Lawrence Berkeley National Laboratory
Recent Work

Title
Permanent draft genome sequence of Nocardia sp. BMG111209, an actinobacterium isolated from nodules of Casuarina glauca

Permalink
https://escholarship.org/uc/item/73m3c0bb

Journal
Genome Announcements, 4(4)

Authors
Ghodhbane-Gtari, F
Beauchemin, N
Gueddou, A
et al.

Publication Date
2016

DOI
10.1128/genomeA.00770-16

Peer reviewed
Permanent Draft Genome Sequence of *Nocardi a* sp. BMG111209, an Actinobacterium Isolated from Nodules of *Casuarina glauca*

Faten Ghodhbane-Gtari, a Nicholas Beauchemin, b Abdellatif Gueddou, a Karima Hezbi, a Amir Ktari, a Moussa Louati, a Imen Nouioui, a Amy Chen, c Marcel Huntemann, d Natalia Ivanova, e Nikos Kyripides, f Victor Markowitz, g Kostas Mavrommatis, h Ioanna Pagani, i Arnab Sen, j Luis Wall, k Tanja Woyke, k Maher Gtari, k Louis S. Tisa b

University of Tunis El Manar, Tunis, Tunisia; University of New Hampshire, Durham, New Hampshire, USA; DOE Joint Genome Institute, Walnut Creek, California, USA; University of North Bengal, Siliguri, India; University of Quilmes, Quilmes, Argentina

This is scientific contribution number 2677.

*Nocardia* sp. strain BMG111209 is a non-*Frankia* actinobacterium isolated from root nodules of *Casuarina glauca* in Tunisia. Here, we report the 9.1-Mbp draft genome sequence of *Nocardia* sp. strain BMG111209 with a G + C content of 69.19% and 8,122 candidate protein-encoding genes.

NCBI Taxonomy ID: 411577
Nucleotide sequence accession numbers. The assembled *Nocardia* BMG111209 genome was annotated using the JGI annotation pipeline (17, 18) and the data are available from the IMG data management system (19). The draft genome of *Nocardia* BMG111209 was resolved into 5 scaffolds consisting of 9,143,142 bp with a G+C content of 69.19%, 8,122 candidate protein-encoding genes, 52 tRNA genes, and 2 rRNA regions. Analysis of this genome for metabolism potential revealed phytohormone (i.e., IAA) biosynthesis pathways and the presence of a *hup* operon encoding an Ni-hydrogenase suggesting possible roles in their functioning as a plant-endozyphete.

Nucleotide sequence accession numbers. This whole-genome shotgun sequence has been deposited at DDBJ/EMBL/GenBank under the accession number ARMU00000000. The version described in this paper is the first version, ARMU01000000.

ACKNOWLEDGMENTS

Partial funding by the New Hampshire Agricultural Experiment Station. The work conducted by the U.S. Department of Energy Joint Genome Institute was supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-05CH11231. This project (L.S.T.) was supported in part by USDA National Institute of Food and Agriculture, Hatch 022821, and The College of Life Sciences and Agriculture at the University of New Hampshire, Durham, NH. M.G. and F.G.-G. were supported in part by a Visiting Scientist and Postdoctoral Scientist Program administered by the NH AES at the University of New Hampshire.
FUNDING INFORMATION
This work, including the efforts of Louis S. Tisa, was funded by USDA | National Institute of Food and Agriculture (NIFA) (Hatch 022821). This work, including the efforts of Tanja Woyke, was funded by U.S. Department of Energy (DOE) (DE-AC02--05CH11231).

REFERENCES