Lawrence Berkeley National Laboratory

Recent Work

Title
OBSERVED DEVIATIONS FROM SCALE INVARIANCE IN HIGH-ENERGY MUON SCATTERING

Permalink
https://escholarship.org/uc/item/7599608q

Author
Chang, C

Publication Date
1975-06-01
Submitted to Physical Review Letters

RECEIVED
BERKELEY LABORATORY
JUL 21 1975

LIBRARY AND DOCUMENTS SECTION

OBSERVED DEVIATIONS FROM SCALE INVARIANCE IN HIGH-ENERGY MUON SCATTERING

June 1975

For Reference
Not to be taken from this room

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Observed Deviations from Scale Invariance in High-Energy Muon Scattering

C. Chang, K.W. Chen, D.J. Fox, A. Kotlowski, and P.F. Kunz
Physics Department, Michigan State University, East Lansing, Michigan 48824

and

L.N. Hand, S. Herb, A. Russell, and Y. Watanabe
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853

and

S.C. Loken and M. Strovink
Lawrence Berkeley Laboratory, University of California, Berkeley, Calif. 94720

and

W. Vernon
Physics Department, University of California, San Diego, La Jolla, Calif. 92037

Abstract

Scale-noninvariance is observed in 150 and 56 GeV muon scattering from an iron target. In the range 1<q^2<40 (GeV/c)^2, W_2 rises with q^2 at fixed w', > 6 and falls at w' < 6. The scale-breaking is statistically and systematically significant, and persists with alternate choices of scaling variable. It is parameterized roughly by a constant b = 3^2 ln(W_2)/3 ln(w') ln(q^2) with a value near 0.09.

Indications of scale-noninvariance in inelastic muon scattering from an iron target have been reported, most recently in ratios of cross-sections in beams of 150 and 56 GeV. This Letter compares these cross-sections with lower-energy electron-scattering values. Within fixed bands of w', variations of W_2 are evaluated over the full q^2 range of the data. Thereby, with accurate Monte Carlo simulation of the experiment, a scaling test more precise than in Ref. 2 is possible.

The muon spectrometer was described earlier. Events were identified, fit, and cut as recently reported, except that event selection to equate the 150 and 56 GeV beam radius distributions was not required. Data collected with two spectrometer configurations at each beam energy first were tested for internal consistency by comparing ratios of data to Monte Carlo rates in common bins smaller than the experimental resolution. Similar comparisons then tested the consistency of data at the two energies. In all cases the confidence levels established good consistency, permitting the merger of the four samples.

The Monte Carlo simulation generated events using a parameterization of W_2 from electron-scattering data, with R = 0.18. The iron target nucleus was modeled as a collection of nucleons in Fermi motion. Radiative corrections used a peaking approximation differing from the more exact correction by less than 3%. The correction for coherent wide-angle bremsstrahlung rose from less than 3% for w<20 to 15% at w near 60. The simulated muons suffered Coulomb scattering, energy loss, straggling from p-w scattering and bremsstrahlung in the iron, and mismeasurement by the spark chambers. Further analysis treated real and simulated data identically.

A number of tests establish the accuracy of the simulation. Shapes of real and simulated distributions in azimuth and radius of tracks near fiducial
boundaries agree well. The simulation accounts for tails in distributions of χ^2 and reconstructed energy through 2.5 decades in population. Also, it accurately models differences between momentum reconstruction algorithms which use different points on the muon trajectories. We believe that inaccuracies in simulating the acceptance and resolution contribute negligibly to the overall error.

Ratios of observed to simulated event rates are shown in Fig. 1(a)-(h) against a logarithmic scale in q^2 for 8 overlapping bands of w\(^{(9)}\). Results of straight-line fits to these data points along with the widths of the w bands are given in Table 1. The points show a rising trend with q^2 at high w, and a falling trend at low w. Fitting a power-law q^2-dependence in each w band yields an overall χ^2 of 45.6 for 51 degrees of freedom. Scale-invariance in w requires each set of points to exhibit no q^2-dependence. This hypothesis raises the χ^2 by 36.6 with the addition of 8 degrees of freedom. Statistically, such a fluctuation has a probability smaller than 2×10^{-5}. These 8 fitted slopes $\ln \mathcal{W}_2(w',q^2)/\ln q^2$ are plotted vs. w in Fig. 2(a). In the range of these data, the scale-breaking may be parameterized by a quantity $b = 2 \ln(\mathcal{W}_2)/3 \ln(w)\ln(q^2)$. If independent of both q^2 and w, b has the magnitude 0.099 ± 0.018.

The scale-noninvariant result is stable. Subsamples of data from individual spectrometer configurations or beam energies give values of b consistent with the overall result but not with zero. Agreement is excellent with the value of b recently obtained\(^{(10)}\) using a different analysis philosophy.

Figure 2(b) displays the structure function used in the Monte Carlo, and Fig. 2(c) shows ratios of the observed \mathcal{W}_2 to that function at $q^2 = 3$ (GeV/c)\(^2\). The electron-nucleus\(^{(11)}\) scattering results\(^{(3,12)}\) are consistent with these values within the normalization uncertainties (Fig. 2 caption). It is apparent that the parameterization of $\mathcal{W}_2(w')$ used in the Monte Carlo predicts smaller cross-sections at large w than observed here and in recent electron-scattering data\(^{(12)}\). A better parameterization, indicated by the dashed line in Fig. 2(b), makes the ratios in each of Fig. 1(a)-(h) near unity when averaged over q^2.

Refitting the slopes yields a result similar to that above, $b = 0.099 \pm 0.018$.

Normalization and energy calibration of the data followed the procedures recently discussed\(^{(2)}\), and dominate the systematic error in b (Fig. 2(a)). Uncertainties of 10% (7%) are ascribed to absolute (relative) normalization of data at the two beam energies. The 1% uncertainties in scattered muon energy calibration at each beam energy are correlated to yield a 1% relative error. The systematic error in b is 0.032 with only this correlation, rising to 0.041 with worst-case correlation of 150 GeV energy calibration and normalization. That is, b would lie near zero if, at 150 GeV, scattered energies were raised by 2.6% and cross-sections simultaneously were reduced by 1%. However, these shifts would only transform the form of the scale-breaking into a relative depletion of event rate at 150 GeV. Moreover, the χ^2 which measures the overall smoothness and consistency of data at the two energies would rise by more than 40 if these shifts were imposed. Reasonably correlating all errors, b is 0.09 ± 0.04, exceeding zero with 98% confidence.

The scale-noninvariance is insensitive to the assumed form of $\mathcal{W}_2(w')$, because the data are analyzed within bands of w\(^{(13)}\). Choices of $\mathcal{W}_2(w')$\(^{(12)}\) which are different from those above produce perturbations in b smaller than 10%. The q^2-dependence of \mathcal{W}_2 for $w < 6$ is coupled to the assumed form of its approach to asymptotic behavior. Use of w as a scaling variable increases the scale-noninvariance in this range (Fig. 2(a)), while use of $(w + 1.4/q^2)$
lately cancels it. Conversely, the q^2-dependence of W_2 for $q^2 > 6$ is inconsistent with scaling in any variable differing from q by terms of order $q^2/4$, since W_2 is nearly independent of q in this range. If W_2 depends upon q and also upon a second variable u_q defined by two adjustable parameters, the data can be fit within systematic errors (Fig. 2(a)). Ignoring all data with $q^2 < 4$ raises the confidence level for scaling in q^2 to 14%. Variation of W between $q^2 = 1$ and $q^2 = 5$ (GeV/c)2 can account for only 1/4 of the scale-noninvariance at $q^2 = 25$.

The rising q^2-dependence of W_2 at $q^2 > 6$ might be attributed to excitation of new hadronic degrees of freedom, with the opposite behavior for $q^2 < 6$ offset by a clairvoyant choice of scaling variable. Field theories with anomalous dimensions or asymptotic freedom predict scale-noninvariance at both low and high q of a character similar to that observed here.

While adequately describing the scale-noninvariance, the logarithmic fits serve only to provide a numerical basis for discussion of the effect. They neither predict the behavior of data in extended ranges of q^2 and u, nor anticipate the results of more exact fits to the form of W_2, which will be published elsewhere. We express again our gratitude to all who have contributed to this experiment.

References

* Decreed
† Now at SLAC, Stanford, Calif. 94305.
‡ Work supported in part by the National Science Foundation
§ Present address: Texaco Exploration Canada, Ltd., Calgary, Alta., Canada
|| Work supported in part by the U.S. Atomic Energy Commission

2. Y. Watanabe et al., to be published.
4. Our notation follows that of Ref. 2.
5. This function is graphed in Fig. 2(b). Beyond $q^2 = 7$ we fixed $W_2 = 0.305$.
6. Results are insensitive to the parameters of this model, since the smearing in q is scale-invariant and small (1%) compared to the resolution.
9. $<\omega>$ and $\delta(\omega)/\omega$ are the antilog of the mean, and the root variance of a distribution in $\ln(\omega)$ of simulated events which lie in the pertinent bin of reconstructed q. The error in $<\omega>$ is negligible.
10. The value reported was $b = 0.098 \pm 0.028$ (Ref. 2).
12. S. Stein et al., preprint SLAC-PUB-1528 (1975). Electron structure functions here and in Ref. 3 change by 5-10% with reasonable variations of R.

The bands are defined by bins in reconstructed w. Definition by w' makes little difference since the bands are broad.

F.W. Brasse et al., Nucl. Phys. B39 (1972), p. 421. We used $x_w = w_w^{-1} = (q^2 + 0.351)/(2Mv + 1.512)$ and $W_2 = (x/w_w^2)(1-x^2)^3f(1-x^2)$, with f a polynomial of order 4. The constants fit SLAC-MIT D_2 data (E.M. Rician, private communication).

W. Tung, Univ. of Chicago preprint EFI75/14.

Table 1. $\ln(data/MC)$ fit to $c+B\ln(q^2/3)$

<table>
<thead>
<tr>
<th>w</th>
<th>$\delta(w)$</th>
<th>c</th>
<th>b</th>
<th>$%$ confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>0.60</td>
<td>0.04±0.07</td>
<td>-0.076±0.031</td>
<td>54</td>
</tr>
<tr>
<td>3.8</td>
<td>0.53</td>
<td>0.07±0.07</td>
<td>-0.064±0.028</td>
<td>80</td>
</tr>
<tr>
<td>4.7</td>
<td>0.52</td>
<td>0.12±0.04</td>
<td>-0.017±0.033</td>
<td>73</td>
</tr>
<tr>
<td>5.9</td>
<td>0.56</td>
<td>0.11±0.03</td>
<td>0.043±0.032</td>
<td>69</td>
</tr>
<tr>
<td>8.3</td>
<td>0.60</td>
<td>0.19±0.02</td>
<td>0.038±0.031</td>
<td>77</td>
</tr>
<tr>
<td>12.3</td>
<td>0.58</td>
<td>0.17±0.03</td>
<td>0.052±0.036</td>
<td>10</td>
</tr>
<tr>
<td>19.7</td>
<td>0.58</td>
<td>0.20±0.03</td>
<td>0.166±0.043</td>
<td>19</td>
</tr>
<tr>
<td>32.8</td>
<td>0.66</td>
<td>0.14±0.04</td>
<td>0.107±0.049</td>
<td>38</td>
</tr>
</tbody>
</table>

fits to all 8 w bands 52

Figure Captions

Figure 1. Ratio of observed to simulated event rate vs. q^2 for 8 ranges of w. Widths of these ranges and parameters of the straight-line fits are detailed in Table 1. Errors are statistical.

Figure 2. (a) Fit slopes in $\ln(q^2)$ for the 8 w ranges. Errors are statistical. Dashed lines depict effects of (1) raising E_p by 10 at 150 GeV, (2) same at 56 GeV, (3) raising 150 GeV cross-sections by 7%. Assuming scaling in w rather than w' in the Monte Carlo yields the points indicated by "X". Using the form in Ref. 14 yields the diamond-shaped points. (b) $W_2(w,q^2=3)$ per nucleon used in the Monte Carlo, with scaling in w' and $R = 0.18$. The dashed line is the alternate form described in the text. (c) Ratio of W_2 at $q^2=3$ to the form in (b). Errors on muon data, from fits detailed in Table 1, include energy calibration errors but not the normalization error of ±10%.

Errors on SLAC-MIT e$^-$D scattering data do not include systematic uncertainties of 4–6% (Ref. 3). The e$^-$Fe points use the same deuterium data with A-dependences from Ref. 12. Their systematic errors relative to deuterium are 7%.
Figure 1

Data/Monte Carlo based on scaling in ω.

Figure 2

(a) $\ln \frac{\nu W_2}{\nu W_2_0}$ vs $\ln q^2$.

Fit to b in ω/ω_0.

$b = 0.099 \pm 0.018$

$\omega_0 = 1.6 \pm 0.2$

$x^2 = 6.0$

(b) $\nu W_2(\omega, q^2 = 3)$ per Fe nucleon.

(c) $q^2 = 3$ (fit)

This experiment: $\mu = Fe$

$A = 55.85$ (interpolated), $1.3 < q^2 < 1.6$

SLAC-MIT $e^- A$

$A = 2, 2.25 < q^2 < 3.75$
LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.