Title
Design and Formation of a Large, Tetrahedral, Metal-ligand Cluster Using 1,1'-Binaphthyl Ligands

Permalink
https://escholarship.org/uc/item/73v016qc

Author
Biros, Shannon M.

Publication Date
2008-09-22

Peer reviewed
Design and Formation of a Large, Tetrahedral, Metal-ligand Cluster Using 1,1′-Binaphthyl Ligands

Shannon M. Biros, Robert M. Yeh and Kenneth N. Raymond*

Many chemists have been fascinated with the development of discrete supramolecular structures that encapsulate guest molecules. These structures can be assembled through covalent[1,2] or hydrogen bonds,[3] electrostatic[4] or metal-ligand interactions.[5,6] These host structures have provided valuable insight into the forces involved in small molecule recognition. Our work has focused on the design and study of metal-ligand clusters of varying sizes.[7,8] The naphthalene [M₄L₆]¹² cluster[9] 1, shown in Figure 1, has demonstrated diastereoselective guest binding[10] and chiral induction properties[11] as well as the ability to catalyze reactions carried out inside the cavity in an enzyme-like manner.[12] However, the size of the cavity (ca. 300-500 Å³) has often limited the scope of substrates for these transformations.[13]

Figure 1. (a) Schematic diagrams of reported naphthalene M₄L₆ cluster 1 and new, larger binaph assembly 2; (b) synthesis of binapth ligand 8.

In searching for new ligands for the construction of larger M₄L₆ tetrahedra, we explored the derivatization of the 1,1′-binaphthalene (binaph) core (Figure 1). When substituted in the 5,5′ positions with catecholamides (8), the 1,1′-binaphthalene unit, in the pseudo-C₂ᵥ conformation, achieves optimal relative positioning of the chelating groups as well as the ability to catalyze reactions carried out inside the cavity in an enzyme-like manner.[12] However, the size of the cavity (ca. 300-500 Å³) has often limited the scope of substrates for these transformations.[13]

The synthesis of bis catecholate ligand 8 was accomplished in the modular manner shown in Figure 1. Selective bromination of nitronaphthalene 3 followed by reduction with iron in acetic acid gives the mono-amine 4. Acylation with the acid chloride of 2,3-dimethoxybenzoic acid 5 provides the aryl bromide 6 in good yield. This aryl bromide can be dimerized efficiently under modified Suzuki conditions and globally deprotected using BBr₃ to give the final product 8.

In the case of the naphthalene-based cluster 1, the assembly can be prepared at room temperature and in the absence of guest due to the rigid nature of the host ligands. The cavity of this “empty” cluster is likely filled with solvent. Not surprisingly, with the binapth ligand 8, cluster formation requires both heating (due to the additional six freely rotatable bonds) and the presence of a suitable guest to thermodynamically template the assembly. While looking for initial guests for this system, tetraalkylammonium salts were chosen due to a readily available range of sizes and compatibility with supramolecular assemblies.[3,7,8] The thin, outer layer of positive charge on these salts is highly complementary to the electron rich interior surface of the cluster’s aromatic walls. Dissolution of ligand 8 (6 equiv.) in methanol with an excess of R₄NBr, base (KOH) and Ga(acac)₃ (4 equiv.) followed by heating provides the desired binapth Ga₄L₆ host-guest complexes. The ¹H NMR spectra of these complexes are shown in Figure 2.

[∗] S.M. Biros, R.M. Yeh, K.N. Raymond
Department of Chemistry
University of California, Berkeley
California 94720-1460
Fax: (+1) 510-486-5283
E-mail: raymond@socrates.berkeley.edu
Homepage: www.cchem.berkeley.edu/knrgrp/home.html

[∗∗] Acknowledgments. We gratefully acknowledge financial support from the Director, Office of Science, Office of Basic Energy Sciences, and the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy at LBNL under Contract No. DE-AC02-05CH11231. We thank Prof. R.G. Bergman, M.D. Pluth, C.J. Hastings and B.E. Tiedemann for helpful discussions and Dr. Ulla Anderson for assistance with mass spectrometry experiments.

Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

Figure 2. Upfield and host ligand portions of the ¹H NMR spectra (500 MHz, CD₃OD) of binaphth Ga₄L₆ complexes with a series of tetraalkylammonium salts as guests: Pr₄N⁺, Bu₄N⁺ and n-pentylN⁺; (●):CH₃ and (●):CH₂ groups of bound guest.
The host-guest assemblies formed from the binaphth ligands and the tetraalkylammonium salts Pr₄N⁺, Bu₄N⁺ and n-pentyl4N⁺ are readily soluble in methanol and, to a lesser extent, water. As expected, the resonances corresponding to bound guest are shifted upfield ($\Delta \delta \sim -3$ ppm) in response to the shielding effect of the aromatic ligands of the host. Integration of the ¹H NMR spectra indicates that the host-guest complexes have a stoichiometry of six binaphth ligands to one interior (bound) R₄N⁺ to six exterior (free) R₄N⁺ cations. These exterior ions are likely involved in cation-π interactions with the aromatic faces of each ligand. The presence of peaks for both free and bound guest in the ¹H NMR spectra show that these complexes are kinetically stable on the NMR time scale. Cation-π[9] and CH-π interactions between host and guest as well as desolvation effects likely contribute favorably to host-guest complex formation.

Binapth Ga₄L₆ complexes containing Bu₄N⁺ and n-pentyl4N⁺, respectively, show nine resonances in the aromatic region of the ¹H NMR spectrum corresponding to the host hydrogen atoms (Figure 3). This indicates that the complex has overall T symmetry with each gallium center within the complex having the same configuration, much like its naphthalene predecessor. The complex with Pr₄N⁺ as a guest shows nine groups of aromatic resonances in this region, although in this case there is some degree of asymmetry between each ligand. This is likely a factor resulting from the ligands “puckering” in toward the cavity to maximize contact with the smaller guest. This host also demonstrates size selectivity: Et₄N⁺ is too small to efficiently template the Ga₄L₆ assembly, while n-hexyl4N⁺ is too large.

Further analysis of the ¹H NMR spectra of these complexes reveals information about the conformation of bound guest. As the guest alkyl chain length increases from propyl to pentyl, the resonance corresponding to the center of the cavity as the size of the guest increases. Diastereotopic splitting of the geminal methylene proton resonances of the bound guest is also observed, indicating that the host cavity is chiral in nature.

Further evidence for host-guest complex formation can be shown through 2D NOESY experiments (Figure 3). For the [Bu₄N⁺⊂ binapth M₄L₆]¹⁺ complex (where $⊂$ denotes encapsulation), strong NOE cross peaks are observed between the guest alkyl resonances and the aromatic protons of the host ligands. This indicates close through space contacts between host and guest, concurrent with a stable, host-guest complex.

Figure 3. (Left) Minimized structure (host: CPK colors, guest: orange CPK spheres; CAChe, v. 6.1, MM3) and (Right) 2D NOESY (500 MHz, CD₃OD) of [Bu₄N⁺⊂ binapth Ga₄L₆]¹⁺ complex.

Quaternary phosphonium salts bearing aromatic substituents are also suitable guests for this host. Triphenylpropyl-, triphenylbutyl- and tetraphenylphosphonium efficiently template the binapth Ga₄L₆ assembly. The [Ph₃PrP⁺⊂ binapth Ga₄L₆]¹⁺ complex retains overall T symmetry (Figure 4). However, the aromatic region of the of [Ph₃PrP⁺⊂ binapth Ga₄L₆]¹⁺ and [Ph₃BuP⁺⊂ binapth Ga₄L₆]¹⁺ ¹H NMR spectra show 36 sets of resonances corresponding to the aromatic hydrogens of the host ligands. This indicates a decrease in the overall symmetry of the host-guest complex, likely resulting from a hindered rotation of the $C₃$ symmetric guest inside the host’s cavity. A second possible explanation for these complex ¹H NMR spectra is that a different host-guest assembly is forming in the presence of a non-ideal guest for the Ga₄L₆ structure. These theories are difficult to prove without x-ray structural data, however high resolution mass spectra of these complexes (vide infra) supports the formation of a complex with Ga₄L₆(R₄P⁺) stoichiometry.

The host-guest complexes were further analyzed using high resolution ESI-QTOF mass spectrometry. The identity of these complexes can be readily confirmed by their complex isotopic pattern at various charge states. For instance, the predicted m/z peak for the [(Bu₄N⁺)(5K⁺)(Bu₄N⁺⊂ Ga₄L₆)]¹⁻ complex is 854.778, and the observed value is 854.779. The predicted isotopic splitting pattern of this peak is also in excellent agreement with the experimental data (see supporting information).

Figure 4. Aromatic and upfield regions of ¹H NMR spectra (500 MHz, CD₃OD) of binapth Ga₄L₆ complexes with quaternary phosphonium guests: (a) Ph₄P⁺, (b) Ph₃PrP⁺ and (c) Ph₃BuP⁺; (●): free guest, (■): bound guest (one bound guest resonance for each complex is beneath the solvent peak at 4.8) (▲): host resonances.

Summary and outlook. We have utilized a Z-catecholate-1,1′-binaphthalene ligand to form a novel, self-assembled Ga₄L₆-metal-ligand cluster. This host binds larger guests than previous assemblies we have reported. Future work will explore guest scope, the compatibility of host formation with varying metal centers and the dynamics of guest exchange. In addition, the larger cavity will be exploited to facilitate reactivity.

Binapth ligand synthesis and Host-Guest Assembly Formation: Detailed procedures and characterisation data for the preparation of compounds 4, 6, 7, 8 and all Ga₄L₆-guest complexes can be found in the supporting information.

Keywords: supramolecular chemistry · chiral recognition · metal-ligand assembly ·