Title
Applications for High Resolution Biological Sensing in Aquatic Systems

Permalink
https://escholarship.org/uc/item/73r3p57t

Authors
Gilbert, Robert
Lee, Christine
Jay, J A
et al.

Publication Date
2007-10-10
Applications of High Resolution Biological Sensing in Aquatic Systems

Robert Gilbert, Christine Lee, Jenny Jay, Rich Ambrose
Civil and Environmental Engineering UCLA, Environmental Science and Engineering UCLA

Introduction: Water quality assessment through use of microbiological indicators

Algae and microbial organisms in freshwater
- Algal response integrates stream conditions over the period of exposure
 - Studying in situ algal communities poses difficulties because it is hard to account for conditions before the study period. In addition, loss of algal cells due to primary consumers, shedding are hard to take into account.
 - Characterizing physicochemical conditions is also difficult because stream conditions vary on small temporal (hours) and spatial (meters) scales
- Using algal monocultures enclosed in a semi-permeable membranes, it is possible to look at algal response while controlling for site conditions prior to study and loss of cells

Pathogen indicator organisms in fresh-marine waters
- Fecal indicator bacteria (pathogen indicators) are used to determine whether recreational waters are safe to swim in or not
 - Current methods are culture-based, requiring up to 24 or more hours of incubation prior to obtaining a cell concentration
 - All postings arising for samples analyzed by culture methods experience a delay which makes them potentially inaccurate
- One technique that can be used to rapidly measure bacteria is immunomagnetic separation and ATP quantification

Problem Description: Bioindicators are critical in understanding aquatic ecosystem health

Physical and chemical sensors are often proxies in environmental health studies but do not always provide a comprehensive picture. Microorganism dynamics are complex and often result from many different spatiotemporally dynamic factors. Furthermore, stream quality impairments and health-related illnesses commonly result from microorganisms. Due to the complexity of microorganisms and their environmental and public health importance, it is critical to be able to measure biotic response in addition to physicochemical conditions.

Current Research: Increase sampling density/frequency and measure

Field Testing of Algal Biosensor
- Algal biosensor array (15 sensors) distributed in stream reach for 72h
- Light, temp, NO₃, PO₄, and cond spatial and temporal patterns measured in reach
- In-stream algal conditions determined

![Light/Temperature Biosensor](image)

Algal Performance Response to Different Nitrate Conditions

<table>
<thead>
<tr>
<th>Treatment Nitrogen (ppm) as NH₄NO₃</th>
<th>0</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algal Performance Response (OD)</td>
<td>0</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>>20</td>
</tr>
</tbody>
</table>

*The monoculture responds to several stream conditions
 * Light, Temp, Nitrate, etc
*The monoculture response is an integration of all conditions
*Comparing algal responses to stream constituents allows determination of factors controlling in-stream algal growth

IMS/ATP—rapid quantification of Enterococcus

1. Environmental sample w/ different components and species
2. Isolate specific strain of bacteria using an antibody-bead complex
3. Use magnet to select for bead complexes
4. Treat resultant solution with luciferin/luciferase, which consumes ATP in a light emitting reaction. Use a light sensor to quantify light.
5. Extract ATP by lysing cells.

ATP Standard Calibration Curve

Developing a calibration curve between ATP (standard) and light emission.

Correlating IDEXX and PMT counts

Developing a correlation curve between cell count using substrate-defined technology (IDEXX) and light emission.

*Method developed from Lee and Dinsinger’s work with E. coli in freshwater, Luminiscence 2004