	Homology	No homology	Total
Count	1,184	1,393	2,577	2,895	3,700	6,595	3,599	2,632	6,231
Expected	1,284.6	1,292.4		3,287.4	3,307.6		3,106	3,125.0	
Values									
Chi-square	7.873	7.826		46.847	46.562		78.254	77.778	
contribution									
Row Percent	45.95\%	54.06\%	16.73\%	43.90\%	56.10\%	42.82\%	57.76\%	42.24\%	40.45\%

Chi-square statistics for all table factors $=265.1399$; d.f. $=2 ; \mathrm{p}=2.664438 \mathrm{e}^{-58}$

Within vs outside of TDG clusters	Biotic challenge			Abiotic challenge			Standard conditions		
	In TDG cluster	$\begin{aligned} & \hline \text { Not in } \\ & \text { TDG } \\ & \text { cluster } \end{aligned}$	Total	In TDG cluster	$\begin{aligned} & \hline \text { Not in } \\ & \text { TDG } \\ & \text { cluster } \end{aligned}$	Total	In TDG cluster	$\begin{aligned} & \text { Not in } \\ & \text { TDG } \\ & \text { cluster } \end{aligned}$	Total
Count	936	1,641	2,577	2,462	4,133	6,595	1,999	4,232	6,231
Expected Values	902.9	1,674.1		2310.8	4284.2		2183.3	4047.7	
Chi-square contribution	1.21	0.653		9.894	5.336		15.55	8.388	
Row Percent	36.32\%	63.68\%	16.73\%	37.33\%	62.67\%	42.82\%	32.08\%	67.92\%	40.45\%

Chi-square statistics for all table factors $=41.03073 ;$ d.f. $=2 ; p=1.231094 e^{-09}$

Table S50. Differential expression (DE) of the genome of Daphnia pulex with four treatments measured on genome tiling path microarrays. Counts of tiles with DE per genome feature (gene, intron, unknown). Tiling DE is ascertained from statistical analysis of balanced treatment \times three-replicate design using the LIMMA package in R [S16, S37, S38]. Counts of the tiles with up-regulation, down-regulation and no difference in each genome feature are tabulated here, with Chi-square statistical analysis of the effects.

Cadmium exposure	Up-regulated					Down-regulated			
	Gene	Intron	Unknown	Total	Gene	Intron	Unknown	Total	
Count	9,539	2,118	26,226	37,883	16,461	2,493	31,242	50,196	
Expected values	9,659	2,189	26,035		12,798	2,901	34,497		
Chi-square contribution	1	2	1		1,048	57	307		
Row Percent	25%	6%	69%	1%	33%	5%	62%	2%	

Cadmium exposure	No differential regulation			
	Gene	Intron	Unknown	Total
Count	717,889	164,017	$1,947,692$	$2,829,598$
Expected values	721,432	163,537	$1,944,628$	
Chi-square contribution	17	1	5	
Row Percent	25%	6%	69%	97%

Chi-square statistics for all table factors $=1441.834 ;$ d.f. $=4 ; p=5.863123 e^{-311}$

Kairomone exposure	Up-regulated				Down-regulated			
	Gene	Intron	Unknown	Total	Gene	Intron	Unknown	Total
Count	48,569	10,405	12,7001	18,5975	39,292	8,238	118,583	166,113
Expected values	47,416	10,748	12,7810		42,352	9,601	114,160	
Chi-square contribution	28	11	5		221	193	171	
Row Percent	26%	6%	68%	6%	24%	5%	71%	6%

Kairomone exposure	No differential regulation			
	Gene	Intron	Unknown	Total
Count	656,028	149,985	$1,759,576$	$2,565,589$
Expected values	654,121	148,279	$1,763,189$	
Chi-square contribution	6	20	7	
Row Percent	26%	6%	69%	88%

Chi-square statistics for all table factors $=662.5405 ;$ d.f. $=4 ; p=4.494261 \mathrm{e}^{-142}$

Mixed metal exposure	Up-regulated					Down-regulated		
	Gene	Intron	Unknown	Total	Gene	Intron	Unknown	Total
Count	53,806	10,954	194,138	258,898	104,842	6,881	95,965	207,688
Expected values	66,008	14,963	177,926		52,952	12,003	142,733	
Chi-square contribution	2,256	1,074	1,477		50,849	2,186	15,324	
Row Percent	21%	4%	75%	9%	50%	3%	46%	7%

Mixed metal exposure	No differential regulation			
	Gene	Intron	Unknown	Total
Count	585,241	150,793	$1,715,057$	$2,451,091$
Expected values	624,929	141,662	$1,684,501$	
Chi-square contribution	2,520	589	554	
Row Percent	24%	6%	70%	84%

Chi-square statistics for all table factors $=76829.46 ;$ d.f. $=4 ; p=0$

Sex differences	Up-regulated					Down-regulated		
	Gene	Intron	Unknown	Total	Gene	Intron	Unknown	Total
Count	142,616	4,737	68,803	216,156	93,665	6,398	126,267	226,330
Expected values	55,111	12,493	148,552		57,705	13,081	155,544	
Chi-square contribution	138,940	4,815	42,813		22,409	3,414	5,511	
Row Percent	66%	2%	32%	7%	41%	3%	56%	8%

Sex differences	No differential regulation			
	Gene	Intron	Unknown	Total
Count	507,608	157,493	$1,810,090$	$2,475,191$
Expected values	631,073	143,054	$1,70,1064$	
Chi-square contribution	24,155	1,457	6,988	
Row Percent	21%	6%	73%	85%

Chi-square statistics for all table factors $=250502.2 ;$ d.f. $=4 ; p=0$

SUPPLEMENTAL REFERENCES

S1. Colbourne, J.K., et al., Phylogenetics and evolution of a circumarctic species complex (Cladocera : Daphnia pulex). Biological Journal of the Linnean Society, 1998. 65(3): p. 347-365.
S2. Lynch, M., et al., The quantitative and molecular genetic architecture of a subdivided species. Evolution, 1999. 53(1): p. 100-110.
S3. Lynch, M., The Origins of Genome Architecture. 2007, Sunderland, MA: Sinauer Associates, Inc. 389.
S4. Qi, W.H., et al., Comparative metagenomics of Daphnia symbionts. Bmc Genomics, 2009. 10: p. -.
S5. Aparicio, S., et al., Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes. Science, 2002. 297(5585): p. 1301-1310.
S6. Batzoglou, S., et al., ARACHNE: A whole-genome shotgun assembler. Genome Research, 2002. 12(1): p. 177-189.

S7. Huang, X.Q., et al., PCAP: A whole-genome assembly program. Genome Research, 2003. 13(9): p. 2164-2170.
S8. Cristescu, M.E.A., et al., A microsatellite-based genetic linkage map of the waterflea, Daphnia pulex: On the prospect of crustacean genomics. Genomics, 2006. 88(4): p. 415-430.
S9. Salzberg, S.L. and J.A. Yorke, Beware of mis-assembled genomes. Bioinformatics, 2005. 21(24): p. 4320-4321.
S10. Kurtz, S., et al., Versatile and open software for comparing large genomes. Genome Biology, 2004. 5(2): p. -.
S11. Choi, J.H., et al., A machine-learning approach to combined evidence validation of genome assemblies. Bioinformatics, 2008. 24(6): p. 744-750.
S12. Wu, T.D. and C.K. Watanabe, GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics, 2005. 21(9): p. 1859-1875.
S13. Singh-Gasson, S., et al., Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nature Biotechnology, 1999. 17(10): p. 974-978.
S14. Doyle, J.J. and J.L. Doyle, A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull., 1987. 19: p. 11-15.
S15. Buchanan-Carter, J. and X. Wang, Quant-iT ${ }^{\text {TM }}$ PicoGreen ${ }^{\circledR}$ dsDNA Protocol for 454 Genome Sequencer, in CGB Technical Report. 2007: doi: 10.2506/cgbtr-200702.
S16. Gentleman, R.C., et al., Bioconductor: open software development for computational biology and bioinformatics. Genome Biology, 2004. 5(10): p. -.
S17. Tsuchiya, D., B.D. Eads, and M.E. Zolan, Methods for meiotic chromosome preparation, immunofluorescence, and fluorescence in situ hybridization in Daphnia pulex. Methods in Molecular Biology, 2009. 558: p. 235-249.
S18. Salamov, A.A. and V.V. Solovyev, Ab initio gene finding in Drosophila genomic DNA. Genome Research, 2000. 10(4): p. 516-522.
S19. Birney, E. and R. Durbin, Using GeneWise in the Drosophila annotation experiment. Genome Research, 2000. 10(4): p. 547-548.

S20. Korf, I., Gene finding in novel genomes. Bmc Bioinformatics, 2004. 5: p. -.
S21. Haas, B.J., et al., Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Research, 2003. 31(19): p. 5654-5666.
S22. Souvorov, A., T. Tatusova, and D.J. Lipman, Genome annotation with Gnomon-A multi-step combined gene prediction tool. ISMB, 2004. 2004: p. 125.
S23. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 1997. 25(17): p. 3389-3402.
S24. Burset, M. and R. Guigo, Evaluation of gene structure prediction programs. Genomics, 1996. 34(3): p. 353-367.
S25. Colbourne, J.K., et al., Sampling Daphnia's expressed genes: preservation, expansion and invention of crustacean genes with reference to insect genomes. Bmc Genomics, 2007. 8: p. -.

S26. Tang, Z.J., et al., ESTPiper - a web-based analysis pipeline for expressed sequence tags. Bmc Genomics, 2009. 10: p. -.
S27. Kent, W.J., BLAT - The BLAST-like alignment tool. Genome Research, 2002. 12(4): p. 656-664.
S28. Frohlich, T., et al., LC-MS/MS-based proteome profiling in Daphnia pulex and Daphnia longicephala: the Daphnia pulex genome database as a key for high throughput proteomics in Daphnia. Bmc Genomics, 2009. 10: p. -.
S29. Olmstead, A.W. and G.A. Leblanc, Juvenoid hormone methyl farnesoate is a sex determinant in the crustacean Daphnia magna. Journal of Experimental Zoology, 2002. 293(7): p. 736-739.
S30. Lopez, J. and J.K. Colbourne, Dual-Labeled Expression Analysis Protocol for NimbleGen Microarrays: Laboratory handbook for Environmental Genomics courses at Mount Desert Island Biological Laboratory and at Indiana University, in CGB Technical Report. 2010: doi:10.2506/cgbtr-201001.
S31. Tollrian, R., Neckteeth Formation in Daphnia-Pulex as an Example of Continuous Phenotypic Plasticity - Morphological Effects of Chaoborus Kairomone Concentration and Their Quantification. Journal of Plankton Research, 1993. 15(11): p. 1309-1318.
S32. Shaw, J.R., et al., Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins. Bmc Genomics, 2007. 8: p. -.
S33. Kilham, S.S., et al., COMBO: a defined freshwater culture medium for algae and zooplankton. Hydrobiologia, 1998. 377: p. 147-159.
S34. Folt, C.L., et al., Synergism and antagonism among multiple stressors. Limnology and Oceanography, 1999. 44(3): p. 864-877.

S35. Bolstad, B.M., et al., A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 2003. 19(2): p. 185-193.
S36. Kampa, D., et al., Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Research, 2004. 14(3): p. 331-342.
S37. Gentleman, R., et al. The R Project for Statistical Computing. 2009; Available from: http://www.rproject.org/.
S38. Smyth, G.K., Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol, 2004. 3.
S39. Colbourne, J.K. and M. Pfrender. Daphnia: the companion papers for the genome sequence. 2009; Available from: http://www.biomedcentral.com/series/Daphnia.
S40. Kendziorski, C.M., et al., On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles. Statistics in Medicine, 2003. 22(24): p. 3899-3914.
S41. Benjamini, Y. and Y. Hochberg, Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological, 1995. 57(1): p. 289-300.
S42. Harris, M.A., et al., The Gene Ontology (GO) database and informatics resource. Nucleic Acids Research, 2004. 32: p. D258-D261.
S43. Koonin, E.V., et al., A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biology, 2004. 5(2): p. -.
S44. Kanehisa, M., et al., The KEGG resource for deciphering the genome. Nucleic Acids Research, 2004. 32: p. D277-D280.
S45. Dehal, P.S. and J.L. Boore, A phylogenomic gene cluster resource: the Phylogenetically Inferred Groups (PhIGs) database. Bmc Bioinformatics, 2006. 7: p. -.
S46. Laslett, D. and B. Canback, ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Research, 2004. 32(1): p. 11-16.
S47. Lowe, T.M. and S.R. Eddy, tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research, 1997. 25(5): p. 955-964.
S48. Gerlach, D., et al., miROrtho: computational survey of microRNA genes. Nucleic Acids Research, 2009. 37: p. D111-D117.

S49. Rho, M., et al., De novo identification of LTR retrotransposons in eukaryotic genomes. Bmc Genomics, 2007. 8: p. -.

S50. Rho, M.N. and H.X. Tang, MGEScan-non-LTR: computational identification and classification of autonomous non-LTR retrotransposons in eukaryotic genomes. Nucleic Acids Research, 2009. 37(21): p. -.

S51. Price, A.L., N.C. Jones, and P.A. Pevzner, De novo identification of repeat families in large genomes. Bioinformatics, 2005. 21: p. I351-I358.
S52. Feschotte, C., et al., Exploring Repetitive DNA Landscapes Using REPCLASS, a Tool That Automates the Classification of Transposable Elements in Eukaryotic Genomes. Genome Biology and Evolution, 2009: p. 205-220.
S53. Gilbert, D. Daphnia Gene Structure. 2007; Available from: http://wfleabase.org/genome-summaries/gene-structure/.
S54. Gilbert, D. euGenes/ Arthropod genomes 2008; Available from: http://arthropods.eugenes.org/arthropods/.
S55. Gilbert, D. Online Supplemental Material to "The Ecoresponsive Genome of Daphnia pulex". 2010; Available from: http://wfleabase.org/release1/current_release/supplement/
S56. Tatusov, R.L., et al., The COG database: an updated version includes eukaryotes. Bmc Bioinformatics, 2003. 4: p. -.

S57. Wolf, Y.I., L. Carmel, and E.V. Koonin, Unifying measures of gene function and evolution. Proceedings of the Royal Society B-Biological Sciences, 2006. 273(1593): p. 1507-1515.
S58. Edgar, R.C., MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 2004. 32(5): p. 1792-1797.
S59. Rogozin, I.B., et al., Remarkable interkingdom conservation of intron positions and massive, lineagespecific intron loss and gain in eukaryotic evolution. Current Biology, 2003. 13(17): p. 1512-1517.
S60. Carmel, L., et al., Patterns of intron gain and conservation in eukaryotic genes. Bmc Evolutionary Biology, 2007. 7: p. -.
S61. Kriventseva, E.V., et al., OrthoDB: the hierarchical catalog of eukaryotic orthologs. Nucleic Acids Research, 2008. 36: p. D271-D275.
S62. Richards, S., et al., The genome of the model beetle and pest Tribolium castaneum. Nature, 2008. 452(7190): p. 949-955.
S63. Werren, J.H., et al., Functional and evolutionary insights from the genomes of three parasitoid Nasonia species (vol 327, pg 343, 2010). Science, 2010. 327(5973): p. 1577-1577.
S64. Elsik, C.G., et al., The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution. Science, 2009. 324(5926): p. 522-528.
S65. Kirkness, E.F., et al., Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(27): p. 12168-12173.
S66. Rivera, A.S., et al., Gene duplication and the origins of morphological complexity in pancrustacean eyes, a genomic approach. BMC Evolutionary Biology, 2010. 10: p. 123.
S67. Seetharam, A., Y. Bai, and G.W. Stuart, A survey of well conserved families of C 2 H 2 zinc-finger genes in Daphnia. Bmc Genomics, 2010. 11: p. -.
S68. Thomson, S.A., et al., Annotation, phylogenetics, and expression of the nuclear receptors in Daphnia pulex. Bmc Genomics, 2009. 10: p. -.
S69. Wilson, K.H.S., The genome sequence of the protostome Daphnia pulex encodes respective orthologues of a neurotrophin, a Trk and a p75NTR: Evolution of neurotrophin signaling components and related proteins in the bilateria. Bmc Evolutionary Biology, 2009. 9: p. -.
S70. McTaggart, S.J., et al., The components of the Daphnia pulex immune system as revealed by complete genome sequencing. Bmc Genomics, 2009. 10: p. -.
S71. Penalva-Arana, D.C., M. Lynch, and H.M. Robertson, The chemoreceptor genes of the waterflea Daphnia pulex: many Grs but no Ors. Bmc Evolutionary Biology, 2009. 9: p. -.

S72. Schurko, A.M., J.M. Logsdon, and B.D. Eads, Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution. Bmc Evolutionary Biology, 2009. 9: p. -.
S73. Sturm, A., P. Cunningham, and M. Dean, The ABC transporter gene family of Daphnia pulex. Bmc Genomics, 2009. 10: p. -.
S74. Baldwin, W.S., P.B. Marko, and D.R. Nelson, The cytochrome P450 (CYP) gene superfamily in Daphnia pulex. Bmc Genomics, 2009. 10: p. -.
S75. Matsui, T., et al., Expression profiles of urbilaterian genes uniquely shared between honey bee and vertebrates. Bmc Genomics, 2009. 10: p. -.
S76. Lemay, D.G., et al., The bovine lactation genome: insights into the evolution of mammalian milk. Genome Biology, 2009. 10(4): p. -.
S77. Waterhouse, R.M., et al., Evolutionary dynamics of immune-related genes and pathways in diseasevector mosquitoes. Science, 2007. 316(5832): p. 1738-1743.
S78. Wyder, S., et al., Quantification of ortholog losses in insects and vertebrates. Genome Biology, 2007. 8(11): p. -.
S79. Gilbert, D. OrthoMCL clustering among 14 arthropod proteomes (ARP2). 2009; Available from: http://arthropods.eugenes.org/arthropods/orthologs/.
S80. Li, L., C.J. Stoeckert, and D.S. Roos, OrthoMCL: Identification of ortholog groups for eukaryotic genomes. Genome Research, 2003. 13(9): p. 2178-2189.
S81. Chen, F., et al., Assessing Performance of Orthology Detection Strategies Applied to Eukaryotic Genomes. Plos One, 2007. 2(4): p. -.
S82. van Dongen, S. MCL - a cluster algorithm for graphs. 2000; Available from: http://www.micans.org/mcl/index.html?sec software.
S83. Wilson, D., et al., The SUPERFAMILY database in 2007: families and functions. Nucleic Acids Research, 2007. 35: p. D308-D313.
S84. Castresana, J., Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 2000. 17(4): p. 540-552.
S85. Sakarya, O., K.S. Kosik, and T.H. Oakley, Reconstructing ancestral genome content based on symmetrical best alignments and Dollo parsimony. Bioinformatics, 2008. 24(5): p. 606-612.
S86. Conant, G.C. and A. Wagner, GenomeHistory: a software tool and its application to fully sequenced genomes. Nucleic Acids Research, 2002. 30(15): p. 3378-3386.
S87. Hubbard, T.J.P., et al., Ensembl 2009. Nucleic Acids Research, 2009. 37: p. D690-D697.
S88. Larkin, M.A., et al., Clustal W and clustal X version 2.0. Bioinformatics, 2007. 23(21): p. 2947-2948.
S89. Yang, Z.H. and R. Nielsen, Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Molecular Biology and Evolution, 2000. 17(1): p. 32-43.
S90. Lynch, M. and J.S. Conery, The evolutionary fate and consequences of duplicate genes. Science, 2000. 290(5494): p. 1151-1155.
S91. Lynch, M., The Origins of Genome Architecture. 2007, Sunderland, MA: Sinauer Assocs., Inc.
S92. Gilbert, D. Daphnia tandem genes: Rationale for analysis using Tandy. 2007; Available from: http://eugenes.org/gmod/tandy/.
S93. Tweedie, S., et al., FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Research, 2009. 37: p. D555-D559.
S94. Kashiyama, K., et al., Molecular Characterization of Visual Pigments in Branchiopoda and the Evolution of Opsins in Arthropoda. Molecular Biology and Evolution, 2009. 26(2): p. 299-311.
S95. Oakley, T.H. and D.R. Huber, Differential expression of duplicated opsin genes in two eye types of ostracod crustaceans. Journal of Molecular Evolution, 2004. 59(2): p. 239-249.
S96. Stamatakis, A., RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 2006. 22(21): p. 2688-90.
S97. Plachetzki, D.C., et al., The origins of novel protein interactions during animal opsin evolution. PLoS ONE, 2007. 2(10): p. e1054.

S98. Apweiler, R., et al., The Universal Protein Resource (UniProt) in 2010. Nucleic Acids Research, 2010. 38: p. D142-D148.
S99. Sawyer, S., Statistical Tests for Detecting Gene Conversion. Molecular Biology and Evolution, 1989. 6(5): p. 526-538.
S100. Yang, Z.H., PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 2007. 24(8): p. 1586-1591.

S101. Kimura, S., et al., Heterogeneity and differential expression under hypoxia of two-domain hemoglobin chains in the water flea, Daphnia magna. Journal of Biological Chemistry, 1999. 274(15): p. 1064910653.

S102. Thompson, J.D., D.G. Higgins, and T.J. Gibson, Clustal-W - Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Research, 1994. 22(22): p. 4673-4680.
S103. Ronquist, F. and J.P. Huelsenbeck, MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 2003. 19(12): p. 1572-1574.
S104. Eisen, M.B., et al., Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95(25): p. 14863-14868.
S105. Gu, Z.L., et al., Duplicate genes increase gene expression diversity within and between species. Nature Genetics, 2004. 36(6): p. 577-579.
S106. Jensen, L.J., et al., eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Research, 2008. 36: p. D250-D254.
S107. Saebo, P.E., et al., PARALIGN: rapid and sensitive sequence similarity searches powered by parallel computing technology. Nucleic Acids Research, 2005. 33: p. W535-W539.
S108. Letunic, I., et al., iPath: interactive exploration of biochemical pathways and networks. Trends in Biochemical Sciences, 2008. 33(3): p. 101-103.
S109. Felsenstein, J., PHYLIP (Phylogeny Inference Package), version 3.57c. 1995: Department of Genetics, University of Washington, Seattle.
S110. Jones, D.T., W.R. Taylor, and J.M. Thornton, The Rapid Generation of Mutation Data Matrices from Protein Sequences. Computer Applications in the Biosciences, 1992. 8(3): p. 275-282.
S111. Hashimoto, K., et al., Comprehensive analysis of glycosyltransferases in eukaryotic genomes for structural and functional characterization of glycans. Carbohydrate Research, 2009. 344(7): p. 881-887.
S112. Weir, B.S. and C.C. Cockerham, Estimating F-Statistics for the Analysis of Population-Structure. Evolution, 1984. 38(6): p. 1358-1370.
S113. Lynch, M. and B. Walsh, Genetics and Analysis of Quantitative Traits. 1999, Sunderland, MA: Sinauser Assoc. 980.
S114. Beaton, M.J. and P.D.N. Hebert, Variation in Chromosome-Numbers of Daphnia (Crustacea, Cladocera). Hereditas, 1994. 120(3): p. 275-279.
S115. Zaffagnini, F., Reproduction in Daphnia, in Daphnia, R.H. Peters and R. de Bernardi, Editors. 1987, Memorie dell'Istituto Italiano di Idrobiologia. p. 245-284.
S116. Routtu, J., et al., The first-generation Daphnia magna linkage map. BMC Genomics, 2010. 11: p. 508.
S117. Robertson, H.M. and K.H.J. Gordon, Canonical TTAGG-repeat telomeres and telomerase in the honey bee, Apis mellifera. Genome Research, 2006. 16(11): p. 1345-1351.
S118. Fujiwara, H., et al., Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm, Bombyx mori. Chromosome Research, 2005. 13(5): p. 455-467.
S119. George, J.A., et al., Genomic organization of the Drosophila telomere retrotransposable elements. Genome Research, 2006. 16(10): p. 1231-1240.
S120. Osanai, M., et al., Identification and characterization of the telomerase reverse transcriptase of Bombyx mori (silkworm) and Tribolium castaneum (flour beetle). Gene, 2006. 376(2): p. 281-289.
S121. Altschul, S.F., et al., Basic Local Alignment Search Tool. Journal of Molecular Biology, 1990. 215(3): p. 403-410.

S122. Adamowicz, S.J., et al., The scale of divergence: A phylogenetic appraisal of intercontinental allopatric speciation in a passively dispersed freshwater zooplankton genus. Molecular Phylogenetics and Evolution, 2009. 50(3): p. 423-436.
S123. Haag, C.R., et al., Nucleotide Polymorphism and Within-Gene Recombination in Daphnia magna and D. pulex, Two Cyclical Parthenogens. Genetics, 2009. 182(1): p. 313-323.
S124. Ronshaugen, M., et al., The Drosophila microRNA iab-4 causes a dominant homeotic transformation of halteres to wings. Genes \& Development, 2005. 19(24): p. 2947-2952.
S125. Tyler, D.M., et al., Functionally distinct regulatory RNAs generated by bidirectional transcription and processing of microRNA loci. Genes \& Development, 2008. 22(1): p. 26-36.
S126. Stark, A., et al., A single Hox locus in Drosophila produces functional microRNAs from opposite DNA strands. Genes \& Development, 2008. 22(1): p. 8-13.
S127. Bender, W., MicroRNAs in the Drosophila bithorax complex. Genes \& Development, 2008. 22(1): p. 14-19.
S128. Shiga, Y., et al., Transcriptional readthrough of Hox genes Ubx and Antp and their divergent posttranscriptional control during crustacean evolution. Evolution \& Development, 2006. 8(5): p. 407-414.
S129. Penton, E.H., B.W. Sullender, and T.J. Crease, Pokey, a new DNA transposon in Daphnia (Cladocera : Crustacea). Journal of Molecular Evolution, 2002. 55(6): p. 664-673.
S130. Arendt, D., Evolution of eyes and photoreceptor cell types. International Journal of Developmental Biology, 2003. 47(7-8): p. 563-571.
S131. Terakita, A., The opsins. Genome Biology, 2005. 6(3): p. -.
S132. Provencio, I., et al., Melanopsin: An opsin in melanophores, brain, and eye. Proceedings of the National Academy of Sciences of the United States of America, 1998. 95(1): p. 340-345.
S133. Arendt, D., et al., Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science, 2004. 306(5697): p. 869-871.

S134. Velarde, R.A., et al., Pteropsin: A vertebrate-like non-visual opsin expressed in the honey bee brain. Insect Biochemistry and Molecular Biology, 2005. 35(12): p. 1367-1377.
S135. Bellingham, J., D.J. Wells, and R.G. Foster, In silico characterisation and chromosomal localisation of human RRH (peropsin) implications for opsin evolution. Bmc Genomics, 2003. 4: p. -.
S136. Hill, C.A., et al., G protein coupled receptors in Anopheles gambiae. Science, 2002. 298(5591): p. 176178.

S137. Sun, H., et al., Peropsin, a novel visual pigment-like protein located in the apical microvilli of the retinal pigment epithelium. Proceedings of the National Academy of Sciences of the United States of America, 1997. 94(18): p. 9893-9898.
S138. Tarttelin, E.E., et al., Neuropsin (Opn5): a novel opsin identified in mammalian neural tissue. Febs Letters, 2003. 554(3): p. 410-416.
S139. Pandey, S., et al., Cytoplasmic Retinal Localization of an Evolutionary Homolog of the Visual Pigments. Experimental Eye Research, 1994. 58(5): p. 605-613.
S140. Kojima, D., et al., Novel $G(o)$-mediated phototransduction cascade in scallop visual cells. Journal of Biological Chemistry, 1997. 272(37): p. 22979-22982.
S141. Raible, F., et al., Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Developmental Biology, 2006. 300(1): p. 461-475.
S142. Oakley, T.H., On homology of arthropod compound eyes. Integrative and Comparative Biology, 2003. 43(4): p. 522-530.
S143. Smith, K.C. and E.R. Macagno, Uv Photoreceptors in the Compound Eye of Daphnia-Magna (Crustacea, Branchiopoda) - a 4th Spectral Class in Single Ommatidia. Journal of Comparative Physiology a-Sensory Neural and Behavioral Physiology, 1990. 166(5): p. 597-606.
S144. Schehr, R.S., Spectral sensitivities of anatomically identified photoreceptors in the compound eye of Daphnia magna. 1984, Columbia University.

S145. Cronin, T.W., N.J. Marshall, and R.L. Caldwell, Spectral tuning and the visual ecology of mantis shrimps. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 2000. 355(1401): p. 1263-1267.
S146. Porter, M.L., et al., Molecular characterization of crustacean visual pigments and the evolution of pancrustacean opsins. Molecular Biology and Evolution, 2007. 24(1): p. 253-268.
S147. Felsenstein, J., Cases in Which Parsimony or Compatibility Methods Will Be Positively Misleading. Systematic Zoology, 1978. 27(4): p. 401-410.
S148. Pond, S.L.K., S.D.W. Frost, and S.V. Muse, HyPhy: hypothesis testing using phylogenies. Bioinformatics, 2005. 21(5): p. 676-679.
S149. Rubin, E.B., et al., Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Research, 2006. 16(11): p. 1352-1365.
S150. Sakamoto, K., et al., Two opsins from the compound eye of the crab Hemigrapsus sanguineus. Journal of Experimental Biology, 1996. 199(2): p. 441-450.
S151. Hariyama, T., et al., Primary Structure of Crayfish Visual Pigment Deduced from Cdna. Febs Letters, 1993. 315(3): p. 287-292.

S152. Smith, W.C., et al., Opsins from the Lateral Eyes and Ocelli of the Horseshoe-Crab, LimulusPolyphemus. Proceedings of the National Academy of Sciences of the United States of America, 1993. 90(13): p. 6150-6154.
S153. Colbourne, J.K., V.R. Singan, and D.G. Gilbert, wFleaBase: The Daphnia genome database. Bmc Bioinformatics, 2005. 6: p. -.
S154. US_Department_of_Energy. JGI Daphnia Genome Portal. 2007; Available from: http://www.jgi.doe.gov/Daphnia/.
S155. Thomas, J.H., Analysis of homologous gene clusters in Caenorhabditis elegans reveals striking regional cluster domains. Genetics, 2006. 172(1): p. 127-143.
S156. Plachetzki, D.C., B.M. Degnan, and T.H. Oakley, The origins of novel protein interactions during animal opsin evolution. Plos One, 2007. 2(10): p. e1054.
S157. Velarde, R.A., et al., Pteropsin: a vertebrate-like non-visual opsin expressed in the honey bee brain. Insect Biochem Mol Biol, 2005. 35(12): p. 1367-77.
S158. Pond, S.L., S.D. Frost, and S.V. Muse, HyPhy: hypothesis testing using phylogenies. Bioinformatics, 2005. 21(5): p. 676-9.

S159. Felsenstein, J., Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology, 1978. 27: p. 401-410.
S160. Chen, K., D. Durand, and M. Farach-Colton, NOTUNG: A program for dating gene duplications and optimizing gene family trees. Journal of Computational Biology, 2000. 7(3-4): p. 429-447.
S161. Springer, B.A., et al., Mechanisms of Ligand Recognition in Myoglobin. Chemical Reviews, 1994. 94(3): p. 699-714.
S162. Yang, J., et al., The Structure of Ascaris Hemoglobin Domain-I at 2.2 Angstrom Resolution - MolecularFeatures of Oxygen Avidity. Proceedings of the National Academy of Sciences of the United States of America, 1995. 92(10): p. 4224-4228.
S163. Carver, T.E., et al., A Novel Site-Directed Mutant of Myoglobin with an Unusually High O-2 Affinity and Low Autooxidation Rate. Journal of Biological Chemistry, 1992. 267(20): p. 14443-14450.
S164. Gilbert, D. PASA database for Daphnia pulex. 2008; Available from:
http://wfleabase.org/genome/Daphnia_pulex/current/pasa/.
S165. Ye, Y.Z. and A. Godzik, Comparative analysis of protein domain organization. Genome Research, 2004. 14(3): p. 343-353.

S166. Colbourne, J.K. The Daphnia Genomics Consortium. 2003; Available from: http://daphnia.cgb.indiana.edu.
S167. Choi, J.H. Daphnia pulex scaffold dotplot. 2007; Available from: http://cancer.informatics.indiana.edu/cgi-bin/jeochoi/daphnia/tandemduplicategene/index.cgi.

S168. Colbourne, J.K. and M. Pfrender. Daphnia NIH Model Organisms for Biomedical Research. 2009; Available from: http://www.nih.gov/science/models/daphnia/.
S169. Sayers, E.W., et al., Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 2010. 38: p. D5-D16.
S170. Colbourne, J.K., et al., Five hundred and twenty-eight microsatellite markers for ecological genomic investigations using Daphnia. Molecular Ecology Notes, 2004. 4(3): p. 485-490.
S171. Puigbò, P., Y.I. Wolf, and E.V. Koonin, Search for a 'Tree of Life' in the thicket of the phylogenetic forest. Journal of Biology, 2009. 8(6): p. 59.
S172. Rho, M., et al., LTR retroelements in the genome of Daphnia pulex. BMC Genomics, 2010. 11: p. 425.
S173. Schaack, S., et al., DNA transposons and the role of recombination in mutation accumulation in Daphnia pulex. Genome Biology, 2010. 11(4): p. -.
S174. Kaminker, J.S., et al., The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biology, 2002. 3: p. research0084
S175. Quesneville, H., et al., Combined evidence annotation of transposable elements in genome sequences. Plos Computational Biology, 2005. 1(2): p. 166-175.
S176. Nene, V., et al., Genome sequence of Aedes aegypti, a major arbovirus vector. Science, 2007. 316(5832): p. 1718-1723.
S177. Holt, R.A., et al., The genome sequence of the malaria mosquito Anopheles gambiae. Science, 2002. 298(5591): p. 129-+.
S178. Weinstock, G.M., et al., Insights into social insects from the genome of the honeybee Apis mellifera. Nature, 2006. 443(7114): p. 931-949.
S179. Waterston, R.H., et al., Initial sequencing and comparative analysis of the mouse genome. Nature, 2002. 420(6915): p. 520-562.
S180. Mayer, C., F. Leese, and R. Tollrian, Genome-wide analysis of tandem repeats in Daphnia pulex - a comparative approach. BMC Genomics, 2010. 11: p. 277.
S181. Huerta-Cepas, J., et al., PhylomeDB: a database for genome-wide collections of gene phylogenies. Nucleic Acids Research, 2008. 36: p. D491-D496.
S182. Zvokelj, M., S. Zupan, and I. Prebil, Multivariate and multiscale monitoring of large-size low-speed bearings using Ensemble Empirical Mode Decomposition method combined with Principal Component Analysis. Mechanical Systems and Signal Processing, 2010. 24(4): p. 1049-1067.
S183. Woollard, A. (June 25, 2005) Gene duplications and genetic redundancy in C. elegans. DOI: doi/10.1895/wormbook.1.2.1.

[^0]: We also studied Daphnia opsin evolution using two analytical approaches matching those of a companion paper [S66] on the evolution of other multiple gene families involved in vision and eye development (Figure S22). The first approach produced a maximum likelihood analysis of rhabdomeric-clade Daphnia opsins (Figure S22A), plus close related genes found when using the Daphnia opsins to search Uniprot databases [S98]. The tree is rooted with arthropsin according to Figure S21. In addition, Figure S22B presents a maximum likelihood analysis of rhabdomericclade Daphnia opsins, plus closely related genes from 19 metazoan genomes, and rooted with arthropsin (see [S66] for methodological details of these companion analyses).

