Title
PROCESS STUDIES FOR A NEW METHOD OF REMOVING H2S FROM INDUSTRIAL GAS STREAMS

Permalink
https://escholarship.org/uc/item/75d4j033

Authors
Neumann, D.W.
Lynn, S.

Publication Date
1986-07-01
PROCESS STUDIES FOR A NEW METHOD OF REMOVING H₂S FROM INDUSTRIAL GAS STREAMS

D.W. Neumann* and S. Lynn
(*Ph.D. Thesis)

July 1986

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
PROCESS STUDIES FOR A NEW METHOD OF REMOVING

H₂S FROM INDUSTRIAL GAS STREAMS

by

Dan W. Neumann and Scott Lynn

July 1986

Applied Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

This work was supported by the Morgantown Energy Technology Center, Assistant Secretary for Fossil Energy, Office of Coal Utilization, Advanced Research and Technology Development, Division of Surface Coal Gasification through the U.S. Department of Energy under contract number DE-AC03-76SF00098.
Process Studies for a New Method of Removing H_2S from Industrial Gas Streams

Dan Neumann

Abstract

A process for the removal of hydrogen sulfide from coal-derived gas streams has been developed. The basis for the process is the absorption of H_2S into a polar organic solvent where it is reacted with dissolved sulfur dioxide to form elemental sulfur. After sulfur is crystallized from solution, the solvent is stripped to remove dissolved gases and water formed by the reaction. The SO_2 is generated by burning a portion of the sulfur in a furnace where the heat of combustion is used to generate high pressure steam. The SO_2 is absorbed into part of the lean solvent to form the solution necessary for the first step.

The kinetics of the reaction between H_2S and SO_2 dissolved in mixtures of N,N-Dimethylaniline (DMA)/Diethylene Glycol Monomethyl Ether and DMA/Triethylene Glycol Dimethyl Ether was studied by following the temperature rise in an adiabatic calorimeter. This irreversible reaction was found to be first-order in both H_2S and SO_2, with an approximate heat of reaction of 28 kcal/mole of SO_2. The sole products of the reaction appear to be elemental sulfur and water. The presence of DMA increases the value of the second-order rate constant by an order of magnitude over that obtained in the glycol ethers alone. Addition of other tertiary aromatic amines enhances the observed kinetics; heterocyclic amines (e.g. pyridine derivatives) have been found to be 10 to 100 times more effective as catalysts when compared to DMA.

The reaction provides a foundation for the development of a process for removing H_2S from a fuel gas made by gasifying high-sulfur coal. A computer simulation was written to permit rapid analysis of potential process alternatives. Calculations in the simulation were performed in unit sequential fashion with
convergence accelerated using Wegstein's method. Modifications were made to standard engineering unit models to account for the presence of the reaction between \(\text{H}_2\text{S} \) and \(\text{SO}_2 \). A flowsheet and detailed heat and material balances for a process for the reduction of the \(\text{H}_2\text{S} \) content of a gasified coal stream from 60,000 to 1 ppm are presented.
Acknowledgements

Berkeley is a wonderful, often bizarre place, with many opportunities for learning, both within and outside of the University of California. This atmosphere is created by many factors, the most important of which is people. My stay here has been enhanced by a number of interesting and helpful individuals and organizations.

First and foremost, I wish to thank Professor Scott Lynn, who has guided my thesis work with intelligence, patience, and good humor.

Thanks also to my lab mates over the years, particularly Tom Colson, who performed some of the kinetics experiments, and Steve Sciamanna, a good friend who has taught me much engineering.

Bravo and a tip of the hat to Kay Ekman, Ellen Borrowman, Ruth Cooper, and Gege Muse of the Graduate Office, who facilitate dealing with the University and are friendly even in difficult times.

I am very grateful for the support, entertainment, and computer hardware (especially a fast 287 processor) provided by Len Ott and CompuPro.

A special thanks to R.S. Zarbaugh and I.M. Jenkins, who, though conspicuously non-existent, provided endless entertainment.

Thanks to the Shell Companies Foundation and to Texaco for their generous contributions to the livelihood of the author.

This work was supported in part by the Morgantown Energy Technology Center, Assistant Secretary for Fossil Energy, Office of Coal Utilization, Advanced Research and Technology Development, Division of Surface Coal Gasification, through the Department of Energy under Contract DE-AC03-76SF00098.
TABLE OF CONTENTS

Abstract 1
Acknowledgements 1

I. Introduction 1
 A. Need for H$_2$S Removal Technology 1
 B. H$_2$S Removal Technology 1
 C. University of California Sulfur Recovery Process (UCBSRP) 3
 D. Scope of Thesis Work 4

II. Kinetics of the Reaction Between H$_2$S and SO$_2$ in Organic Solvents 5
 A. Background 5
 B. Experimental Methods 5
 C. Methods of Analysis 7
 1. Acid-Base Experiments 7
 2. Kinetics 9
 3. Heat of Reaction 11
 D. Results and Discussion 12
 1. Results for the Reaction of H$_2$S and SO$_2$ in Triglyme/DMA/H$_2$O 12
 2. Results for the Reaction in DMA/DGM/Water 14
 3. Results for the Reaction in DMA/Triglyme/Methanol 16
 4. Heat of Reaction 20
 5. Summary of DMA Results 20
 E. Catalyst Survey 21
 1. Catalyst Structure 21
 2. Parametric Studies of the Reaction using 3PC in DGM and Triglyme 24
 3. Water Effect 27
 F. Selection of Catalyst 27
Table of Contents (Continued)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>III. Process Development</td>
<td>31</td>
</tr>
<tr>
<td>A. Background</td>
<td>31</td>
</tr>
<tr>
<td>B. Simulation</td>
<td>31</td>
</tr>
<tr>
<td>1. Main Program</td>
<td>31</td>
</tr>
<tr>
<td>2. Unit Operations</td>
<td>34</td>
</tr>
<tr>
<td>C. Process Description</td>
<td>38</td>
</tr>
<tr>
<td>1. Process Specification</td>
<td>38</td>
</tr>
<tr>
<td>2. Processing Steps</td>
<td>38</td>
</tr>
<tr>
<td>3. Summary</td>
<td>46</td>
</tr>
<tr>
<td>References</td>
<td>52</td>
</tr>
<tr>
<td>List of Variables</td>
<td>55</td>
</tr>
<tr>
<td>Appendix</td>
<td>56</td>
</tr>
<tr>
<td>A-1. Simulation Programs</td>
<td>56</td>
</tr>
<tr>
<td>A. Main Program - BERKSULF.F77</td>
<td>56</td>
</tr>
<tr>
<td>B. Tray Absorber/Stripper/Distillation Routine</td>
<td>58</td>
</tr>
<tr>
<td>C. Heat Exchanger Subroutine</td>
<td>61</td>
</tr>
<tr>
<td>D. Thermodynamics Subroutine</td>
<td>63</td>
</tr>
<tr>
<td>A-2. Simulation Usage</td>
<td>64</td>
</tr>
<tr>
<td>A-3. Simulation Code</td>
<td>67</td>
</tr>
<tr>
<td>A-4. Simulation Data Entry Programs</td>
<td>228</td>
</tr>
</tbody>
</table>
I. Introduction

A. Need for H\textsubscript{2}S Removal Technology

Hydrogen sulfide, found in a number of industrial process streams, poses a significant toxicity and odor problem. Recent concern for the environment has induced industry to intensify efforts to achieve high levels of removal of H\textsubscript{2}S from gaseous waste streams. In many cases essentially complete removal of sulfurous compounds is necessary. Because the requisite processes are costly in terms of capital expenditures and energy usage, improvements in technology are the subject of ongoing research.

Investigations are currently being conducted into the removal of hydrogen sulfide from natural gas, refinery gas and gasified coal. The extent to which these streams are contaminated and the amount of H\textsubscript{2}S that must be removed varies with the application. For instance, when coal is gasified most of the organic sulfur is converted to H\textsubscript{2}S that ranges in concentration from several ppm to a few percent depending on the source of the coal. Before the gas can be used, the H\textsubscript{2}S content will generally need to be reduced to the ppm level, although reduction to the ppb range may be required in some applications.

B. H\textsubscript{2}S Removal Technology

Since its development in the late 19th century and through subsequent refinements, the principle method of H\textsubscript{2}S removal has been the Claus process. This operation involves the following steps:

1. An absorption-stripping cycle applied to the H\textsubscript{2}S-laden gas stream, typically using ethanolamines as absorbents.

2. Oxidation of 1/3 of the H\textsubscript{2}S to SO\textsubscript{2}.

3. Heterogeneous catalytic reaction between the H\textsubscript{2}S and SO\textsubscript{2} at high temperature to produce sulfur and water -- i.e.

\[\text{SO}_2 + \text{H}_2\text{S} \rightarrow \frac{3}{x} \text{S}_x + 2\text{H}_2\text{O} \]
4. Condensation of the sulfur by indirect heat exchange or countercurrent scrubbing with liquid sulfur.

The Claus process is an economic sulfur producer that is capable of handling large quantities of contaminated gas. The major drawback is that the process is equilibrium-limited to 95-97% conversion in 2 to 4 stages at the temperatures required to prevent condensation of sulfur in the reactors. This would result in a stack gas that contained, after combustion of the H\textsubscript{2}S, more than 3000 ppm SO\textsubscript{2} (Ferguson, 1975, pg. 1). In general, further processing must be provided to reduce the concentration of sulfurous compounds in the effluent to environmentally acceptable levels.

A great number and variety of processes have been developed to treat the exit gas from a Claus plant. Generally, in the first step of any "tail gas" process, the sulfur in the gas is converted to a single form, either by reduction of excess SO\textsubscript{2} to H\textsubscript{2}S or by oxidation of H\textsubscript{2}S to SO\textsubscript{2}. The sulfurous material is then concentrated and recycled to the beginning of the Claus plant or converted to a product which can be sold or disposed. A detailed discussion of these "tail gas" clean-up units is beyond the scope of the present work. The interested reader is referred to several excellent reviews (for example Ferguson (1975); Kohl and Riesenfeld (1979)) for descriptions of these processes. In order to illustrate the general approach taken and some of the problems encountered in recovering residual hydrogen sulfide, an example of a commercially successful process, the Beavon Sulfur Removal Process, is given below.

In the Beavon Sulfur Removal Process, SO\textsubscript{2} in the Claus plant exit gas is first reduced to H\textsubscript{2}S over a cobalt-molybdenum catalyst. This stream is then fed to a Stretford absorber where the H\textsubscript{2}S is absorbed into an aqueous sodium bicarbonate solution as bisulfide. The bisulfide is oxidized by vanadium (as vanadate ion) to sulfur, which is removed by filtration. Vanadium is reoxidized by anthraquinone
disulfonic acid (ADA), which is regenerated by air or oxygen.

The Beavon/Stretford process has excellent sulfur removal capability; exit concentrations of \(\text{H}_2\text{S} \) in the ppm range can be achieved. However, the consumption of valuable fuel in the reduction step and the large circulation rates needed due to the low absorption capacity of the solution (~1 g sulfur/lit) reduce the attractiveness of the process. Furthermore, the sulfur formed by the reaction is of low quality and often difficult to remove from solution. Because of the high pumping requirements and the net energy consumption, the Beavon/Stretford process is limited to the treatment of gases containing no more than 10 tons/day of sulfur (Kohl and Riesenfeld, 1979).

C. University of California Berkeley Sulfur Recovery Process (UCBSRP)

The process discussed in this thesis and currently under development in the Lawrence Berkeley Laboratory at the University of California is an attempt to overcome some of the limitations and problems of current technology. In the UCBSRP hydrogen sulfide is absorbed into a polar organic solvent where it is reacted with dissolved sulfur dioxide to form sulfur. After sulfur is recovered from the solvent by crystallization, the solvent is stripped to remove dissolved gases and water formed in the reaction. \(\text{SO}_2 \) is generated by burning a portion of the sulfur in a furnace, where the heat of combustion is used to generate high pressure steam. The \(\text{SO}_2 \) is absorbed into the lean solvent to form the solution necessary for the first step.

Conceptually the UCBSRP is analogous to the Claus process carried out in the liquid phase. However, unlike the gas-phase Claus reaction, the reaction between \(\text{H}_2\text{S} \) and \(\text{SO}_2 \) dissolved in organic liquids can be performed at temperatures below 150°C where the reaction is irreversible and goes essentially to completion. With judicious use of this added driving force, the hydrogen sulfide level in the outlet gas can be reduced to less than 1 ppm without the addition of a costly tail gas
Several potential advantages of this process over conventional approaches are:

1. Reduced capital and energy costs.
2. Efficient removal of H_2S -- reduce effluent to less than 1 ppm hydrogen sulfide.
3. Applicability to a wide range of gas streams, varying both in H_2S content and in conditions (e.g. composition, pressure, etc.).

D. Scope of Thesis Work

The present study is part of the ongoing development of the UCBSRP. One aim is elucidation of the kinetics of the reaction between hydrogen sulfide and sulfur dioxide in organic solvents. A variety of compounds have been investigated as potential solvents and catalysts for the reaction between hydrogen sulfide and sulfur dioxide. The reaction in these systems and those features of the kinetics important to the process are discussed.

In order to better evaluate the process and to aid in its development, a computer simulation was created. The simulation provides a means of identifying key process constraints and simplifies the task of performing calculations on a variety of flow configurations. Details of the computational algorithms found in the simulation and directions for its use are given.

Finally a flowsheet for the removal of H_2S from gasified coal is presented. This demonstrates several novel facets of the process as well as indicating the feasibility of applying it to the desulfurization of an industrially important gas stream.
II. Kinetics of the Reaction Between H₂S and SO₂ in Organic Solvents

A. Background

When the reaction between H₂S and SO₂ is carried out in organic liquids at temperatures below 150°C, it is irreversible and goes essentially to completion. The equilibrium limitation encountered in the gas-phase reaction at temperatures above the dew point of sulfur is thereby overcome. This shift in the equilibrium state is caused both by the lower temperature and by the reduced activity of the reaction products when in solution. In many organic solvents, such as triethylene glycol dimethyl ether (Triglyme) and diethylene glycol methyl ether (DGM), the reaction is impractically slow. Moreover, at room temperature the sulfur formed is too finely divided to be readily separated. Urban (1961) found that the presence of N,N-dimethyl aniline (DMA) increased the crystal size of the precipitated sulfur. Furthermore, DMA and other tertiary amines accelerate the reaction to the extent that 99+% removal of H₂S is possible with careful selection of the solvent mixture.

The present work was undertaken to study the reaction between H₂S and SO₂ in mixtures of tertiary amines with Triglyme and with DGM. Experiments performed by monitoring the temperature rise of this exothermic reaction in an adiabatic calorimeter show the effects of various solvent compositions on the kinetics of the reaction. A knowledge of these effects can be applied to the selection of suitable solvents for processing H₂S-laden gas streams.

B. Experimental Methods

All rate measurements were made in a 50-ml Erlenmeyer flask that contained a magnetic stir bar and was sealed by a septum cap (see Fig. II-1). Insulation was provided by a styrofoam block with a hole drilled out for the reactor. Reaction progress was monitored by recording the temperature rise as indicated by the change in the millivolt-level potential produced by a bare, type T thermocouple.
connected to a chart recorder. A measured quantity of a solution of one reactant was first placed in the reaction vessel. The reaction was initiated when a measured quantity of a solution of the second reactant at the same temperature was injected quickly by syringe into the stirred vessel.

The range of initial reactant concentrations was limited to 0.05 to 0.25 M SO$_2$ and 0.1 to 0.5 M H$_2$S. These compositions were high enough to produce sufficient reaction to permit accurate measurement of the temperature rise without exceeding an arbitrarily selected maximum temperature increase of 5 °C. Since the temperature coefficient of the reaction rate constant was found to be relatively low (see below), the rate constants obtained from these adiabatic experiments are very nearly equal to those for the reaction carried out under isothermal conditions - i.e. at the average temperature of a run.

C. Methods of Analysis

1. Acid-Base Experiments

Reactions between NaOH and HCl were carried out in the calorimeter to determine the rate of mixing, the thermal mass of the apparatus, and the rate of heat loss from the system. The experimental method was that used in the H$_2$S-SO$_2$ reactions and the quantities and concentrations of reactants were chosen to give similar temperature rises and thermal masses. Since the acid-base reaction is practically instantaneous, the time necessary for complete reaction is the mixing time. A heat balance applied to the apparatus and solution allows calculation of the thermal mass of the reactor. Furthermore, by measuring the decrease in temperature with time after the initial rise, the rate of heat loss from the system can be determined.

A chart recorder trace of thermocouple potential (i.e., temperature) versus time for an acid-base reaction is shown in Fig. II-2. The average value of t_{mix} was approximately 0.7 sec for the solution volumes of acid and base and stirrer speeds used in these experiments. Presumably, in cases where the reaction between H$_2$S
Figure II-2
Chart Recorder Trace for Acid-Base Reaction

- t_{mix}
- ΔT_{max}
- Slope $\sim 0.002^\circ C/s$
- $T = 22^\circ C$
and SO₂ lasted longer than this period, the reaction was then occurring in a homogeneous solution.

From the known heat of reaction for H⁺ + OH⁻ (= -13.4 kcal/mole of H₂O formed) and the heat capacity of the aqueous solutions (approximated as water, Cₚ = 1 cal/g °C), the thermal mass of the apparatus was determined to be 0.6 cal/°C. Since in these experiments the thermal mass of the solution for a typical run was 12-15 cal/°C, the contribution of the apparatus to the total heat capacity of the system was small.

The heat leakage from the reaction vessel and styrofoam block corresponds to a rate of temperature decrease that is less than 0.002 °C/sec. Thus, there would be at most a temperature drop of about 0.02 °C during the ten seconds required for a typical H₂S - SO₂ run. Since in the majority of experiments the temperature rise was 5 °C or less, this amounts to an uncertainty of about 0.4% in the maximum temperature rise.

2. Kinetics

If the reaction between H₂S and SO₂ is first order in both reactants, then the differential rate equation for the disappearance of SO₂ (A) or H₂S (B) is

\[-\frac{dC_A}{dt} = -\frac{1}{2} \frac{dC_B}{dt} = k_2C_AC_B\] (II-1)

By stoichiometry

\[C_B = C_B^0 - 2(C_A^0 - C_A)\] (II-2)

in which the superscript 0 refers to time = 0. Substituting Eq. II-2 into Eq. II-1 and rearranging yields the following rate expression:

\[k_2dt = \frac{dC_A}{[C_A(2C_A^0 - 2C_A^0 + C_B^0)]}\] (II-3)

Integration of Eq. II-3 and simplification gives
If a reaction is first order with respect to both A and B, then a plot of the integrated rate expression on the right-hand side of Eq. II-4 versus time should lie on a straight line with a slope of k_2. Note that when the initial concentrations of H_2S and SO_2 are stoichiometrically equivalent, Eq. II-4 reduces to the more familiar second-order relationship

$$2k_2t = 1/c_A - 1/c_A^0$$ \hspace{1cm} (II-5)

Equation 4 is in the form of concentration and time whereas the quantities measured experimentally are temperature and time. The conversion from temperature to concentration is based on two assumptions. First, the temperature rise for the exothermic reaction between H_2S and SO_2 is assumed to be proportional to the extent of reaction — i.e., is a measure of reaction progress. This assumption follows from the observation that there appear to be no other reactions occurring under the conditions of these experiments. Second, it is assumed that the maximum temperature rise corresponds to complete reaction (fraction conversion = 1.0). Thus, for any time $t < t_{\text{max}}$ the concentration of the limiting component is related to the temperature rise by the expression

$$c = c^0 (1 - (T - T^0)/(T_{\text{max}} - T^0))$$ \hspace{1cm} (II-6)

From this concentration and the known stoichiometry, the concentration of the other reactant can be calculated. In order to minimize errors due to thermal losses, only temperature rises less than 90% of the maximum value were used for determining reaction-rate constants.

The preceding analysis presupposes perfect mixing. Since these experiments require the injection of one of the reactant solutions into the other, a finite period (whose length depends on the sample volumes, solvent viscosity, and stirrer
speed) is needed for complete mixing of the components. Before mixing is complete, local inhomogeneities exist in which one of the reactants is in large excess. The other reactant is rapidly depleted there, effectively reducing the reaction rate in these regions to zero. Overall, the experimentally measured rate is lowered and the kinetics of the reaction under such conditions is of uncertain significance. However, during this period the temperature of the solution nevertheless rises in proportion to the reaction that does occur. Therefore, after the solutions are thoroughly mixed, the average concentrations of the two reactants (as determined from the temperature rise using Eq. II-6) become the homogeneous concentrations in the bulk liquid and the rate is that for the homogeneous reaction. The rate constant was determined from plots of the integrated rate expression (Eq. II-4) versus time by considering only the portions of the plots for which the time is greater than the mixing time.

3. Heat of Reaction

The heat of reaction for each of the experiments was calculated from the measured temperature rise and the thermal properties of the system. An enthalpy balance yields

$$H_{rxn} = \frac{[(mC_p)_s + (mC_p)_{app}]}{n_L} (T_{max} - T^0) \quad (II-7)$$

where the subscripts "app" and "s" refer to the apparatus and solution respectively. The value n_L is the number of moles of the limiting reactant.

The heat capacity of the organic solution, including all solvents and products, was estimated by a group contribution method applied to the bulk solvent used in a given run. Calculations for Triglyme and DGM using Missenard's group contribution method, Reid et al. (1977), give a value of $C_P = 0.50 \pm 0.05 \text{ cal/g} \cdot \text{C}$.
D. Results and Discussion -- DMA as Catalyst

1. Results for the Reaction of H_2S and SO_2 in Triglyme/DMA/H_2O

Kinetic data were analyzed using equation Eq. 11-4. Plots of the concentration expression on the righthand side of Eq. 11-4 versus time yield a straight line (in the region $t > t_{\text{mix}}$) with a slope of value k_2 when the reaction follows second-order kinetics. Data pairs of potential/time obtained from the chart-recorder traces were converted into concentration/time pairs and plotted in the integrated-rate form.

A sample plot for the reaction of H_2S and SO_2 in a DMA/Triglyme mixture is shown in Fig. 11-3. Values of k_2 were obtained from similar plots by drawing the best straight line through the data for $t > 1$ sec. The curvature at times less than 1 second results from the finite time required for injecting the SO_2 sample and mixing the solution. In nearly all of the runs the time intercept, as found by extrapolating the line drawn through the integrated rate data back to the time axis, was about 0.5 to 0.8 seconds. These values, which approximate quite well the mixing time in the HCl-NaOH experiments, showed little variation from run to run and thereby indicate a high degree of reproducibility in the experimental conditions and technique. Furthermore, since this result agrees with the mixing time obtained in the acid-base experiments, data points at longer times presumably represent the progress of the reaction in a well-mixed solution.

Most of the experiments presented here were performed with nearly stoichiometric equivalents of H_2S and SO_2. Additional experiments were carried out with the ratio of H_2S to SO_2 varying from about 2:1 to 1:2. In all cases the second-order rate expression provided the best straight-line fit to the data in spite of a four-fold change in SO_2 concentration. Attempts to analyze the data using a rate expression that is second order in H_2S and first order in SO_2 yielded non-linear integrated-rate plots.

Results for the reaction in Triglyme with DMA and water present are
Figure II-3
Integrated Rate Plot
(10 wt% DMA, 2 wt% Water in Triglyme)

\[\frac{1}{(2C_A^0 - C_B^0)} \ln \left(\frac{C_B}{C_A} \right) = \text{slope} = k_2 \sim 11 \frac{\text{lit}}{\text{mole-s}} \]

\[T = 22^\circ C \]

90% Completion

Time (sec)
summarized in Fig. II-4, where the second-order rate constant is plotted as a function of wt% DMA for various H$_2$O concentrations. With pure Triglyme as the solvent, plots of the integrated rate expression versus time are non-linear, increasing in slope as time progresses. Tangents to these curves correspond to k_2 values of 0.5 lit/mole-s or lower. The curvature, which reflects an increase of the rate constant with time, may be due to an autocatalytic effect of water formed during the reaction or possibly to a change in the reaction mechanism. Note that while adding small amounts of water to Triglyme seems to speed the reaction, it is unclear whether the same reaction pathway is followed since some of the integrated rate plots are non-linear. Perhaps other products, such as the sulfoxo acids that frequently form in aqueous media, are being created in these cases.

When DMA is added to Triglyme, the integrated rate plots become linear, i.e., there appears to be a first-order dependence on both H$_2$S and SO$_2$. Furthermore, addition of only 2 wt% DMA more than doubles the reaction-rate constant over that observed for Triglyme alone. Increasing the DMA concentration still further continues to increase the rate constant, k_2, which asymptotically approaches a value of 8 lit/mole-s.

The presence of water in DMA/Triglyme greatly accelerates the rate as evidenced in Fig. II-4. Addition of 4 to 5 wt% H$_2$O doubles the observed rate constant. As the wt% water is increased in a mixture containing 10 wt% DMA or more, the value of k_2 attains a maximum value of about 20 to 22 lit/mole-s. Note that the value of k_2 for the mixed solvents exceeds the sum of those for the reaction carried out with only one of the catalysts (DMA or H$_2$O) present. This suggests a synergism between the effects of the water and DMA. The mechanism for this synergism has not been determined.

2. Results for the Reaction in DMA/DGM/Water

The kinetic behavior of the reaction in DGM alone is similar to that observed for Triglyme. DGM has little or no catalytic effect, and plots of the integrated
Figure II-4
Variation of Second-Order Rate Constant with DMA and Water Content in Triglyme

$T = 20-23^\circ C$

- (4.5 wt% Water)
- (3.1 wt% Water)
- (2.0 wt% Water)
- (0 wt% Water)
rate expression exhibit a slope that increases with time. However, values for \(k_2 \) are considerably higher when a given wt% DMA is added to DGM than for a similar DMA/Triglyme mixture. The rate constants for the reaction of \(\text{H}_2\text{S} \) and \(\text{SO}_2 \) in DMA/DGM mixtures are shown in Fig. II-5. The DMA/DGM combination seems to present a more favorable environment for the reaction than DMA alone; when the DMA content of the mixture exceeds 4 wt% the values of \(k_2 \) exceed those for pure DMA. The maximum value of \(k_2 \), which is approximately 20 lit/mole-s, is more than twice as large as that obtained in the Triglyme/DMA cases with no water present.

The addition of water to DMA/DGM mixtures has little or no effect on the rate, as is reflected in the data presented in Table II-1. At 10 wt% DMA the rate constant has attained its maximum value and the addition of water does not increase the rate constant further.

A few runs with 2.5 wt% DMA in DGM, performed in a cold box at 7 to 10 °C, yielded an average \(k_2 \) of 4.5 lit/mole-s. On the basis of these data and those in Fig. II-5, the estimated activation energy for the reaction is 7.4 kcal/mole, which corresponds to a doubling of the rate every 20 °C. The limitations of the experimental technique prevented a more thorough investigation of the effect of temperature on the reaction kinetics. However, the fact that the activation energy is low tends to support the assumption that rate constants obtained from experiments with small temperatures variations can be used to approximate the true isothermal values at the average temperature of an experiment.

3. Results for the Reaction in DMA/Triglyme/Methanol

A reasonable hypothesis to explain the fact that both \(\text{H}_2\text{O} \) and DGM accelerate the reaction between \(\text{H}_2\text{S} \) and \(\text{SO}_2 \) in the presence of DMA is that hydroxyl groups are responsible for the synergistic catalytic effect. In order to substantiate this idea, a few experiments were performed in which methanol was added to DMA/Triglyme. The data are summarized in Table II-2. As the methanol
Figure II-5
Variation of Second-Order Rate Constant with wt% DMA
for DMA in DGM at 17-23 °C
Table II-1

Rate Constants for the Reaction of H_2S and SO_2 in DMA/DGM with Water Added

($T = 23 \degree \text{C}$)

<table>
<thead>
<tr>
<th>Wt% H_2O</th>
<th>Wt% DMA</th>
<th>$k_2 \ (\text{lit/mole-s})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>9.8</td>
<td>20.4</td>
</tr>
<tr>
<td>0.5</td>
<td>9.8</td>
<td>21.6</td>
</tr>
<tr>
<td>1.4</td>
<td>9.7</td>
<td>22.8</td>
</tr>
<tr>
<td>1.6</td>
<td>9.7</td>
<td>22.1</td>
</tr>
<tr>
<td>2.4</td>
<td>9.6</td>
<td>21.3</td>
</tr>
<tr>
<td>2.6</td>
<td>9.6</td>
<td>23.5</td>
</tr>
<tr>
<td>WT% Methanol</td>
<td>(k_2) (lit/mole-s)</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>16.2</td>
<td></td>
</tr>
<tr>
<td>8.3</td>
<td>23.2</td>
<td></td>
</tr>
<tr>
<td>45.1</td>
<td>23.4</td>
<td></td>
</tr>
</tbody>
</table>

Table II-2

Rate Constants for the Reaction of \(\text{H}_2\text{S} \) and \(\text{SO}_2 \) in DMA/Triglyme/Methanol Mixtures at 10 WT% DMA

\((T = 22 {}^\circ\text{C})\)
concentration is increased, the rate constant increases towards an asymptotic value which is a factor of 5 greater than that for the same concentration of DMA alone in dry Triglyme. Adding methanol, a substance containing hydroxyl groups, to the mixture enhances the reaction rate constant. Also, the maximum rate constant is approximately equal to the maximum k_2 obtained for the reaction carried out with the same wt% DMA in Triglyme with water present and to the rate constant for the same concentration of DMA in DGM.

4. Heat of Reaction

The heat of reaction between H_2S and SO_2, taken as the average for a large number of data points, is 28 to 29 kcal/mole of SO_2 reacted. This value seems to apply equally well to all mixtures of the solvents used in these experiments. Evidently, effects such as heats of solution in the various solvents are small or similar in magnitude for the range of cases considered.

5. Summary of DMA Results

From the experimental results it is readily apparent that the presence of DMA greatly accelerates the reaction between H_2S and SO_2 in polyglycol ethers. The reaction appears to be first order with respect to both reactants over the range of concentrations tested. The nitrogen of the amine, which is noted for its ability to form complexes with sulfur dioxide (Hill and Fitzgerald, 1935), may provide a favorable site at which the reaction can occur. This effect seems to be dependent on both the concentration of catalytic agent and its amount relative to the concentration of SO_2. When the mole ratio of DMA to SO_2 exceeds one, the number of active reaction sites appears to be proportional to the SO_2 concentration.

For the reaction in DGM an additional factor is found to be important. The DGM appears to enhance the effect of DMA in accelerating the reaction, producing a maximum value of the rate constant when intermediate
concentrations of both solvents are present. This enhancement seems to be related to a catalytic effect of the OH group of the DGM that is synergistic with DMA. Further evidence of the hydroxyl effect can be seen in the results for the reaction in DMA/Triglyme with water present; indeed this effect may be expected for alcohols in general since the experiments performed with DMA/Triglyme/Methanol yielded similar results. It is possible, as suggested by Albertson and McReynolds (1943), that the solvent promotes the reaction by forming a hydrogen bridge compound with H₂S which then falls apart to yield a reactive hydrosulfide ion. Determination of whether the hydroxyl provides an alternate reaction site or speeds an intermediate or parallel step or causes some other enhancement will require further investigation.

E. Catalyst Survey

1. Catalyst Structure

At this point only the catalytic activity of DMA has been discussed. However, other tertiary amines can also catalyze this reaction. To determine which other compounds are good catalysts, the investigation of the reaction kinetics was extended to a variety of amines. Rate experiments were conducted as outlined above and the data analyzed using Eqs. II-4 and II-6. The results of these studies are given in Table II-3. An examination of the data reveals that catalytic activity is a strong function of certain chemical properties of the catalyst.

The most striking feature of the data is the difference in the rate constants for the heterocyclic amines compared to those for non-heterocycles. In general a non-heterocycle must be present in 10 to 100 times greater concentration than a similar heterocycle to produce an equivalent rate constant. For example, compare DMA to 3-pyridyl carbinol (3PC). As can be seen in Table II-4, a major structural difference between the two molecules is in the location of the nitrogen. 3-pyridyl carbinol, which has a nitrogen in the aromatic ring, produced the same level of catalysis (i.e. rate constant) at a 30-fold lower concentration than DMA. Whether
Table II-3
Rate Constant Summary for the Reaction of H_2S and SO_2 in DGM

<table>
<thead>
<tr>
<th>CATALYST</th>
<th>k_2 (L/MOLE-S)</th>
<th>B.P. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-heterocyclic amines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N-diethyl toluamide (0.79M)</td>
<td>0.49</td>
<td>111 (1 mm)</td>
</tr>
<tr>
<td>Phenyl diethanol amine (0.44M)</td>
<td>0.71</td>
<td>228 (15 mm)</td>
</tr>
<tr>
<td>Triethyl amine (0.83M)</td>
<td>13.6</td>
<td>89</td>
</tr>
<tr>
<td>N,N-Dimethyl aniline (0.44M)</td>
<td>16.0</td>
<td>194</td>
</tr>
<tr>
<td>Heterocyclic Amines (All at 0.07M)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acridine</td>
<td></td>
<td>346</td>
</tr>
<tr>
<td>2,2'-Bipyridine</td>
<td>0.38</td>
<td>273</td>
</tr>
<tr>
<td>2-Phenyl pyridine</td>
<td>0.72</td>
<td>268</td>
</tr>
<tr>
<td>Quinoline</td>
<td>2.80</td>
<td>238</td>
</tr>
<tr>
<td>3-Phenyl pyridine</td>
<td>3.40</td>
<td>270</td>
</tr>
<tr>
<td>2-Benzyl pyridine</td>
<td>4.80</td>
<td>276</td>
</tr>
<tr>
<td>4,4'-Bipyridine hydrate</td>
<td>6.34</td>
<td>305</td>
</tr>
<tr>
<td>3-Pyridyl carbinol</td>
<td>6.41</td>
<td>266</td>
</tr>
<tr>
<td>4-Benzyl pyridine</td>
<td>8.33</td>
<td>287</td>
</tr>
<tr>
<td>Pyridine</td>
<td>8.40</td>
<td>115</td>
</tr>
</tbody>
</table>
Table II-4

Effect of Heterocyclic Nitrogen on Reaction Rate Constant

Concentration of Catalyst to Achieve $k_2 = 16$ L/MOLE-S

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>[CAT] (MOLE/LIT)</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>N,N-Dimethyl Aniline</td>
<td>0.440</td>
<td></td>
</tr>
<tr>
<td>3-Pyridyl Carbinol</td>
<td>0.015</td>
<td></td>
</tr>
</tbody>
</table>
this effect is due to the electronic environment of the nitrogen or to the structural arrangement of the molecule is not known.

However, it is clear that in some cases steric effects are important in determining how well a given catalyst performs. There are several examples of this property in the systems studied. Among the heterocyclic compounds, the accessibility of the nitrogen in 3-phenyl pyridine, 4,4'-bipyridine, and 4-benzyl pyridine is unobstructed while the approach to the analogous nitrogen in 2-phenyl pyridine, 2,2'-pipyridine; or 2-benzyl pyridine is partially hindered by a large adjacent molecular group. The structures are detailed in Table II-5 where the rate constants obtained for the reaction in DGM are also given. When the aromatic nitrogen is next to a carbon containing a bulky phenyl or pyridyl group the rate constant is greatly reduced. However, if the environment of the nitrogen is unobstructed, then the second order rate constant is increased by a factor of 5 to 20.

A further example of the effect of bulky substituents on the catalytic ability of tertiary amines is evidenced by the order-of-magnitude difference in the rate constant obtained for the reaction in DMA/DGM versus that in Phenyl diethanol amine/DGM. Apparently the presence of the bulky ethanol substituents reduces the accessibility of the reactive site relative to the case where there are methyl groups on the nitrogen.

2. Parametric Studies of the Reaction using 3PC in DGM and Triglyme

Since the properties and catalytic ability of 3PC make it a promising candidate for use in a process for the reactive removal of H₂S from industrial gas streams, more detailed studies of its catalytic activity were needed. In order to determine the effect of solvent composition on the reaction rate constant, a series of runs with varying concentrations of 3PC in DGM and Triglyme were performed. The results for the reaction of H₂S and SO₂ in Triglyme are summarized in Fig. II-6, where the results obtained in DMA/DGM have also been
Table II-5
Steric Effects on the Reaction Rate Constant
([CAT] = 0.07 M except as noted)

<table>
<thead>
<tr>
<th>Catalyst</th>
<th>k_2</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,2'-bipyridine</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>4,4'-bipyridine</td>
<td>6.34</td>
<td></td>
</tr>
<tr>
<td>2-phenyl pyridine</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>3-phenyl pyridine</td>
<td>3.40</td>
<td></td>
</tr>
<tr>
<td>2-benzyl pyridine</td>
<td>4.80</td>
<td></td>
</tr>
<tr>
<td>4-benzyl pyridine</td>
<td>8.33</td>
<td></td>
</tr>
<tr>
<td>Phenyl diethanol amine (0.44M)</td>
<td>0.71</td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethyl aniline (0.44M)</td>
<td>16.0</td>
<td></td>
</tr>
</tbody>
</table>
Figure II-6
Second Order Rate Constant vs. Concentration Catalyst in Triglyme

k_2 (lit/mol-s)

Cat. = 3-Pyridyl Carbinol

Cat. = N,N-Dimethylaniline

[Catalyst] (mol/lit)
Evidently 3PC is a considerably better catalyst than DMA for the reaction carried out in Triglyme. A concentration of DMA one to two orders of magnitude higher than that of 3PC is required to obtain the same second-order rate constant. Furthermore, the rate of increase of k_2 with concentration of catalyst is greater when 3PC is used.

A few data points for the reaction carried out in 3PC/DGM are given in Table II-6. Comparing these results to those for 3PC/Triglyme, it is apparent that at these low concentrations of catalyst the rate constants are somewhat higher and that the increase in rate constant with concentration is faster. This is similar to the results obtained for DMA in DGM and Triglyme where the presence of the hydroxyl group of the monoether accelerated the rate over that obtained in the diether.

Whether the rate constant would continue to increase monotonically as indicated in Fig. II-6 or reach a maximum value as in the DMA/Triglyme or DMA/DGM runs is not clear at present. An accurate assessment of the potential for accelerating the reaction by further addition of 3PC will require a different experimental technique, since the present one is limited by mixing time and the response of the chart recorder to second-order rate constants of less than 100. However, it is apparent that rate constants of at least 100 are obtainable with relatively low concentrations of 3PC.

3. Water Effect

When water is added to mixtures of DMA/Triglyme the reaction rate constant was found to increase markedly. The addition of water to 3PC in Triglyme seems to have a similar effect (see Table II-7). Water accelerates the reaction by a factor of 4 to 5 over that obtained for the same concentration of 3PC in Triglyme alone.

F. Selection of Catalyst

Having determined the rate constants for several tertiary aromatic amines, it
Table II-6
Second-Order Rate Constant for the Reaction in Mixtures of 3-pyridyl carbinol (3PC) and DGM

<table>
<thead>
<tr>
<th>[3PC] (MOLE/L)</th>
<th>k_2 (L/MOLE-S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0105</td>
<td>6.4</td>
</tr>
<tr>
<td>0.0144</td>
<td>17.7</td>
</tr>
<tr>
<td>0.0500</td>
<td>>100.0</td>
</tr>
</tbody>
</table>
Table II-7

Effect of Water on the Reaction in Mixtures of 3-pyridyl carbinol (3PC) and Triglyme

<table>
<thead>
<tr>
<th>[3PC] (MOLE/L)</th>
<th>[Water] (MOLE/L)</th>
<th>k_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0061</td>
<td>0.0</td>
<td>1.3</td>
</tr>
<tr>
<td>0.0061</td>
<td>1.1</td>
<td>4.2</td>
</tr>
<tr>
<td>0.0150</td>
<td>0.0</td>
<td>8.5</td>
</tr>
<tr>
<td>0.0150</td>
<td>2.1</td>
<td>39.3</td>
</tr>
</tbody>
</table>
is possible to select a catalyst to use in a process for the removal of H_2S by reaction with SO_2 in glycol ethers. A suitable catalyst from a process standpoint should exhibit the following characteristics:

1. It must catalyze the reaction, producing a sufficiently high rate of reaction to permit nearly complete removal of H_2S in a reasonable size physical operation.

2. The vapor pressure of the catalyst at the temperatures likely to be present in the process (usually $T < 120 \, ^\circ C$) should be low, thus preventing volatile loss of the chemical.

3. Since polyglycol ethers exhibit properties which make them attractive as bulk solvents for the process, the catalyst should be soluble in the mono and diethers of di and higher glycol ether derivatives.

4. The catalyst must not react with any of the reactants or products. This generally eliminates primary and secondary amines, which react with product sulfur, and some tertiary amines which complex irreversibly with one or both of the reactants.

5. The catalyst should be readily available at reasonable cost.

As shown above, sterically hindered amines can be eliminated from consideration because of the relatively low reaction rate constants obtained with their use. Additionally, acridine, which forms an insoluble adduct with SO_2, and pyridine, which exhibits excellent catalytic properties but boils at a low temperature, are rejected as possible catalysts.

Of the remaining catalysts tested, quinoline and 3PC are promising choices. Quinoline is relatively cheap and moderately high boiling, but is only slightly soluble in water. However, 3PC has a low vapor pressure at the temperatures of interest and is miscible with water. This last property facilitates its recovery from stack gases by aqueous scrubbing and reduces the possibility of a stream splitting into separate organic and aqueous phases. Thus, 3-pyridyl carbinol is the catalyst chosen for subsequent development of the present process for H_2S removal.
III. Process Development

A. Background

A major goal of the work for this thesis was to develop a process scheme which demonstrates the feasibility of using the reaction between \(\text{H}_2\text{S} \) and \(\text{SO}_2 \) in organic solvents for sweetening a sour gas stream from a coal gasifier. Since the intended use for this gas is power generation in a gas turbine, the total sulfur content of the gas must be reduced to the ppm level to protect the equipment from corrosion as well as to meet environmental specifications.

The removal of \(\text{H}_2\text{S} \) from gas streams has been the subject of intense study in recent years. As noted in the introduction, many methods employing a variety of different techniques have been proposed as solutions to this problem. The process considered here relies on the reaction between \(\text{H}_2\text{S} \) and \(\text{SO}_2 \) carried out in the liquid phase at moderate temperatures (< 150 °C). Under these conditions the reaction is irreversible and with a suitable catalyst/solvent system can be made to go essentially to completion in a short time. Quantitative removal of \(\text{H}_2\text{S} \) is possible, thereby satisfying stringent environmental requirements. Although processes of this type have been mentioned in the patent literature (e.g. Townsend, 1959; Deal et al., 1968; Renault, 1969; Tanimura, 1976), none has been successfully commercialized in an application where an exit \(\text{H}_2\text{S} \) concentration of a few ppm is needed.

B. Simulation

1. Main Program

Since a detailed analysis of the potential flow configurations for the process was desired, a computer simulation capable of performing energy and material balances was written. Such calculations permit rapid evaluation of different arrangements of unit operations and make it possible to identify important process requirements and constraints. An overview of the simulation is presented here; for
an in-depth discussion of calculational methods the reader is referred to the Appendix.

A flowchart for the simulation main program is given in Fig. III-1. The external framework of the simulation is fairly simple. The parameters for all streams including composition, flow, temperature, pressure, enthalpy, and phase are stored in a single array in the main program. This stream matrix is initially filled with values read from a disk file which contains user-specified feeds and initial guesses where needed. For streams with non-zero flows the program determines the phase by calculating the bubble-and dew points. Stream enthalpies are also calculated. If the results from a prior run of the simulation are available, they may be used as the initial values for the present calculations. This is particularly advantageous when minor changes have been made to a flowsheet, since the solution to the new problem will probably not be greatly different from that obtained previously.

Unit operations in the flowsheet are calculated in sequence from a data file with the stream variables and other parameters passed to the unit subprograms as needed. The outlet streams from each operation are used to update the global stream matrix.

After all of the unit calculations have been performed, the program tests for convergence by comparing the current stream variables with those from the previous iteration. If the variables are not converged, then Wegstein acceleration (Perry, 1984, pg. 2-62) is applied to the component flows. Usually the accelerated variables are closer to the correct solution than those obtained by simple direct substitution. The results of the previous iteration are combined with the Wegstein-accelerated variables where appropriate to form a new set of guesses for the next iteration. The sequence of calculations is repeated until component flows and stream temperatures are converged to one part in 1000 or until a user-specified maximum allowable iteration count is reached.
Fig. III-1 Program Flowchart

1. Initialize Properties
2. Open STREAMS.TMP
3. Read Variables for a Stream
 - Error?
 - Y: Read All Stream Information
6. Determine Next Unit Operation
 - Operation ≤ 0?
 - Y: Perform Unit Calculation
 - N: Update Streams Matrix
 - N: Set Phase from Bubble and Dew Points
 - N: Calculate Stream Enthalpy
8. Update Streams Matrix
9. Show Errors and Warnings
10. Perform Wegstein Acceleration
11. Print Results
12. Save Streams Information
13. Stop
2. Unit Operations

The flowsheet simulation program supports a variety of unit operations (see Table III-1). A brief description of the function and purpose of the available operations of the major types of units is given below.

Absorber/Stripper/Distillation

The absorber/stripper/distillation operation is used to perform stage-to-stage column calculations. This routine has been designed to handle a number of different process conditions including specifications for a reboiler, a condenser, and interstage coolers. Calculations are carried out using a multivariate Newton-Raphson algorithm modified to account for the presence of chemical reaction between H_2S and SO_2. The subroutine returns exit liquid and vapor streams and the overhead condensate if one is obtained. The internal temperature, flow, and composition profiles for the column are saved in a separate data file.

Materials Handling Routines

Several units have been provided to simulate materials handling and transfer operations. In the compressor and pump operations the inlet stream is transferred to the outlet at a specified pressure. The exit stream enthalpy and phase are determined by an isenthalpic flash calculation. An estimate of the power requirement is made by assuming ideal gas behavior in the compressor and that the fluid being pumped are incompressible.

Mixer and splitter routines are provided for combining and separating streams respectively. The mixer operation also performs an isenthalpic flash to determine the exit enthalpy and phase of the mixture. A warning is issued if a mixed phase (i.e. liquid and vapor) is formed at the exit conditions.

A make-up unit is included to deal with those places in the process where a constant flow of a component or stream is desired. The three types of operation supported are:
Table III-1

Major Unit Operations in the Simulation

ABSORBER/STRIPPER/DISTILLATION

COMPRESSOR
CRYSTALLIZER
FURNACE
HEATER
HEAT EXCHANGER
MAKE-UP
MELTER/DECANTER
MIXER
PARTIAL CONDENSER
PHFLASH
PUMP
REACTOR
SPLITTER
SULFUR CENTRIFUGE
SULFUR SETTLER

Utility Subroutines

BUBBLE AND DEW POINTS
THERMODYNAMICS
SULFUR SATURATOR
1. Set flow of component I, other component flows unchanged.

2. Set flow of component I, other component flows scaled based on inlet composition.

3. Set total stream flow.

Sulfur Handling Operations

There are three major units that simulate the necessary sulfur handling operations in the process. The crystallizer calculates the amount of sulfur that precipitates under specified conditions and modifies the exit solid and dissolved sulfur concentrations appropriately. The slurry from this unit is generally fed to a sulfur settler in which the bulk of the solvent stream is separated from an exit slurry with a predetermined weight fraction of solid sulfur.

The operation of a centrifuge is performed by a subroutine in which a cake of a fixed wt% sulfur is formed and subsequently washed and settled to form a new slurry. The liquid obtained from the centrifugation and washing steps and the exit slurry are available for further processing.

Reaction Vessels

In the furnace sulfur, H₂S, and hydrocarbons are burned to form SO₂ and CO₂. The routine determines the amount of O₂ (air) required by assuming complete combustion. The quantity of sulfur needed to produce the desired SO₂ outlet flow is calculated taking into account any H₂S and SO₂ in the inlet. The total heat released in the furnace is recorded.

The liquid-phase reaction between H₂S and SO₂ is carried out in bulk in the reactor. This unit calculates the quantities of H₂S and SO₂ removed and sulfur and H₂O formed given the reaction rate constant and the fraction conversion. The temperature and enthalpy of the outlet stream are adjusted for heat changes associated with externally applied cooling or the with crystallization of sulfur. A reactor size for carrying out this second order reaction is estimated for plug-flow operation.
Heat Transfer and Equilibrium Operations

The four major heat transfer and equilibrium operations are a heat exchanger, a melter/decanter, a partial condenser (or isothermal flash), and an adiabatic or isenthalpic flash. The heat exchanger routine calculates the exit cold and hot stream temperatures and enthalpies given the exchanger area and heat transfer coefficient. Phase changes, such as flashing of light gases from solution upon heating are taken into account.

In the melter/decanter sulfur is melted and separated from the other inlet components (usually water with small amounts of solvent and dissolved gas). The heat required for this operation is returned by the unit.

The two flash calculations, isothermal and isenthalpic, return the exit liquid and vapor streams obtained under specified conditions. These routines not only provide a procedure for performing desired flash operations, but also are used by several other unit subroutines to determine the phase(s) and enthalpy for a given stream.

Utility Routines

A few subroutines included in the simulation perform support calculations for the other units. For example bubble and dew point temperatures for a stream are calculated in one subroutine. Another determines the mole fraction of sulfur in a stream at saturation (sulfur saturator). The thermodynamics subroutine returns values for and derivatives of enthalpies and equilibrium constants for a specified stream input.
C. Process Description

1. Problem Specification

The basis of the design is the gasification of 50,000 kg/hr of Illinois #6 bituminous coal using air and steam at a pressure of 2500 kPa. This rate of fuel use would yield about 120 MW of electric power assuming an overall thermal efficiency of 40%. The total quantity of gas to be treated is 8,950 kmole/hr with an H$_2$S content of about 0.62%. A complete specification of the gas composition is given in Table III-2. The fuel gas is assumed to have been scrubbed with water at 45 °C to eliminate particulates and to condense excess steam ahead of the H$_2$S-removal process.

The design specification for the exit concentration of H$_2$S is 1 part per million. Furthermore, since the gas is to be burned in a gas turbine, it is desired to remove H$_2$S selectively, leaving the flows of other components and thus the volume of the gas unchanged.

The computer simulation was used to evaluate a number of different process configurations for this application. Figure III-2 is the current flowsheet for the process. The component balances, temperatures, and pressures are given in Table III-3. Tetraglyme and 3-pyridyl carbinol were chosen as the bulk solvent and reaction catalyst respectively. Gas solubilities were obtained from Demyanovich (1984) and Sciamanna (1986). A description of the process follows.

2. Processing Steps

Primary Absorber

Sour gas is fed to the bottom of the primary absorber where the bulk of the H$_2$S is removed by physical absorption in solvent recycled from the reactor/crystallizer. The H$_2$S level in the gas is reduced to about 600 ppm in 15 theoretical trays (L/mV ~ 1.5). In the section immediately above this point residual H$_2$S is absorbed and reacts with a solution of SO$_2$. The liquid fed to this
Table III-2

Design Basis for Process

(120 Megawatt Power Plant (Gas Turbine))

Sour Gas Characteristics

Composition: (mole fractions) (Denn et al. 1979)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>= 0.2729</td>
</tr>
<tr>
<td>H₂O</td>
<td>= 0.00290</td>
</tr>
<tr>
<td>N₂</td>
<td>= 0.4130</td>
</tr>
<tr>
<td>H₂S</td>
<td>= 0.00614</td>
</tr>
<tr>
<td>CO₂</td>
<td>= 0.1902</td>
</tr>
<tr>
<td>CH₄</td>
<td>= 0.00145</td>
</tr>
<tr>
<td>CO</td>
<td>= 0.1133</td>
</tr>
</tbody>
</table>

Flow = 2.488 kmole/s

T = 368 K

P = 2500 kPa

Process Solvent/Catalyst

Tetraglyme/ 3-pyridyl carbinol
Figure III-2

Flowsheet for Process
Table III-3

Stream Flows and Conditions for Process

<table>
<thead>
<tr>
<th>Stream:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>H<sub>2</sub> kmol/hr</td>
<td>2444.3</td>
<td>2444.3</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>4.3</td>
<td>0.6</td>
<td>4.9</td>
<td>--</td>
</tr>
<tr>
<td>CO<sub>2</sub></td>
<td>1703.6</td>
<td>1688.7</td>
<td>--</td>
<td>--</td>
<td>0.04</td>
<td>280.8</td>
<td>26.4</td>
<td>322.1</td>
<td>0.36</td>
</tr>
<tr>
<td>N<sub>2</sub></td>
<td>3699.2</td>
<td>3699.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>5.4</td>
<td>0.8</td>
<td>6.2</td>
<td>0.02</td>
</tr>
<tr>
<td>CH<sub>4</sub></td>
<td>13.0</td>
<td>13.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.09</td>
<td>0.01</td>
<td>0.1</td>
<td>--</td>
</tr>
<tr>
<td>CO</td>
<td>1014.8</td>
<td>1014.8</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>3.1</td>
<td>0.4</td>
<td>3.5</td>
<td>--</td>
</tr>
<tr>
<td>H<sub>2</sub>S</td>
<td>55.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>8.4</td>
<td>0.2</td>
<td>58.2</td>
<td>--</td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>24.3</td>
</tr>
<tr>
<td>H<sub>2</sub>O</td>
<td>26.0</td>
<td>17.5</td>
<td>36.0</td>
<td>13.2</td>
<td>1.9</td>
<td>887.1</td>
<td>0.5</td>
<td>952.6</td>
<td>17.2</td>
</tr>
<tr>
<td>S (dissolved)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>3.0</td>
<td>0.2</td>
<td>47.2</td>
<td>--</td>
<td>58.5</td>
<td>2.5</td>
</tr>
<tr>
<td>S (solid or liquid)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Total kmol/hr 8955.9 8877.5 36.0 16.2 4.84 1236.39 28.91 1406.1 44.38

Solvent Flow kmol/hr -- -- -- 140.4 13.0 1823.8 -- 1977.2 116.6

Pressure (kPa) 2510 2500 2510 2510 2510 2510 2510 2500 2510

Temperature (deg C) 95 33 40 30 30 30 54 55 30
<table>
<thead>
<tr>
<th>Stream:</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>(CO_2)</td>
<td></td>
<td></td>
<td></td>
<td>0.6</td>
<td>14.6</td>
<td>15.2</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>(N_2)</td>
<td></td>
<td></td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>103.4</td>
</tr>
<tr>
<td>(O_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.5</td>
</tr>
<tr>
<td>(H_2S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05</td>
<td>0.95</td>
<td>1.00</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>(SO_2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>87.5</td>
</tr>
<tr>
<td>(H_2O)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.4</td>
<td>125.4</td>
<td>25.4</td>
<td>145.2</td>
<td>14.4</td>
</tr>
<tr>
<td>(S) (dissolved)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td>5.4</td>
<td>5.7</td>
<td>5.7</td>
<td>--</td>
</tr>
<tr>
<td>(S) (solid or liquid)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>81.0</td>
</tr>
<tr>
<td>Total kmol/hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solvent Flow kmol/hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.2</td>
<td>258.8</td>
<td>270.0</td>
<td>270.0</td>
<td>--</td>
</tr>
<tr>
<td>Pressure (kPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>110</td>
<td>500</td>
</tr>
<tr>
<td>Temperature (deg C)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>27</td>
<td>153</td>
<td>117</td>
<td>40</td>
</tr>
</tbody>
</table>
Table III-3
(Continued)

Stream Flows and Conditions for Process

<table>
<thead>
<tr>
<th>Stream:</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>0.02</td>
<td>0.05</td>
<td>15.2</td>
<td>--</td>
<td>15.2</td>
<td>--</td>
<td>14.8</td>
<td>0.4</td>
<td>--</td>
</tr>
<tr>
<td>N₂</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>103.4</td>
<td>--</td>
<td>103.4</td>
<td>0.02</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>H₂S</td>
<td>--</td>
<td>0.01</td>
<td>1.00</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SO₂</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>27.0</td>
<td>--</td>
<td>27.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>H₂O</td>
<td>39.5</td>
<td>118.5</td>
<td>1.5</td>
<td>118.3</td>
<td>2.5</td>
<td>12.2</td>
<td>2.7</td>
<td>19.2</td>
<td>7.2</td>
</tr>
<tr>
<td>S (dissolved)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>2.7</td>
<td>--</td>
<td>2.7</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>S (solid or</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>liquid)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total kmol/hr | 39.52 | 118.56 | 17.7 | 118.3 | 148.1 | 14.9 | 120.9 | 49.32 | 7.2 |

Solvent Flow kmol/hr
| 0.01 | 0.02 | -- | 0.02 | -- | 129.6| -- | 129.6| -- |

Pressure (kPa)
| 110 | 110 | 110 | 110 | 110 | 100 | 100 | 100 | 110 |

Temperature (deg C)
| 40 | 40 | 42 | 100 | 150 | 30 | 20 | 61 | 40 |
section contains about 10% of the total stoichiometric requirement of SO₂ for the process. A chimney tray permits the vapor to leave this section, whereas the liquid from the section above is bypassed to the section below in order to maintain a concentration of SO₂ high enough to remove most of the remaining H₂S from the gas in 5 stages.

Residual H₂S and desorbed sulfur dioxide are recovered from the gas in the top section by scrubbing with lean cool solvent in 6 to 8 trays (L/mV for SO₂ ~ 2). Two trays are provided at the top of the absorber for solvent recovery by a water wash. The treated gas leaving the absorber contains less than 1 ppm H₂ and SO₂.

Reactor/Crystallizer

The effluent liquid from the absorber is cooled and mixed with a solvent stream containing sufficient SO₂ to react with slightly less than 90% of the H₂S entering the process. This mixture is forwarded to a vessel where the liquid-phase reaction between H₂S and SO₂ is allowed to continue nearly to completion. Driving force for the reaction is provided by a slight excess of H₂S. The sulfur formed by the reaction is allowed to settle and is removed as a slurry.

Approximately 85% of the solvent leaving the reactor is pumped back to the absorber to provide the liquid for bulk absorption of H₂S. By recycling most of the solvent required in the absorber without reducing the pressure, pumping costs associated with solvent circulation are kept low.

Settler and Solvent Surge Vessel

The sulfur slurry leaving the reactor is cooled to 35 °C and fed to the settler and solvent surge vessel where the mixture is flashed to atmospheric pressure. The flash gas, containing mostly CO₂ with small amounts of H₂S and lighter components (H₂, N₂, CO), is compressed and recycled to the bottom of the primary absorber. A slurry of sulfur is withdrawn from the bottom of the tank and treated to separate the sulfur from the solvent. Sufficient solvent is withdrawn from the
storage tank for use in the SO₂ removal steps in the primary absorber and the SO₂ absorber.

Solvent Stripper

The solvent from the settler is preheated to 120 °C and fed to a solvent stripper operating at atmospheric pressure. In this column the liquid is reboiled to reduce the water content of the solvent to about 1.0 wt%. The water provides a stripping vapor for residual H₂S and hydrocarbon (mostly CO₂). About 5 stages are needed in the bottom of the stripper to reduce the H₂S content of the solvent product to less than 1 ppm. The overhead is condensed with cooling water. Part of the condensed water is refluxed at the top of the column to minimize solvent loss. The slightly sour water (1 to 20 ppm H₂S) is stripped of H₂S and used in the centrifuge and in the water wash sections in the absorbers. The net water of reaction is sent to disposal.

The bottoms stream leaving the stripper is cooled in exchange with the incoming wet solvent. This cool lean solvent is used in the SO₂ absorption steps in the primary and SO₂ absorbers.

Sulfur Separation

The sulfur slurry from the settler is fed to a pusher-type centrifuge. Solvent-free water from the sour water stripper is used first to rinse the sulfur cake and then to re-slurry the sulfur. The solvent stream and rinse water are pumped to the solvent stripper. The sulfur-water slurry is heated above the melting point of sulfur and the two liquids are decanted. Water from this separation is returned to the centrifuge. The net sulfur product is pumped to a sulfur pit for storage.

SO₂ Absorber

A gas containing about 18% SO₂ is formed by the combustion of part of the molten sulfur and the residual H₂S from the solvent and sour water strippers with air in a furnace. The heat generated is used to produce high pressure steam in a waste-heat boiler. SO₂ is absorbed from the gas by contacting it with cool lean
solvent in a 7- to 10-stage column operating at atmospheric pressure. The exit SO₂ concentration in the gas is less than 1 ppm. The solvent flow in this unit is set to provide cooling of the inlet gas stream and to remove the heat of absorption of SO₂. A water wash is provided at the top of the column to minimize solvent loss. The bottom of the scrubber serves as a tank to provide an inventory of SO₂ solution. Storage of SO₂ solution permits partial decoupling of the rate at which SO₂ is generated from the rate of H₂S absorption.

3. Summary

An equipment list and utilities estimates are shown in Tables III-4 and III-5 respectively. An economic analysis is not presented here; for a detailed comparison of this process with conventional technology see Lynn et al. (1986). However, the flowsheet and data presented illustrate the potential utility of the present technology for nearly complete removal of hydrogen sulfide from a sour gas stream.

The process is relatively simple and has modest equipment and utilities requirements. In its present configuration it has the capacity to reduce easily the effluent H₂S and SO₂ to less than 1 ppm, thus meeting environmental specifications. Furthermore, because the process is highly selective for H₂S, the total reduction in the molar flow of the gas being treated is less than 1%, which is of importance when the treated gas is to be burned in a combustion turbine. Of the other components in the gas only CO₂ (5.5% reduction) and H₂O (32% reduction) are removed to any extent. This loss of water is not considered significant because the entering gas contains only 0.29% H₂O.

The value of using the reaction between H₂S and SO₂ in organic solvents has been demonstrated. Bulk formation of sulfur is facilitated by the reaction and reactive absorption permits quantitative removal of H₂S. This combination is put to good advantage in the present process; solvent recycle for physical absorption of most of the hydrogen sulfide is made possible by the homogeneous reaction
Table III-4
Equipment List

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-1</td>
<td>Primary Absorber</td>
</tr>
<tr>
<td>T-2</td>
<td>SO₂ Absorber</td>
</tr>
<tr>
<td>T-3</td>
<td>Solvent Stripper</td>
</tr>
<tr>
<td>T-4</td>
<td>Sour Water Stripper</td>
</tr>
<tr>
<td>K-1</td>
<td>Reactor/Crystallizer</td>
</tr>
<tr>
<td>K-2</td>
<td>Settler/Solvent Surge Tank</td>
</tr>
<tr>
<td>K-3</td>
<td>Pusher-Type Centrifuge</td>
</tr>
<tr>
<td>V-1</td>
<td>Reflux Drum</td>
</tr>
<tr>
<td>V-2</td>
<td>Decanter</td>
</tr>
<tr>
<td>H-1</td>
<td>Absorber Bottoms Cooler</td>
</tr>
<tr>
<td>H-2</td>
<td>Solvent Preheater</td>
</tr>
<tr>
<td>H-3</td>
<td>Solvent Cooler</td>
</tr>
<tr>
<td>H-4</td>
<td>Stripper Condenser</td>
</tr>
<tr>
<td>H-5</td>
<td>Solvent Stripper Reboiler</td>
</tr>
<tr>
<td>H-6</td>
<td>Sour Water Stripper Reboiler</td>
</tr>
<tr>
<td>H-7</td>
<td>Sulfur Melter</td>
</tr>
<tr>
<td>H-8</td>
<td>Furnace and Boiler</td>
</tr>
<tr>
<td>H-9</td>
<td>SO₂ Solution Cooler</td>
</tr>
<tr>
<td>H-10</td>
<td>Melter Preheater</td>
</tr>
<tr>
<td>H-11</td>
<td>Wash Water Cooler</td>
</tr>
</tbody>
</table>
Table III-4 (continued)

P-1 Absorber Bypass Pump
P-2 Primary Absorber Water Wash Pump
P-3 Primary Absorber Lean Solvent Pump
P-4 Primary Absorber Solvent Recycle Pump
P-5 Sulfur Slurry to Centrifuge Pump
P-6 Sulfur/Water Slurry to Decanter Pump
P-7 Solvent to Stripper Pump
P-8 Lean Solvent Pump
P-9 Condensate Pump
P-10 Waste Water Pump
P-11 SO₂, Solution Pump

C-1 Flash Gas Compressor
C-2 Air Compressor
Table III-5

UTILITIES USE AND COSTS

Electric Power

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Power (kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash Gas Compressor, C-1</td>
<td>92</td>
</tr>
<tr>
<td>Air Blower, C-2</td>
<td>11</td>
</tr>
<tr>
<td>Lean Solvent Pump, P-3</td>
<td>33</td>
</tr>
<tr>
<td>Sulfur Slurry Pump, P-6</td>
<td>13</td>
</tr>
<tr>
<td>Solvent Forwarding Pumps; P-4, P-5, P-8, P-11</td>
<td>4</td>
</tr>
<tr>
<td>Small Pumps; P-1, P-2, P-7, P-9, P-10</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>154 kW</td>
</tr>
<tr>
<td>Annual* Cost @ $0.07/kW-hr</td>
<td>$86,000</td>
</tr>
</tbody>
</table>

Steam produced, 4200 kPa (615 psia)

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Consumption (kg/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste heat boiler</td>
<td>< 4,300 ></td>
</tr>
<tr>
<td>Annual* Credit @ $11.50/10^3 kg</td>
<td>< $395,000 ></td>
</tr>
</tbody>
</table>

Steam consumed, 1150 kPa (165 psia)

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Consumption (kg/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvent Stripper Reboiler, H-5</td>
<td>3650</td>
</tr>
<tr>
<td>Sour Water Stripper Reboiler, H-6</td>
<td>140</td>
</tr>
<tr>
<td>Sulfur Melter, H-7</td>
<td>270</td>
</tr>
<tr>
<td>Total steam consumed</td>
<td>4060 kg/hr</td>
</tr>
<tr>
<td>Annual* Cost @ $9.90/10^3 kg</td>
<td>$321,500</td>
</tr>
</tbody>
</table>

Cooling Water **

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Usage (gal/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solvent Coolers; H-1, H-3, H-9</td>
<td>1440</td>
</tr>
<tr>
<td>Water Cooler, H-11</td>
<td>23</td>
</tr>
<tr>
<td>Solvent Stripper Condenser, H-4</td>
<td>380</td>
</tr>
<tr>
<td>Total cooling water usage</td>
<td>1843 gal/min</td>
</tr>
<tr>
<td>Annual* Cost @ $0.10/10^3 gal</td>
<td>$88,500</td>
</tr>
</tbody>
</table>

Total Net Annual* Cost for Utilities $101,000

* Annual costs based on an operating rate of 8,000 hrs/yr.

** Cooling Water available at 25 °C. Exit Temp. = 45 °C.
occurring in the reactor/crystallizer, while reactive absorption is employed to reduce the exit concentration of sulfurous compounds to desired levels. Since most of the liquid is recycled to the absorber without a reduction in pressure, solvent pumping power requirements are relatively low.

The processing scheme also takes advantage of the 30-fold greater solubility of SO_2 relative to H_2S in tetruglyme and similar solvents. Because the exit vapor from the reaction section of the absorber contains small amounts of desorbed SO_2 and little or no H_2S, the solvent flow needed for complete removal of all sulfurous compounds is much lower than would be necessary for removal of H_2S to a comparable level. This configuration keeps the flow of lean solvent low. Where a sulfurous compound must be removed essentially quantitatively by physical absorption, that compound is always SO_2.

Conversely, the fact that the effluent from the reactor/crystallizer is slightly H_2S-rich means that less soluble H_2S rather than SO_2 needs to be stripped from the solvent. The coupling of a low solvent flow with the presence of an easily removed component makes it possible to keep stripping costs to a minimum.

Although an economic analysis is beyond the scope of the present investigation, a significant reduction in utilities cost could be achieved by lowering the power requirements of the process, represented chiefly by the lean solvent pump (P-3) and the flash gas compressor (C-1). The flow of lean solvent to the top of the primary absorber, which is set to obtain a desired level of SO_2 removal, could be reduced by perhaps 20 to 25% (making $\text{L/mV} \approx 1.4$ for SO_2). The resultant reduction in pump size and power requirement would have to be weighed against the increase in capital cost of the added absorption trays.

A lower power (and capital) expense would result by eliminating the compressor and directing the flow of the flash gas to either the furnace or to the SO_2 absorber. The feasibility of this option depends in the former case on whether a stable flame can be maintained in the furnace in the presence of additional
inerts (i.e. CO₂), and in the latter case on restrictions on the emission of CO and H₂. Both methods yield low concentrations of H₂S in the exit stack gas, while reducing power consumption by about 30%.
References

Grant Chemical, "Glymes, The Grant Family of Glycol Diethers", Grant Chemical Division, Ferro Corp. (1982).

Sciamanna, S.F., Ph.D. Thesis in Chemical Engineering, University of California, Berkeley (1986).

List of Variables

A = Heat Exchanger Area (m²)

\(a_i \) = Stoichiometric Coefficient for Reaction
-2 for H₂S
-1 for SO₂
2 for H₂O
3 for Sulfur
0 for all other components

C = Concentration (kmol/m³)

\(C_p \) = Heat Capacity (kJ/kmol-K)

\(D_L \) = Average Molar Liquid Density (kmol/m³)

\(\Delta T_{LM} \) = Log Mean Temperature (K)

F = Feed Flow (kmol/s)

h = Liquid Enthalpy (kJ/kmol)

H = Vapor Enthalpy (kJ/kmol)

\(H_{RXN} \) = Heat of Reaction (kJ/kmol SO₂)

\(k_i \) = Equilibrium Constant for Component i

\(k_2 \) = Second Order Reaction Rate Constant (m³/kmol-s)

L = Liquid Flow (kmol/s)

m = Flow Rate (kmol/s)

\(n_L \) = Moles of Limiting Reactant (Eqn. II-7)

\(Q_{Hj} \) = Heat Added or Removed on Stage j (kJ/s)

RS = Fraction of Liquid to Sidedraw

T = Temperature (K)

t = Time (s)

U = Overall Heat Transfer Coefficient (kJ/m²-s-K)

V = Vapor Flow (kmol/s)

\(V_L \) = Volume of Liquid on a Tray (m³)

x = Liquid Mole Fraction

z = Feed Mole Fraction
Appendix

Description of the Process Simulation Program

A-I. Simulation Programs

This appendix contains listings of the Fortran-77 and Knowledge Manager Database code (sections A-III and A-IV respectively) for the computer simulation used in the evaluation of the University of California Sulfur Recovery Process. A brief explanation of how to use the simulation program to perform the calculations for a particular process configuration is given in section A-II.

Most of the unit operations are simulated using well known chemical engineering algorithms. A few of the routines requiring more explanation are described below.

A. Main Program - BERKSULF.F77

The main program is actually composed of three routines, BERKRUN, BERKSULF, and BERKSTOP. A normal run of the simulation would begin by invoking BERKRUN, an assembly language program whose sole purpose is to repeatedly start-up BERKSULF. Typically BERKSULF will execute for 5 iterations, terminate, and then be restarted by BERKRUN. This somewhat awkward program chaining is necessitated by memory limitations of the Digital Research Fortran compiler used to compile the simulation.

BERKRUN is aborted when BERKSULF calls BERKSTOP, another assembly language routine, which forces the operating system to terminate execution of BERKRUN. The stopping point is determined by convergence criteria set at compile-time in BERKSULF.

The calculations of the simulation are directed by BERKSULF. After initialization of internal variables, values for composition, flow, temperature, pressure, and phase are read a disk file, either STREAMS.DAT or STREAMS.TMP,
into the array STREAMS. The file STREAMS.DAT contains the set values and initial guesses for the streams, whereas STREAMS.TMP consists of data saved from a previous invocation of BERKSULF. The primary purpose of STREAMS.TMP is to pass variables between restarts of BERKSULF by BERKRUN, although the contents can be used as a set of guesses for a new flow configuration which does not differ greatly from a previous one.

If the data are read from STREAMS.DAT, then the enthalpy for each non-zero stream is calculated. The bubble and dew points are also determined and a warning is issued if the phase does not match that set in the input. Enthalpies and phases are read from the data file when STREAMS.TMP serves as the source.

After STREAMS has been initialized, the program begins to perform the series of unit operations which constitute the flow configuration of interest. The sequence of events is as follows:

1. Read data for the next operation from the disk file STREAMIO.DAT. A line in the file consists of the operation code number (operation to perform) followed by the unit number and a list of the parameters needed and streams involved in the calculation.

2. Vector to the appropriate unit set-up code. Call the indicated subroutine, passing parameters as needed.

3. Update the STREAMS array with data returned from the unit subroutine. Also save any unit information such as power requirement, heat duty, and equipment size.

4. Check for and report potential error conditions. The most common errors are non-convergence in a unit subroutine or that a calculation is not performed due to a zero feed. Exit stream phase conditions (mixed or single) are also noted.

5. Repeat steps 1 through 4 until all operations have been performed. This is indicated by a zero or negative value for the operation code.

6. The normalized values for composition, flow and temperature for all the
streams are compared with those of the previous iteration. If these variables are converged to 1 part in 100, jump to step 9.

7. Apply Wegstein acceleration to the component flows. This is performed by extrapolation (or interpolation) using the results of several direct substitution calculations. If \(x_{k+1} = F(x_k) \) is replaced by \(x_{k+1}' = F(x_k) \), where \(F(x) \) is a function representing the direct substitution calculation, then the accelerated value for \(x \) to insert in the equations on the next iteration can be obtained from (Perry, 1984, 2-62)

\[
\begin{align*}
x_{k+1} &= q \cdot x_k' + (1-q) \cdot x_{k+1}' \\
q &= \frac{(x_{k+1}' - x_k')}{(x_{k+1}' - 2x_k' + x_{k-1}')}
\end{align*}
\]

(A-1)

where the subscript indicates the iteration number and a superscript \(\prime \) refers to a variable derived from a direct substitution calculation. The accelerated value will generally lead to convergence when \(q < 0 \).

8. Increment the iteration counter. If the count exceeds the maximum permissible value (either the internal count or the absolute value of a negative operation code obtained in step 5), then jump to step 9. If the iteration count is 5 greater than when the current run of BERKSULF started, write all data to STREAMS.TMP, stop, and wait to be restarted by BERKRUN.

9. At convergence or when the maximum number of iterations has been reached, write all data from STREAMS to the files STREAMS.OLD and BERKOUT.DAT. STREAMS.OLD contains data in the same form as STREAMS.TMP for possible later use, while BERKOUT.DAT is the formatted output detailing all of the stream information. A unit summary consisting of calculated powers, heat duties, and unit sizes is also written.

10. Terminate BERKRUN and stop.

B. Tray Absorber/Stripper/Distillation Routine

A general procedure for a staged absorber is to write material, heat, and
equilibrium equations which are linearized by the Newton-Raphson method. The resulting set of coupled equations is in block tridiagonal form and can be solved by Newman's method using the BAND subroutine (Newman, 1968). Updated variables for the next iteration are obtained from the solution. Initial guesses for the component mole fractions can be made by applying the Thomas method (King, 1980, pgs. 466-472) to an assumed temperature and flow profile based on feed conditions. Convergence of the component mole fractions to one part in 1000 on all stages is usually obtained in fewer than 10 iterations. For the case where H$_2$S is absorbed from a gas stream into a solution containing SO$_2$, as can occur in this process, the calculations must account for the reaction between two simultaneously absorbing/desorbing species. Under these conditions a reaction term is added to the energy and material balances to account for the disappearance of H$_2$S and SO$_2$ and the production of H$_2$O and sulfur. This is implemented by treating each stage as a CSTR with the reaction evaluated at outlet conditions.

Including the reaction terms from the mass and energy balances explicitly in the linearization of the equations yields a problem which is calculationally unstable and often non-convergent. This difficulty is overcome by treating the reaction terms in the equations as constants (i.e. as pseudo-sidedraws for H$_2$S and SO$_2$ and as pseudo-feeds for H$_2$O and Sulfur) for the solution of the general problem at each iteration. To account explicitly for the presence of the reaction, the mass balance equations for H$_2$S and SO$_2$ are linearized in mole fraction only and a converged solution for these components is obtained on all stages. These values then are used to calculate the constant reaction terms in the general problem. The rest of the calculations proceed as for the solution to the problem in which no reaction is present.

The equations describing the staged column calculations for absorption, stripping, and distillation are given in Table A-I. Stepwise, a solution to the
Table A-I
Equations Describing an Equilibrium Stage j

Component Mass Balances (A-2): (1 Eqn. for each component i)

$$-V_{j-1}k_{j-1,i}x_{j-1,i} + (V_jk_{j,i} + (L_j/(1-RS_j)))x_{j,i} - L_{j+1,i} = (F(z_i)_F)_j + a_1k_2V_L(x_{H2S_D_L})(x_{SO2_D_L})$$

Heat Balance (A-3):

$$-V_{j-1}H_{j-1} + V_jH_j + L_jh_j - L_{j+1}h_{j+1} = (Fh_F)_j - \sum_i H_{RXN}a_1k_2V_L(x_{H2S_D_L})(x_{SO2_D_L}) + QH_j$$

Equilibrium Expression (A-4):

$$\sum_i [(x_{j,i} - 1)x_{j,i}] = 0$$

Mole Fraction (A-5):

$$\sum_i [x_{j,i}] = 0$$

where

- a_i = Stoichiometric Coefficient for Reaction
 - -2 for H_2S
 - -1 for SO_2
 - 2 for H_2O
 - 3 for Sulfur
 - 0 for all other components

- D_L = Average Molar Liquid Density (kmol/m3)
- F = Feed Flow (kmol/s)
- h = Liquid Enthalpy (kJ/kmol)
- H = Vapor Enthalpy (kJ/kmol)
- H_{RXN} = Heat of Reaction (kJ/kmol SO_2)
- k_i = Equilibrium Constant for Component i
- k_2 = Second Order Reaction Rate Constant (m3/kmol-s)
- L = Liquid Flow (kmol/s)
- QH_j = Heat Added or Removed on Stage j (kJ/s)
- RS = Fraction of Liquid to Sidedraw
- V = Vapor Flow (kmol/s)
- V_L = Volume of Liquid on a Tray (m3)
- x = Liquid Mole Fraction
- z = Feed Mole Fraction
problem is obtained as follows:

1. Set initial guesses for the column. The liquid and vapor flows, the temperatures, and the compositions on all stages are estimated from the cummulative effects of the feeds to the column.

2. Perform property calculations (equilibrium constants, derivatives, etc.).

3. Calculate \(x_i, y_i \) on all stages by the Thomas method.

4. Perform property calculations under the new conditions.

5. The component mass balance equations for \(\text{H}_2\text{S} \) and \(\text{SO}_2 \) (A-2) are linearized in mole fraction and solved. The term \(a_i k_2 V_L (x_{\text{H}_2\text{S}D_L}) (x_{\text{SO}_2D_L}) \), which represents the effect of the chemical reaction, is included in the linearization. Convergence of the mole fractions on all stages to 1 part in 1000 is generally obtained in less than 30 iterations.

6. Equations A-2, A-3, A-4, and A-5 are linearized by Newton-Raphson in \(T, V, L \) and all \(x_i \) and solved by Newman's method. The reaction term is treated as a constant value at the conditions obtained in step 5.

7. Iterate to step 4 until all \(x_i \) are converged to 1 part in 1000.

C. Heat Exchanger Subroutine

The heat exchanger subroutine simulates the operation of a single pass countercurrent heat transfer device. Since the possibility of flashing of light gasses from solvent upon heating exists in the process under consideration, an algorithm was devised which correctly accounts for fluid phase changes. The equations describing this unit are given in Table A-II. Equations A-6 and A-7, which are linearized in the exit temperatures of the hot and cold streams, are solved by Newton-Raphson as follows:

1. Estimate \(T_{c\text{-exit}} \) and \(T_{h\text{-exit}} \) using the exact solution to the heat exchanger problem for the case of no phase change.

2. Perform isothermal flash calculations on the two fluids at their exit
Table A-II
Equations Describing a Heat Exchanger

Heat Balance Equations (A-6 and A-7):

\[F_1 = (H_{h-in} - H_{h-exit}) - UA \ \text{DELT}_{LM} = 0 \]
\[F_2 = (H_{h-in} - H_{h-exit}) - (H_{c-exit} - H_{c-in}) = 0 \]

Exit Temperatures (No Phase Change) (A-8 and A-9):

\[T_{c-exit} = \frac{T_{h-in}(1-B_{NPC}) + T_{c-in}B_{NPC}(1-A_{NPC})}{(1-A_{NPC}B_{NPC})} \]
\[T_{h-exit} = T_{h-in} + \left(\frac{T_{c-in} - T_{h-in}}{A_{NPC}(1-B_{NPC})}\right)\left(1-A_{NPC}B_{NPC}\right) \]

where

\[A_{NPC} = \sum_{i} \frac{m_{h,i}C_{p-h,i}}{\sum_{i} m_{c,i}C_{p-c,i}} \]
\[B_{NPC} = \exp\left[UA(1/\sum_{i} m_{c,i}C_{p-c,i}) - 1/\sum_{i} m_{h,i}C_{p-h,i}\right] \]

\[A \quad = \text{Heat Exchanger Area (m}^2) \]
\[C_p \quad = \text{Heat Capacity (kJ/kmol-K)} \]
\[\text{DELT}_{LM} \quad = \text{Log Mean Temperature (K)} \]
\[m \quad = \text{Flow Rate (kmol/s)} \]
\[T \quad = \text{Temperature (K)} \]
\[U \quad = \text{Overall Heat Transfer Coefficient (kJ/m}^2\text{-s-K)} \]

Subscripts:

- \(c \) = cold stream
- \(h \) = hot stream
- \(in \) = inlet
- \(exit \) = outlet
- \(l \) = component i
temperatures to obtain the correct exit enthalpies, accounting for possible phase changes. Calculate values for \(F_1 \) and \(F_2 \).

3. Calculate the derivatives of \(F_1 \) and \(F_2 \) with respect to the outlet temperatures. The derivatives are determined numerically by performing isothermal flash calculations at incremental increases in temperature.

4. The \(F \) values and the derivatives are used to calculate new values for the exit temperatures.

5. Repeat steps 2 through 4 until convergence is obtained.

D. Thermodynamics Subroutine

The thermodynamics subroutine supplies the enthalpies, equilibrium constants, and derivatives of \(H \) and \(k \) with respect to temperature needed in the simulation calculations. For the implementation covered in section A-III, the bulk solvent is assumed to be tetraglyme. References for data used in the calculations can be found with the source code. A brief discussion of the methods of calculation is given below.

Vapor-phase enthalpies are calculated from heat capacity data referenced to 298 K. To determine liquid-phase enthalpies, the heat of vaporization is subtracted from the vapor-phase values. Heats of solution, when available, are used in place of the heats of vaporization when the solvent is present. The enthalpy of formation is included in all enthalpy calculations, since a chemical reaction is present in the process.

Equilibrium constants are estimated from temperature dependent Henry's law constants when solvent and/or water are present, and by Raoult's law using the Antoine equation for vapor pressure otherwise. Solvent properties are always estimated from vapor pressure data. Mixtures of solvent and water are dealt with by employing the empirical mixing "rule" of a volume fraction average of the Henry's law values in the two liquids. Since the mass densities of tetraglyme and
water are nearly equal, the average weight fraction can be used in place of the volume fraction. The expression describing the Henry's law constant for a component in the mixture is

\[H_{\text{mix}} = \text{DEXP} \left(\frac{W_s \ln(H_s) + W_w \ln(H_w)}{W_s + W_w} \right) \]

(A-10)

Note that volume rather than mole fraction is used in the analysis because it better accounts for the difference in molecular size (see Sciamanna, 1986).

At pressures greater than 500 kPa, corrections for enthalpies and \(k\) values are derived by assuming that the Redlich-Kwong equation of state applies. Enthalpy departures and fugacity coefficients are calculated based on this model.

A-II. Simulation Usage

The simulation was created to permit rapid assessment of process alternatives by calculation of material and energy balances. To evaluate a particular configuration, a detailed flowsheet must be drawn. All units, even minor ones such as mixing and splitting vessels, need to be included in the drawing. The diagram establishes the unit operations to be performed and the interconnection between devices.

Since processes often contain one or more recycle streams, the ordering of unit calculations requires intelligent use of the process arrangement. In fact the flow of information used in calculations is sometimes different from the flow of mass. When a downstream unit produces an output required in a particular unit, it may be convenient to calculate the downstream unit first, even though this is not the order in which the unit operations would normally be thought of as occurring.

Frequently the user will need to "guess" the flow, composition, temperature, etc. of a stream in order to provide an initial input to an operation. For example, if an input stream to unit one is a recycle from unit two, which derives its output from unit one, then the input to one of the units must be specified before the first iteration is performed. Often the variables representing these streams are set
based on knowledge of the process conditions. For minor input streams such variables often can be initialized to zero.

The process considered in the present work is sufficiently simple that ordering of units could be performed by inspection. For more complex flow configurations detailed procedures for determining calculation order and stream specifications, referred to as decomposition analysis, are discussed elsewhere (see for example Crowe et al., 1971).

Figure A-I is a presentation of the type of information needed to set up the simulation. On this block flow diagram, which is a schematic representation of the process of Fig. III-2, the unit numbers (below or inside a unit block) reflect the order in which the unit calculations are to occur. Set and guessed streams have also been indicated. Although stream numbers have been omitted to reduce clutter in the drawing, in practice all the streams would be numbered.

The block flow diagram, which specifies the order of calculations, interconnection of units, and the "torn" streams in the process simulation, combined with detailed information about process units (i.e., number of stages in an absorber, set stream flows, set temperatures, etc.) and with a knowledge of process requirements, serves as a guide to creating the simulation input. Two disk files, STREAMS.DAT and STREAMIO.DAT, already described above, provide the data needed to perform the process calculations.

Although these files can be produced using any text editor by applying the specifications given in the program code (see A-III), the procedure is extremely tedious and time consuming. To ease data entry, a set of programs, written in the KnowledgeMan Data Base Management System, has been provided. The program code is in section A-IV. The routines are entirely menu driven and produce the files required to run the simulation.
Figure A-1
Block Flow Diagram for Process
A-III. Simulation Code

This section contains the computer code for the UCBSRP simulation. All of the routines, except the assembler coded BERKRUN and BERKSTOP were written in Digital Research Fortran-77 Version 4.1 for Concurrent CPM. The simulation was executed on a Compupro computer system with a 10 Mhz. 286/287 processor and 768k of main memory. A typical run of a flow configuration of the complexity indicated in section A-II required 5 to 8 hours to produce a converged solution.

Numerous comments have been included in the code to make it more readable. For detailed descriptions of the main program, the absorber/stripper/distillation routine, the heat exchanger and the thermodynamics calculations see section A-I. The remainder of the routines should be self explanatory. Cited literature references can be consulted for further information on some of the algorithms.
; SIMULATION DRIVER PROGRAM
; CONTINUALLY EXECUTES BERKSULF.CMD
; WHEN BERKSULF DETERMINES THAT CONVERGENCE HAS OCCURRED
; IT ABORTS THIS ROUTINE BY A CALL TO THE BERKSTOP
; SUBROUTINE
;
; THIS PROGRAM IS INVOKED BY:
; BERKRUN
; OR
; BERKRUN X
; WHERE X IS AN OPTIONALLY SPECIFIED DRIVE ON WHICH
; BERKSULF CAN BE FOUND

; WRITTEN FOR DRI ASM86 UNDER CONCURRENT CPM 4.1
; LAST UPDATE: 04/21/86
;
; EQUATES
GETDRV EQU 025 ; RETURN DEFAULT DRIVE
SETPRIOR EQU 145 ; SET PRIORITY
CONATTACH EQU 146 ; ATTACH CONSOLE
CLICMD EQU 150 ; SEND CLI COMMAND
DBUF EQU 080H ; DEFAULT COMMAND TAIL BUFFER
CCPM EQU 224 ; SYSTEM ENTRY

CSEG
ORG 0

START: MOV BX,OFFSET DBUF ; POINT TO DEFAULT BUFFER
 CMP BYTE PTR [BX],O
 JZ NO_TAIL

START1: INC BX ; SKIP OVER NULLS, SPACES AND TABS
 CMP BYTE PTR [BX],20H
 JE START1
 CMP BYTE PTR [BX],09H
 JE START1
CMP BYTE PTR [BX], 0
JE START1
MOV AL, [BX] ; GET DRIVE DESIGNATION
MOV DRY, AL
JMP send_com

no_tail: MOV CL, GETDRV ; GET DEFAULT DRIVE IF NONE SPECIFIED
INT CCPM
ADD AL, 41H ; MAKE DRIVE ASCII
MOV DRY, AL

send_com:
MOV CL, CLICMD
MOV DX, OFFSET BERKSULF ; EXECUTE BERKSULF
INT CCPM
MOV CL, SETPRIOR ; SET PRIORITY HIGHER THAN SHELL
MOV DL, 190 ; SO WE REGAIN CONSOLE CONTROL
INT CCPM ; AFTER BERKSULF STOPS
MOV CL, CONATTACH ; ATTACH TO CONSOLE
INT CCPM
JMP start ; DO FOREVER

dseg
org 100H
berksulf db 0
dry db 'A'
db '::BERKSULF', 0

end
PROGRAM BERKSLUF

C LAST UPDATE 6/23/86

**
C DESCRIPTION OF MAJOR VARIABLES:
C
C STREAM = COMPOSITION, FLOW, TEMPERATURE, PRESSURE, AND
C ENTHALPY, PHASE FOR ALL STREAMS IN THE PROCESS. (CURRENT ITERATION)
C STROLD = COMPOSITION, FLOW, TEMPERATURE FOR ALL STREAMS
C FROM THE PREVIOUS ITERATION
C
C UNIT = UNIT NUMBER, POWER, HEAT DUTY, AND SIZE
C POWER IN KW, HEATS IN KW/S, SIZE IN GAL.
C
C FLOW = COMPONENT FLOWS FOR THE PREVIOUS TWO AND CURRENT
C ITERATION, USED IN WEGSTEIN ACCELERATION (SEE BELOW)
C
C X, Y, AND HX ARE USED IN STREAM INITIALIZATION
C X = LIQUID MOLE FRACTIONS
C Y = VAPOR MOLE FRACTIONS
C HX = COMPONENT ENTHALPIES
C
C FEED, ZFEED, AND QI ARE USED FOR PASSING FEED CONDITIONS TO THE
C ABSORBER ROUTINE
C FEED = STAGE #, FLOW, TEMPERATURE, AND ENTHALPY OF FEED
C ZFEED = COMPOSITION
C QI = INTERCOOLER STAGE NUMBER(S) AND HEAT REMOVED
C
C MOLWT = MOLECULAR WEIGHTS FOR ALL COMPONENTS (FOR COMPONENT
C DESIGNATIONS SEE THERMODYNAMICS SUBROUTINE)
C
C ALPHA = ARRAY OF STOICHIOMETRIC COEFFICIENTS FOR THE REACTION
C BETWEEN H2S AND SO2 TO FORM SULFUR AND WATER
C
C ABND, BBND, ETC. ARE THE ARRAYS THAT APPEAR IN THE BAND
C SUBROUTINE USED IN ABSORBER CALCULATIONS
C
C STRI AND STRO ARRAYS ARE USED TO PASS STREAM INFORMATION TO
C AND FROM VARIOUS SUBROUTINES
C THE CONTENTS = COMPOSITION, FLOW, T, P, ENTHALPY, PHASE
C
C**
C NOTES: THROUGHOUT THE SIMULATION THE FOLLOWING VALUES APPLY FOR
C THE PHASE TYPE
C 1 = LIQUID
C 2 = VAPOR
C 3 = MIXED LIQUID AND VAPOR
C 4 = LIQUID WITH SOLID SULFUR PRESENT
C 5 = VAPOR WITH SOLID SULFUR PRESENT
C 6 = MIXED LIQUID AND VAPOR WITH SOLID SULFUR PRESENT
C
C FLOWS IN KMOL/s
C TEMPERATURES IN K
C PRESSURE IN KPA
C ENTHALPIES IN KJ/KMOL
C
C**
C DESCRIPTION OF OPCODE OPERATION MATRIX
C
C THE DRIVER INFORMATION FOR THE SIMULATION PROGRAM IS KEPT AS A
C SERIES OF DATA SETS IN THE FILE STREAMIO.DAT
C EACH ENTRY IN THE DRIVER FILE CONSISTS OF THE FOLLOWING ENTRIES:
C OPCODE#, UNIT#, DATA1, DATA2,, DATAN WHERE N CAN
C RANGE TO 30 ITEMS
C MOST OF THE DATA ITEMS ARE EITHER STREAM NUMBERS OR PROPERTY VALUES
C SUCH AS PRESSURE, ETC.

C THE PROGRAM READS THE ENTRIES SEQUENTIALLY, CARRYING OUT EACH
C OPERATION AS REQUESTED
C WHEN ALL OPERATIONS HAVE BEEN COMPLETED (OPCODE=0) THEN A
C CONVERGENCE CHECK IS PERFORMED.
C THIS CONTINUES UNTIL CONVERGENCE IS OBTAINED OR A MAXIMUM
NUMBER OF ITERATIONS HAS OCCURRED.

NOTE THAT THIS AMOUNTS TO A DIRECT SUBSTITUTION CONVERGENCE SCHEME.

THE AVAILABLE OPERATION CODES AND THE ASSOCIATED DATA VALUES ARE LISTED BELOW. NOTE THAT ALL VALUES FOR A GIVEN OPERATION MUST BE SUPPLIED!

ABBREVIATIONS USED:

FLOW = TOTAL STREAM FLOW (KMOLE/S)
FLOWI = FLOW OF COMPONENT I (KMOLE/S)
FS = FRACTION OF LIQUID TO SIDE DRAW FROM CONDENSER IN DISTILLATION
ICOMP = COMPONENT NUMBER
IOFLAG = IF EQUALS 1 USE OLD PROFILE ON FIRST ITERATION
 IF EQUALS 0 GENERATE NEW INITIAL GUESSES
P = PRESSURE (IN UNIT OR AT OUTLET) (KPA)
QR = HEAT REMOVED (KJ)
QRE = HEAT ADDED TO REBOILER (KJ/S)
QIF = HEAT ADDED TO STAGE (KJ/S)
QIN = HEAT ADDED (KJ)
RHOM = AVERAGE MOLAR LIQUID DENSITY (KMOLE/M^3)
R2CONST = SECOND ORDER RATE CONSTANT (H_2S \cdot SO_2 RXN) (M^3/KMOLE/S)
STI = STREAM IN
STO = STREAM OUT
T(OUT) = TEMPERATURE (IN UNIT OR AT OUTLET) (K)
TC = TEMPERATURE OF CONDENSER (K)
UA = HEAT TRANSFER COEFFICIENT * AREA (KJ/S-K)
VLIQT = VOLUME OF LIQUID ON A TRAY (M^3)
<table>
<thead>
<tr>
<th>OPERATION CODE#</th>
<th>OPERATION</th>
<th>DATA I/O (I.E. DATA IN OPCODE MATRIX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PLATE ABSORBER/</td>
<td>UNIT, NSTAGES, P, VLIQT, RHOM, R2CONST, FEED1, STAGEF1, FEED2, STAGEF2,...,FEED5, STAGEF5, STRO VAPOR, STRO LIQUID, QRE, Q1, STAGEQ1, Q12, STAGEQ12, TC, FS, STRO LIQUID CONDENSER, I0FLAG</td>
</tr>
<tr>
<td>2</td>
<td>FSPLIT</td>
<td>UNIT, STRI, STRO1, STRO2, FLOW TO 1</td>
</tr>
<tr>
<td>3</td>
<td>PHFLASH</td>
<td>UNIT, STRI, P, STRO LIQUID, STRO VAPOR</td>
</tr>
<tr>
<td>4</td>
<td>HEAT EXCHANGER</td>
<td>UNIT, STRI1 (HOT), STRI2 (COLD), STRO1, STRO2, UA</td>
</tr>
<tr>
<td>5</td>
<td>REBOILER</td>
<td>UNIT, STRI, STRO LIQUID, STRO VAPOR, P, T</td>
</tr>
<tr>
<td>6</td>
<td>CONDENSER</td>
<td>UNIT, STRI, STRO, P</td>
</tr>
<tr>
<td>7</td>
<td>MIXER</td>
<td>UNIT, STRI1, STRI2, STRO, P</td>
</tr>
<tr>
<td>8</td>
<td>SPLITTER</td>
<td>UNIT, STRI, STRO1, STRO2, FRACT TO STRO1</td>
</tr>
<tr>
<td>9</td>
<td>PUMP</td>
<td>UNIT, STRI, STRO, P AT OUTLET, RHOM</td>
</tr>
<tr>
<td>10</td>
<td>REACTOR</td>
<td>UNIT, STRI1, STRI2, STRO, P, Q REMOVED, FRACT. CONVERSION, R2CONST</td>
</tr>
<tr>
<td>11</td>
<td>SULFUR SATURATOR</td>
<td>UNIT, STRI STRO, T, P</td>
</tr>
<tr>
<td>12</td>
<td>SULFUR SETTLE</td>
<td>UNIT, STRI, STRO1 (SULFUR), STRO2 (SOLVENT), WTX S IN SULFUR OUT, P</td>
</tr>
<tr>
<td>13</td>
<td>SULFUR WASHER</td>
<td>UNIT, STRI1 (SULFUR), STRI2 (WATER), STRO1 (WASH), STRO2 (SULFUR), WTX S IN SULFUR, P</td>
</tr>
<tr>
<td>14</td>
<td>MELTER/DECANTER</td>
<td>UNIT, STRI1 (WATER), STRO2 (SULFUR), T, P</td>
</tr>
<tr>
<td>15</td>
<td>FURNACE</td>
<td>UNIT, STRI1 (SULFUR), STRI2 ("JUNK"), STRI3 (AIR), SO2REG, STRO1, TOUT, POUT (NOTE THAT THE COMPOSITION, TEMPERATURE, PRESSURE AND PHASE MUST BE SET FOR THE AIR STREAM)</td>
</tr>
</tbody>
</table>
16 COMPRESSOR UNIT, STR1, STRO, POUT

17 SULFUR CENTRIFUGE UNIT, STR1, STR2, STRO1 (SULFUR SLURRY), STRO2 (SOLVENT/WATER), P, WT%1, WT%2 (WHERE WT% VALUES ARE FRACTION OF SULFUR IN SULFUR STREAMS IN EACH SETTLING STEP)

18 PARTIAL CONDENSER UNIT, STR1, PCOND, TCOND, STRO LIQUID, STRO VAPOR

19 HEATER UNIT, STR1, STRO, GIN

20 STORAGE UNIT, STR1, STRO, FLOW1, ICOMP, TOUT (FLOW1 SET, OTHER FLOWS SCALED AT SAME COMPOSITION)

21 CRYSTAL UNIT, STR1, STRO

22 SULSPLIT UNIT, STR1, STRO1, STRO2, FRACT1

23 MAKEUP UNIT, STR1, STRO, FLOW1, ICOMP (FLOW1 SET, OTHER FLOWS UNCHANGED)

24 TSET UNIT, STR1, STRO, TSET

25 HCSSPLIT UNIT, STR1, STRO1 (HYDROCARBONS), STRO2 (OTHER)

IMPLICIT REAL*8(A-H,O-Z)

REAL*8 STREAM(100,25), STROLD(100,23), UNIT(80,4), OPCODE(30)
REAL*8 FLOW(100,20,3)
REAL*8 FEED(5,4), ZFEED(5,20)
REAL*8 X(20), Y(20), HX(20)
REAL*8 MOLWT(20)
REAL*8 STR1(25), STR2(25), STRO1(25), STRO2(25), STRF(25)
REAL*8 STR1(25), STR2(25), STRO3(25), STRO4(25)

REAL*8 QI(2,2)

LOGICAL INEW
REAL*8 ABND(18,18), BBND(18,18), CBND(18,25), DBND(18,37)
REAL*8 GBND(18), XBND(18,18), YBND(18,18)
REAL*8 EBND(18,19,25)

INTEGER*2 ALPHA(20)
INTEGER*2 ERROR

COMMON/ALPH/ALPHA
COMMON/MOLEC/MOLWT
COMMON/BND/ABND,BBND, CBND, DBND, GBND, XBND, YBND, IT, NJ
COMMON/EEE/EBND
COMMON/VEGS/FLOW

C SET TEMPORARY INTERNAL ITERATION LIMIT
ITERMAX=10

C NUMBER OF COMPONENTS IS 20
NC=20

C SET VALUES FOR CONVERGENCE PRECISION AND ITERATION COUNT
C MAXIMUM NUMBER OF ITERATIONS = IMAX IN MAIN, IMAXS FOR SUBROUTINES
C
C = IMAX FOR A SINGLE EXECUTION OF BERKSULF
C (UNDER CONTROL OF BERKRUN)
C CONVERGENCE CRITERION = EPSILON IN MAIN
C = EPS FOR SUBROUTINES
IMAX=50
IMAXS=30
ICMAX=5
EPSILON=1.0D-2
EPS=1.0D-3

C READ REACTION STOICHIOMETRY VALUES
OPEN(2,FILE='ALPHA.DAT')
READ(2,*) (ALPHA(I), I=1, NC)
C READ ALL MOLECULAR WEIGHT VALUES
OPEN(3,FILE='MOLEC.DAT')
READ(3,*) (MOLMT(I),I=1,NC)

C TRY TO READ AN OLD STREAMS MATRIX. THIS WOULD EXIST EITHER BECAUSE
C WE RAN THE CALCULATIONS BEFORE OR ARE SOMEWHERE IN THE MIDDLE OF A
C CALCULATION REQUIRING MULTIPLE INVOCATIONS OF THIS PROGRAM BY BERKRUN
INEW=.TRUE.
OPEN(4,FILE='STREAMS.TMP',STATUS='OLD',ERR=8)

C READ OLD ITERATION COUNT AND SHOW THAT WE FOUND THIS FILE
READ(4,*) ITER
I=1
5 READ(4,*) (STREAM(I,J),J=1,NC)
READ(4,*) (STREAM(I,J),J=NC+1,NC+5)

IF(STREAM(I,NC+1).NE.-1.000) THEN
 I=I+1
 GOTO 5
ENDIF
INEW=.FALSE.
GOTO 6

C READ ALL INITIAL STREAM VALUES. READ UNTIL FLOW=-1.0
C ALSO INITIALIZE THE ITERATION COUNTER
OPEN(4,FILE='STREAMS.DAT')
ITER=1

9 I=1
10 READ(4,*) (STREAM(I,J),J=1,NC+5)

IF(STREAM(I,NC+1).NE.-1.000) THEN
 I=I+1
 GOTO 10
ENDIF
NSTREAMS=1.1

WRITE(6,43333) NSTREAMS

43333 FORMAT(X,' NSTREAMS=',15)

C ZERO ACCELERATOR MATRIX AND SHOW THAT FRESH VALUES MUST BE GENERATED

DO 11 I=1,NSTREAMS
 DO 11 J=1,NC
 DO 11 K=1,3
 FLOW(I,J,K)=0.DO

C READ OLD FLOW MATRIX FOR ACCELERATOR IF NEEDED

IF(.NOT.INEW) THEN
 OPEN(9,FILE='WEGST',ERR=14)
 DO 12 I=1,NSTREAMS
 DO 12 J=1,NC
 READ(9,*,ERR=14,END=14) (FLOW(I,J,K), K=1,3)

C SHOW THAT AN ACCEPTABLE OLD FLOW MATRIX HAS BEEN READ

ICWEGS=5

ENDIF

C CLOSE FILES

CLOSE(9,STATUS='DELETE')
CLOSE(1)
CLOSE(2)
CLOSE(3)
CLOSE(4)

C COPY DATA TO CONVERGENCE MATRIX

DO 15 I=1,NSTREAMS
 DO 15 J=1,NC+3
 STROLD(I,J)=STREAM(I,J)

C OPEN OUTPUT DATA FILE

OPEN(1,FILE='BERKOUT.DAT')

C NOW DELETE OLD DATA FILE
CLOSE(1, STATUS='DELETE')

C NOW OPEN IT FOR THIS RUN
OPEN(1, FILE='BERKOUT.DAT')

C CALCULATE ALL INITIAL ENTHALPIES FOR STREAMS WITH NON-ZERO FLOW
C ALSO CALCULATE BUBBLE AND DEW POINTS AND MAKE SURE ENTERED PHASE
C IS CORRECT. PRINT WARNINGS FOR INCORRECT PHASES AND FOR MIXTURES
C OF LIQUID AND VAPOR
C IF THIS IS AN OLD STREAMS MATRIX (SEE ABOVE) THEN ALREADY HAVE
C ENTHALPIES, ETC.

IF(INEW) THEN
 DO 20 I=1,NSTREAMS
 WRITE(6,19950) I
 IF(STREAM(I,NC+1).EQ.0.0D0) GOTO 20
 DO 30 J=1,NC
 X(J)=STREAM(I,J)
 30 Y(J)=X(J)
 Y(J)=INT(STREAM(I,NC+5))
 TFED=STREAM(I,NC+2)
 CALL HEAT(0,IPHASE,NC,TFED,STREAM(I,NC+3),X,HX,STREAM(I,NC+4))
 CALL BUBDEW(NC,STREAM(I,NC+2),X,T,TBUB,TDEW,STREAM(I,NC+3),
 EPS,2)
 IF(TFED.LT.TBUB) THEN
 C ALL LIQUID
 IF(IPHASE.NE.1) THEN
 STREAM(I,NC+5)=1
 WRITE(1,20010) I
 WRITE(6,20010) I
 ENDIF
 GOTO 20
 ENDIF
 GOTO 20
 ENDIF

 IF(TFED.GT.TDEW) THEN
 C ALL VAPOR

...
IF(IPHASE.NE.2) THEN
 STREAM(1,NC+5)=2
 WRITE(1,20020) I
 WRITE(6,20020) I
ENDIF
GOTO 20
ENDIF

C MUST BE MIXED VAPOR AND LIQUID, ISSUE A WARNING, SET PHASE TO MIXED
WRITE(1,20030) I
WRITE(6,20030) I
STREAM(1,NC+5)=3.0

20 CONTINUE
ENDIF

C OPEN OPERATION CODE FILE
OPEN(2,FILE='STREAMI0.DAT')

C ZERO LOCAL ITERATION COUNTER
ICOUNT=1

C MAIN PROGRAM LOOP -- CONTINUE UNTIL CONVERGED OR ITER>IMAX
40 REWIND 2
NUNITS=0

C OPERATION CODE LOOP
50 READ(2,*) (OPCODE(I),I=1,30)

C QUIT IF ALL OPERATIONS HAVE BEEN PERFORMED
IF(OPCODE(1).LE.0.000) GOTO 15000
NUNITS=NUNITS+1

C SET CURRENT UNIT NUMBER INTO UNIT MATRIX (UNIT NUMBER CAN BE FRACTIONAL)
UNIT(NUNITS,1)=OPCODE(2)

C SHOW THAT AN OPERATION IS IN PROGRESS
WRITE(6,20000) ITER,OPCODE(2)

C SEND TO CORRECT UNIT OPERATION
 GOTO (100,200,300,400,500,600,700,800,900,1000,1100,1200,
 1 1300,1400,1500,1600,1700,1800,1900,2000,2100,2200,2300,2400,
 2 2500) INT(OPCODE(1))

C IF ERROR
 GOTO 10000

C**
C PERFORM PLATE ABSORBER CALCULATION
C FIRST ZERO THE FEED MATRICES
 100 DO 130 I=1,5
 DO 120 J=1,4
 120 FEED(I,J)=0.000
 DO 130 J=1,NC
 130 ZFEED(I,J)=0.000

C SET NUMBER OF STAGES AND PRESSURE
 NSTAGES=INT(OPCODE(3))
P=OPCODE(4)

C SET LIQUID VOLUME ON A TRAY, AVERAGE MOLAR LIQ. DENSITY, AND RATE CONSTANT
 VLIQ=OPCODE(5)
 RHOM=OPCODE(6)
 R2CONST=OPCODE(7)

C SET UP THE FEED MATRICES FOR NON-ZERO FEED STREAMS
 J=2
 DO 140 I=1,5
 J=J+2
 IF(OPCODE(J).EQ.0.000) GOTO 140

C SET INDEX FOR CURRENT FEED
 ICODE=INT(OPCODE(J+8))
C GET VALUES FOR STAGE#, FLOW, TEMP, AND ENTHALPY
 FEED(1,1)=OPCODE(J+9)
 FEED(1,2)=STREAM(ICODE,NC+1)
 FEED(1,3)=STREAM(ICODE,NC+2)
 FEED(1,4)=STREAM(ICODE,NC+4)
C SET ALL Z VALUES
 DO 140 K=1,NC
 ZFEED(I,K)=STREAM(ICODE,K)
 140 CONTINUE

C SET REBOILER DUTY, INTERSTAGE HEATER/COOLER VALUES, CONDENSER TEMP
C AND FRACTION SIDEDRAW (IF PRESENT)

 QR=OPCODE(20)
 QI(1,1)=OPCODE(22)
 QI(1,2)=OPCODE(21)
 QI(2,1)=OPCODE(24)
 QI(2,2)=OPCODE(23)
 TC=OPCODE(25)
 FS=OPCODE(26)

C CHECK FOR USE OF OLD PROFILE ON FIRST ITERATION
 IOFLAG=INT(OPCODE(28))

C CHECK FOR ALL ZERO ENTRY FLOWS
C IF NO FLOW IN GAS FEED AND NO FLOW IN ANY LIQUID FEED THEN ABORT
C THE CALCULATION
 DO 145 I=1,5
 IF(ABS(FEED(I,2)).LE.0.001) GOTO 147
 145 CONTINUE
 GOTO 99910

C SET NUMBER OF COMPONENTS FOR SUBROUTINE BASED ON MAX. NUMBER OF NON-ZERO
C ENTRIES FOR THE FEED MOLE FRACTIONS
C MAX NUMBER THAT THE SUBROUTINE CAN HANDLE IS 15
 NCSUB=0
DO 148 I=1,5
DO 148 IX=1,15
IF(ZFEED(I,IX).NE.0.0D0) THEN
 IF(NCSUB.LT.IX) THEN
 NCSUB=IX
 ENDIF
ENDIF
CONTINUE

WRITE(6,12457) NCSUB
12457 FORMAT(X,'NCSUB=',13)

C CALL THE ABSORBER ROUTINE
CALL ABSORBER(NSTAGES,NC,P,FEED,ZFEED,VLIQT,RHOM,R2CONST,
 1 QR,QI,TC,FS,STR01,STRO2,STRO3,IMAXS,NCSUB,_OPCODE(2),IOFLAG,ITER)

C SET RETURN VALUES INTO APPROPRIATE MATRIX
C SET INDEXES FOR VAPOR AND LIQUID RETURN
 IRET1=INT(OPCODE(18))
 IRET2=INT(OPCODE(19))
 DO 150 I=1,NC+5
 STREAM(IRET1,I)=STR01(I)
150 STREAM(IRET2,I)=STRO2(I)

C SET SIDEDRAW IF PRESENT
IF(FS.NE.0.0D0) THEN
 IRET3=INT(OPCODE(27))
 DO 152 I=1,NC+5
 STREAM(IRET3,I)=STRO3(I)
152 ENDIF

C JUMP TO ERROR CHECK ROUTINE
GOTO 10000
C**
C FSPLIT - SPLIT THE INLET STREAM BASED ON FLOW
C
C SET INLET STREAM
200 IN1=INT(OPCODE(3))

 DO 210 I=1,NC+5
210 STRI1(I)=STREAM(IN1,I)

C SET FLOW TO SEND TO OUTLET STREAM 1
FLOW=OPCODE(6)

C CHECK FOR ZERO FEED FLOW
 IF(STRI1(NC+1).EQ.0.000) GOTO 99910

C DO THE OPERATION
 CALL FSPLIT(NC,STRI1,STRO1,STRO2,FLOW)

C GET RETURN STREAMS
 IRET1=INT(OPCODE(4))
 IRET2=INT(OPCODE(5))

 DO 220 I=1,NC+5
 220 STREAM(IRET2,I)=STRO2(I)
 STREAM(IRET1,I)=STRO1(I)

C DO ERROR CHECKING
 GOTO 10000

C**
C ISENTHALPIC FLASH
C
C SET FEED STREAM
300 IN1=INT(OPCODE(3))

 DO 310 I=1,NC+5
310 STRF(I)=STREAM(IN1,I)
C CHECK FOR ZERO FEED FLOW
 IF(STRF(NC+1).EQ.0.0D0) GOTO 99910

C DO THE FLASH
 CALL PHFLASH(\nc,STRF,OPCODE(4),STRO1,STRO2,\neps,IPHASE,
 1 IMAXS,ERROR)

C TRANSFER RETURN VALUES TO STREAM MATRIX
 IRET1=INT(OPCODE(5))
 IRET2=INT(OPCODE(6))
 DO 320 I=1,NC+5
 STREAM(IRET1,I)=STRO1(I)
 320 STREAM(IRET2,I)=STRO2(I)

C DO ERROR CHECKING
 GOTO 10000

C**
C HEAT EXCHANGER
C
C SET INLET STREAM VALUES
 400 IN1=INT(OPCODE(3))
 400 IN2=INT(OPCODE(4))
 DO 410 I=1,NC+5
 STRI1(I)=STREAM(IN1,I)
 410 STRI2(I)=STREAM(IN2,I)

C SET UA
 UA=OPCODE(7)

C CHECK FOR ZERO FEED VALUES
C IF SO THEN PASS STREAMS THROUGH WITH NO HEAT EXCHANGE
 IF((STRI1(NC+1).EQ.0.0D0).OR.(STRI2(NC+1).EQ.0.0D0)) THEN
IRET1=INT(OPCODE(5))
IRET2=INT(OPCODE(6))
DO 415 I=1,NC+5
STREAM(IRET1,1)=STRI1(I)
415
STREAM(IRET2,1)=STRI2(I)
GOTO 99910
ENDIF

C CALL THE SUBROUTINE
CALL XCHG(NC,STRI1,STRI2,STRO1,STRO2,UA,EPS,IMAXS,ERROR)

C SAVE RETURN VALUES IN STREAM MATRIX
IRET1=INT(OPCODE(5))
IRET2=INT(OPCODE(6))

DO 420 I=1,NC+5
STREAM(IRET1,1)=STRO1(I)
420 STREAM(IRET2,1)=STRO2(I)

C DO ERROR CHECK
GOTO 10000

C***
C REBOILER
C
C SET VALUES FOR INLET STREAM
500 IN1=INT(OPCODE(3))

DO 510 I=1,NC+5
510 STR1(I)=STREAM(IN1,I)

C SET VALUE FOR PRESSURE
P=OPCODE(6)

C SET TEMPERATURE
TRB=OPCODE(7)
C CHECK FOR ZERO FEED FLOW
 IF(STRI1(NC+1).EQ.0.000) GOTO 99910

 CALL REBOIL(NC,STRI1,STRO1,STRO2,P,TORB,QIN,INAXS,eps,ERROR)

C SAVE RETURN STREAMS
 IRET1=INT(OPCODE(4))
 IRET2=INT(OPCODE(5))

 DO 520 I=1,NC+5
 STREAM(IRET2,I)=STRO2(I)
 520 STREAM(IRET1,I)=STRO1(I)

C SAVE THE HEAT REQUIREMENT
 UNIT(NUNITS,3)=QIN

C DO ERROR CHECK
 GOTO 10000

C***
C CONDENSER
C
C SET INLET STREAM
 IN1=INT(OPCODE(3))

 DO 610 I=1,NC+5
 610 STRI1(I)=STREAM(IN1,1)

C SET THE PRESSURE
 P=OPCODE(5)

C CHECK FOR ZERO FEED FLOW
 IF(STRI1(NC+1).EQ.0.000) GOTO 99910

C CALL THE ROUTINE
 CALL CONDENSE(NC,P,STRI1,STRO1,QOUT,eps,ERROR)
C SAVE RETURN STREAM
 IRET1=INT(OPCODE(4))
 DO 620 I=1,NC+5
620 STREAM(IRET1,I)=STRO1(I)
C SAVE HEAT REMOVAL REQUIREMENT
 UNIT(MUNITS,3)=00UT
C CHECK FOR ERRORS
 GOTO 10000
C**
C MIXER
C
C SET INLET STREAMS
700 IN1=INT(OPCODE(3))
 IN2=INT(OPCODE(4))
 DO 710 I=1,NC+5
 STRI1(I)=STREAM(IN1,I)
710 STRI2(I)=STREAM(IN2,I)
C SET PRESSURE
 P=OPCODE(6)
C CHECK FOR BOTH STREAMS WITH ZERO FLOW
 IF((STRI1(NC+1).EQ.0.000).AND.(STRI2(NC+1).EQ.0.000)) GOTO 99910
 CALL MIXER(NC,STRI1,STRI2,STRO1,P,IPHASE,EPS,ERROR)
C SAVE RETURN STREAM
 IRET1=INT(OPCODE(5))
 DO 720 I=1,NC+5
720 STREAM(IRET1,I)=STRO1(I)
C CHECK FOR ERRORS
GOTO 10000

C**
C SPLITTER
C
C GET INLET STREAM
800 IN1=INT(OPCODE(3))

DO 810 I=1,NC+5
810 STRI1(I)=STREAM(IN1,I)

C SET FRACTION OF FEED SENT TO OUTLET STREAM 1
FRAC1=OPCODE(6)

C CHECK FOR ZERO FEED FLOW
IF(STRI1(NC+1).EQ.0.000) GOTO 99910

C CALL THE SPLITTER ROUTINE
CALL SPLIT(NC,STRI1,STRO1,STRO2,FRAC1)

C SET RETURN STREAMS
IRET1=INT(OPCODE(4))
IRET2=INT(OPCODE(5))

DO 820 I=1,NC+5
820 STREAM(IRET1,I)=STRO1(I)
820 STREAM(IRET2,I)=STRO2(I)

C CHECK FOR ERRORS
GOTO 10000

C**
C PUMP
C
C GET INLET STREAM
900 IN1=INT(OPCODE(3))

 DO 910 I=1,NC+5
910 STRI1(I)=STREAM(IN1,I)

C SET OUTLET PRESSURE AND LIQUID DENSITY
 POUT=OPCODE(5)
 RHON=OPCODE(6)

C CHECK FOR ZERO FEED FLOW
 IF(STRI1(NC+1).EQ.0.0D0) GOTO 99910

 CALL PUMP(NC,STRI1,STRO1,POUT,RHON,POWER,IMAXS,EPS,ERROR)

C GET RETURN STREAM
 IRET1=INT(OPCODE(4))

 DO 920 I=1,NC+5
920 STREAM(IRET1,I)=STRO1(I)

C SAVE POWER REQUIREMENT
 UNIT(NUNITS,2)=POWER

C CHECK FOR ERROR
 GOTO 10000

C SET INLET STREAMS
C
C
1000 IN1=INT(OPCODE(3))
 IN2=INT(OPCODE(4))

 DO 1010 I=1,NC+5
1010 STRI1(I)=STREAM(IN1,I)
1010 STRI2(I)=STREAM(IN2,I)

C SET REACTOR PRESSURE, HEAT REMOVAL, FRACTION CONVERSION, AND RATE CONSTANT
 PREACT=OPCODE(6)
 QOUT=OPCODE(7)
 FRACT=OPCODE(8)
 RK2=OPCODE(9)

C CHECK FOR ZERO FEED FLOWS
 IF((STRI1(NC+1).EQ.0.0D0).AND.(STRI2(NC+1).EQ.0.0D0)) GOTO 99910

 CALL REACTOR(NC,STRI1,STRI2,PREACT,CQOUT,FRACT,RK2,VREACT,
 1 IPHASE,EPS,ERROR)

C GET EXIT STREAM VALUES
 IRET1=INT(OPCODE(5))

 DO 1020 I=1,NC+5
1020 STREAM(IRET1,I)=STRO1(I)

C SAVE EXIT HEAT REMOVAL FOR THIS UNIT
 UNIT(NUNITS,3)=QOUT

C SAVE UNIT VOLUME
 UNIT(NUNITS,4)=VREACT

C CHECK FOR ERRORS
 GOTO 10000

C**
C SULFUR SATURATOR
C
C SET INLET STREAM
1100 IN1=INT(OPCODE(3))

 DO 1110 I=1,NC+5
1110 STRI1(I)=STREAM(IN1,I)
C SET TEMPERATURE AND PRESSURE IN THE UNIT
TSOL=OPCODE(5)
PSOL=OPCODE(6)

C CHECK FOR ZERO FEED FLOW
IF(STRI1(NC+1).EQ.0.000) GOTO 99910

C CALL THE ROUTINE
CALL SULFSOL(NC,STRI1,STRO1,TSOL,PSOL,EPS,ERROR)

C GET THE RETURN STREAM
IRET1=INT(OPCODE(4))
DO 1120 I=1,NC+5
1120 STREAM(IRET1,I)=STRO1(I)

C CHECK FOR ERRORS
GOTO 10000

C SULFUR SETTLER

C GET INLET STREAM
1200 IN1=INT(OPCODE(3))
DO 1210 I=1,NC+5
1210 STRI1(I)=STREAM(IN1,I)

C SET WTX SULFUR IN SULFUR EFFLUENT
WTS=OPCODE(6)

C SET PRESSURE
PS=OPCODE(7)

C CHECK FOR ZERO FEED FLOW
IF(STR1(NC+1).EQ.0.O00) GOTO 99910

CALL SETTLER(NC,STR1,STRO1,STRO2,WTS,PS,EPS,ERROR)

C GET RETURN STREAMS
IRET1=INT(OPCODE(4))
IRET2=INT(OPCODE(5))

DO 1220 I=1,NC+5
STREAM(IRET1,I)=STRO1(I)
1220 STREAM(IRET2,I)=STRO2(I)

C CHECK ERRORS
GOTO 10000

C SULFUR WASHER
C
C SET INLET SULFUR AND WATER STREAMS
1300 IN1=INT(OPCODE(3))
IN2=INT(OPCODE(4))

DO 1310 I=1,NC+5
STR1(I)=STREAM(IN1,I)
1310 STR2(I)=STREAM(IN2,I)

C SET SULFUR FRACTION IN SULFUR STREAM AND SET PRESSURE
WTS=OPCODE(7)
PS=OPCODE(8)

C CHECK FOR ZERO FEED FLOWS
IF((STR1(NC+1).EQ.0.O00).AND.(STR2(NC+1).EQ.0.O00)) GOTO 99910

CALL WASHER(NC,STR1,STR2,STRO1,STRO2,PS,WTS,EPS,ERROR)

C GET RETURN WASH AND SULFUR STREAMS
IRET1=INT(OPCODE(5))
IRET2=INT(OPCODE(6))

DO 1320 I=1,NC+5
 STREAM(IRET1,I)=STRO1(I)
1320 STREAM(IRET2,I)=STRO2(I)

C CHECK FOR ERRORS
GOTO 10000

C**
C MELTER/DECANTER
C
C SET INLET STREAM
1400 IN1=INT(OPCODE(3))

 DO 1410 I=1,NC+5
1410 STRI1(I)=STREAM(IN1,I)

C SET MELT TEMPERATURE AND PRESSURE
 TMELT=OPCODE(6)
 PMELT=OPCODE(7)

C CHECK FOR ZERO FLOW IN FEED
 IF(STRI1(NC+1).EQ.0.000) GOTO 99910

 CALL MELTDEC(NC,STRI1,TMELT,PMELT,STRO1,STRO2,QIN,EPS,1,ERROR)

C GET RETURN STREAMS
IRET1=INT(OPCODE(4))
IRET2=INT(OPCODE(5))

 DO 1420 I=1,NC+5
1420 STREAM(IRET1,I)=STRO1(I)
 STREAM(IRET2,I)=STRO2(I)
C SAVE HEAT REQUIREMENT
 UNIT(NUUNITS,3)=QIN

C CHECK FOR ERRORS
 GOTO 10000

C***
C FURNACE
C
C SET INLET STREAMS
1500 IN1=INT(OPCODE(3))
 IN2=INT(OPCODE(4))
 IN3=INT(OPCODE(5))
 DO 1510 I=1,NC+5
 STRI1(I)=STREAM(IN1,I)
 STRI2(I)=STREAM(IN2,I)
 1510 STRI3(I)=STREAM(IN3,I)

C SET SO2 OUTLET REQUIREMENT
SO2REQ=OPCODE(6)

C SET EXIT TEMPERATURE AND PRESSURE
 TOUT=OPCODE(8)
 POUT=OPCODE(9)

 CALL FURNACE(NC,SO2REQ,STRI1,STRI2,STRI3,STRO1,TOUT,POUT,QOUT,
 EPS,ERROR)

C GET RETURN VALUES (INCLUDING THE MAIN SULFUR AND AIR STREAM FLOWS)
 IRET1=INT(OPCODE(7))

 DO 1520 I=1,NC+5
 STREAM(IN1,I)=STRI1(I)
 STREAM(IN3,I)=STRI3(I)
 1520 STREAM(IRET1,I)=STRO1(I)
C SAVE HEAT REMOVED
UNIT(MUNITS,3)=QOUT

C CHECK FOR ERRORS
GOTO 10000

C**
C COMPRESSOR
C
C SET INLET STREAM
1600 IN1=INT(OPCODE(3))

DO 1610 I=1,NC+5
1610 STR1(I)=STREAM(IN1,I)

C SET OUTLET PRESSURE
POUT=OPCODE(5)

C CHECK FOR ZERO FEED FLOW
IF(STRI1(NC+1).EQ.0.0D0) GOTO 99910

CALL COMPRESS(NC,STRI1,STRO1,POUT,POWER,IMAXS,EPS,ERROR)

C GET RETURN VALUES
IRET1=INT(OPCODE(4))

DO 1620 I=1,NC+5
1620 STREAM(IRET1,I)=STRO1(I)

C SAVE POWER INPUT REQUIRED
UNIT(MUNITS,2)=POWER

C CHECK FOR ERROR
GOTO 10000

C**
C SULFUR CENTRIFUGE
C
C SET INLET STREAMS
1700 IN1=INT(OPCODE(3))
 IN2=INT(OPCODE(4))
 DO 1710 I=1,NC+5
 STRI1(I)=STREAM(IN1,I)
 1710 STRI2(I)=STREAM(IN2,I)
C SET PRESSURE
 P=OPCODE(7)
C SET SULFUR WEIGHT PERCENTS IN SULFUR STREAMS IN CENTRIFUGE
 SP1=OPCODE(8)
 SP2=OPCODE(9)
C CHECK FOR STREAMS WITH ZERO FEED FLOW
 IF((STRI1(NC+1).EQ.0.00D0).OR.(STRI2(NC+1).EQ.0.00D0)) GOTO 99910
 CALL SULCEN1(NC,P,STRI1,STRI2,STRO1,STRO2,SP1,SP2,ERROR)
C GET RETURN VALUES FOR STREAMS
 IRET1=INT(OPCODE(5))
 IRET2=INT(OPCODE(6))
 DO 1720 I=1,NC+5
 STREAM(I,IRET1)=STRO1(I)
 1720 STREAM(I,IRET2)=STRO2(I)
C CHECK FOR ERROR AND DO NEXT COMMAND
 GOTO 10000

C**
C PARTIAL CONDENSER
C
C SET INLET STREAM
1800 IN1=INT(OPCODE(3))

DO 1810 I=1,NC+5
1810 STRI1(I)=STREAM(IN1,1)

C SET PRESSURE AND TEMPERATURE
PCOND=OPCODE(4)
TCOND=OPCODE(5)

C CHECK FOR ZERO FLOW FEED
IF(STRI1(NC+1).EQ.0.D0) GOTO 99910

CALL PARCOND(NC,STRI1,PCOND,TCOND,STRO1,STRO2,QCHG,EPS,
1 IMAXS,ERROR)

C GET RETURN STREAMS
IRET1=INT(OPCODE(6))
IRET2=INT(OPCODE(7))

DO 1820 I=1,NC+5
STREAM(IRET1,1)=STRO1(I)
1820 STREAM(IRET2,1)=STRO2(I)

C SAVE HEAT REMOVAL REQUIREMENT
UNIT(NUNITS,3)=QCHG

C CHECK FOR ERROR AND DO NEXT OPERATION
GOTO 10000

C***
CHEATER
C
C SET INLET STREAM
1900 IN1=INT(OPCODE(3))
DO 1910 I=1,NC+5
1910 STR1(I)=STREAM(IN1,1)

C SET HEAT ADDED
QIN=OPCODE(5)

C CHECK FOR ZERO FLOW INLET STREAM
IF(STR1(NC+1).EQ.0.00D0) GOTO 99910

CALL HEATER(NC,STR1,STR01,QIN,EPS,ERROR)

C GET RETURN STREAM
IRET1=INT(OPCODE(4))

DO 1920 I=1,NC+5
1920 STREAM(IRET1,1)=STR01(I)

C DO ERROR CHECKING
GOTO 10000

C***
C MAKUP/STORAGE TANK
C FLOW OF COMPONENT I IS SET, OTHER FLOWS ARE SCALED WHILE
C MAINTAINING THE SAME COMPOSITION
C
C SET INLET STREAM
2000 IN1=INT(OPCODE(3))

DO 2010 I=1,NC+5
2010 STR1(I)=STREAM(IN1,1)

C SET FLOW AND COMPONENT NUMBER FOR FIXED FLOW COMPONENT
FLOW0=OPCODE(5)
ICOMP=INT(OPCODE(6))
TOUT=OPCODE(7)
CALL STORAGE(NC,STRI1,STR01,FLOW10,ICOMP,TOUT)

C GET RETURN STREAM
IRET1=INT(OPCODE(4))

DO 2020 I=1,NC+5
2020 STREAM(IRET1,1)=STR01(1)

C DO ERROR CHECKING
GOTO 10000

C***
C CRYSTALLIZER
C SET INLET STREAM
2100 IN1=INT(OPCODE(3))

DO 2110 I=1,NC+5
2110 STRI1(I)=STREAM(IN1,1)

C CHECK FOR ZERO FLOW INLET STREAM
IF(STRI1(NC+1).EQ.0.000) GOTO 99910

CALL CRYSTAL(NC,STRI1,STR01,EPS,ERROR)

C GET RETURN STREAM
IRET1=INT(OPCODE(4))

DO 2120 I=1,NC+5
2120 STREAM(IRET1,1)=STR01(1)

C DO ERROR CHECKING
GOTO 10000

C***
C SULFUR SPLITTER
C SET INLET STREAM
2200 IN1=INT(OPCODE(3))
DO 2210 I=1,NC+5
2210 STR1(I)=STREAM(IN1,1)

C SET FRACTION OF SOLUTION TO TRANSFER TO EXIT STREAM 1 (ALL THE SULFUR C GOES TO EXIT STREAM 1)

FRACT1=OPCODE(6)

C CHECK FOR ZERO FEED FLOW
IF(STRI1(NC+1).EQ.0.000) GOTO 99910

CALL SPLIT(NC,STR1,STRO1,STRO2,FRACT1)

C GET RETURN STREAMS
IRET1=INT(OPCODE(4))
IRET2=INT(OPCODE(5))

DO 2220 I=1,NC+5
STREAM(IRET2,1)=STRO2(I)
2220 STREAM(IRET1,1)=STRO1(I)

C DO ERROR CHECKING
GOTO 10000

C MAKEUP = WITH FIXED FLOW OF ONE COMPONENT -- OTHER FLOWS UNCHANGED
C
C SET INLET STREAM
2300 IN1=INT(OPCODE(3))

DO 2310 I=1,NC+5
2310 STR1(I)=STREAM(IN1,1)

C SET FLOW AND COMPONENT NUMBER FOR FIXED FLOW COMPONENT
FLOWIO=OPCODE(5)
ICOMP=INT(OPCODE(6))
CALL MAKEUP(NC,STRI1,STRO1, FLOW1O, ICOMP, IMAXS, EPS, ERROR)

C GET RETURN STREAM
IRET1 = INT(OPCODE(4))

DO 2320 I = 1, NC + 5
2320 STREAM(IRET1, I) = STR01(I)

C DO ERROR CHECKING
GOTO 10000

C**
C TSET - SET TEMPERATURE OF A STREAM AND CALCULATE THE ENTHALPY CHANGE
C C
C SET INLET STREAM
2400 INT = INT(OPCODE(3))

DO 2410 I = 1, NC + 5
2410 STRI1(I) = STREAM(IN1, I)

C CHECK FOR ZERO FLOW IN FEED
IF (STRI1(NC + 1).EQ. 0.00) GOTO 99910

C GET DESIRED TEMPERATURE
T = OPCODE(5)

C DO THE OPERATION
CALL TSET(NC, STRI1, STRO1, T, QCHG, IMAXS, EPS, ERROR)

C GET RETURN STREAM
IRET1 = INT(OPCODE(4))

DO 2420 I = 1, NC + 5
2420 STREAM(IRET1, I) = STR01(I)

C SAVE HEAT CHANGE REQUIREMENT
UNIT(NUNITS,3)=QCNG

C DO ERROR CHECKING
 GOTO 10000

C**
C HCSPLIT - SPLIT HYDROCARBONS FROM A STREAM
C
C SET INLET STREAM
2500 IN1=INT(OPCODE(3))

 DO 2510 I=1,NC+5
2510 STRI1(I)=STREAM(IN1,I)
C CHECK FOR ZERO INLET FLOW
 IF(STRI1(NC+1).EQ.0.DO) GOTO 99910
C PERFORM THE SPLIT
 CALL HCSPLIT(NC,STRI1,STRO1,STRO2)
C GET RETURNED STREAMS
 IRET1=INT(OPCODE(4))
 IRET2=INT(OPCODE(5))

 DO 2520 I=1,NC+5
 STREAM(IRET1,I)=STRO1(I)
2520 STREAM(IRET2,I)=STRO2(I)
C PERFORM ERROR CHECKING
 GOTO 10000

C**
C UNIT NOT EXECUTED DUE TO ZERO FLOW IN ONE OR MORE INLET FEEDS
C FLAG THE ERROR FOR THE OPERATOR
99910 ERROR=10

C **
C Bottom of Operation Code Loop
C Check for an error on the present operation
C
C Check for Convergence Errors

10000 IF(ERROR.EQ.1) THEN
 WRITE(6,20100) OPCODE(2)
 WRITE(1,20100) OPCODE(2)
 ENDIF

C Check for Mixed Vapor and Liquid Stream
IF(ERROR.EQ.2) THEN
 WRITE(6,20200) OPCODE(2)
 WRITE(1,20200) OPCODE(2)
 ENDIF

C Check for Single Phase Stream Return from a Flash Calculation
IF(ERROR.EQ.3) THEN
 WRITE(6,20300) OPCODE(2)
 WRITE(1,20300) OPCODE(2)
 ENDIF

C Check for Unit Not Executed Error
IF(ERROR.EQ.10) THEN
 WRITE(6,20325) OPCODE(2)
 WRITE(1,20325) OPCODE(2)
 ENDIF

C Clear Error
ERROR=0

C Go on to Next Unit Operation
WRITE(6,90000)
90000 FORMAT('NOW LEAVING ERROR CHECKER')
GOTO 50

C***
C BOTTOM OF MAIN PROGRAM LOOP
C CHECK FOR CONVERGENCE

15000 ITER=ITER+1
ICWEGS=ICWEGS+1
ICOUNT=ICOUNT+1
WRITE(6,25020) ITER
WRITE(1,25020) ITER
25020 FORMAT(' NOW INCREASING THE ITERATION COUNT, ITER=',13)

C CHECK CONVERGENCE ON ALL STREAMS MOLE FRACTIONS, FLOW, AND TEMPERATURE
DO 15100 I=1,NSUBS
DO 15100 J=1,NC+3
IF(STREAM(I,J).LT.1.0D-8) GOTO 15100
IF(DABS(STREAM(I,J)-STROD(I,J))/STREAM(I,J)).GT.EPSILON) THEN
GOTO 15200
ENDIF
15100 CONTINUE

C FELL THROUGH LOOP, MUST BE CONVERGED
GOTO 15500

C NOT CONVERGED, SET UP NEXT ITERATION
C PRINT CURRENT RESULTS
C SHOW USER WHICH STREAM VARIABLE IS NOT CONVERGED
15200 WRITE(6,20515) I,J
WRITE(1,20515) I,J

C PRINT CURRENT RESULTS ON FIRST ITERATION AND EVERY FIFTH THEREAFTER
IREM = MOD(ITER,5)
IF(IREM.EQ.0).OR.(ITER.EQ.1)) THEN

C WRITE(6,20500)
WRITE(1,20500)
DO 15205 I=1,NSTREAMS
C WRITE(6,20510) 1,(STREAM(I,J),J=1,NC+5)
15205 WRITE(1,20510) 1,(STREAM(I,J),J=1,NC+5)
ENDIF

C SAVE ALL STREAM VARIABLES
IF(ITER.LT.IMAX) THEN
 DO 15210 I=1,NSTREAMS
 DO 15210 J=1,NC+3
 STROLD(I,J)=STREAM(I,J)
15210
C SAVE COMPONENT FLOWS FOR WEGSTEIN ACCELERATION
IF((_ITER.EQ.2).OR.(ICWEGS.EQ.2)) THEN
 DO 15215 I=1,NSTREAMS
 DO 15215 J=1,NC
 FLOW(I,J,1)=STREAM(I,J)*STREAM(I,NC+1)
15215
ENDIF

IF((ITER.EQ.3).OR.(ICWEGS.EQ.3)) THEN
 DO 15220 I=1,NSTREAMS
 DO 15220 J=1,NC
 FLOW(I,J,2)=STREAM(I,J)*STREAM(I,NC+1)
15220
ENDIF

C AT THE END OF THE THIRD AND SUBSEQUENT ITERATIONS WEGSTEIN
C ACCELERATION IS APPLIED TO ALL OF THE COMPONENT FLOWS
C THIS IS ACCOMPLISHED BY:
C \[x_{k+1} = q x_k + (1-q) x_{k+1} \]
C \[q = (x_{k+1} - x_k)/(x_{k+1} - 2x_k + x_{k-1}) \]
C WHERE:
C THE SUBSCRIPT INDICATES THE ITERATION NUMBER
C A SUPERSCRIPT ' INDICATES A VALUE OBTAINED FROM A DIRECT SUBSTITUTION
C CALCULATION OVER THE FLOWSHEET
C
C ACCELERATION GENERALLY PRODUCES CONVERGENCE WHEN Q<0.5
C ON ENTRY TO THE ACCELERATOR ROUTINES
C FLOW(I,J,1) = X_k-1 (VALUE OBTAINED FROM THE K-1 TH ITERATION) (XP1)
C FLOW(I,J,2) = X_k (VALUE OBTAINED FROM THE K TH ITERATION) (XP1)
C FLOW(I,J,3) = X_k (INPUT VALUE TO THE K TH ITERATION) (X1)
C STREAM(I,J) = X_{K+1} (VALUE OUTPUT FROM THE K+1 TH OR CURRENT ITERATION) (XPP1)
C
C CONVERT STREAM MOLE FRACTIONS TO COMPONENT FLOWS (THIS SIMPLIFIES THE
C WEGSTEIN CALCULATIONS AND IS NEEDED FOR RE-NORMALIZATION AFTER ACCELERATION)
C DO 15225 I=1,NSTREAMS
C DO 15225 J=1,NC
15225 STREAM(I,J)=STREAM(I,J)*STREAM(I,NC+1)
C
C PERFORM ACCELERATION

IF((ITER.GE.4).OR.(ICWEGS.GE.4)) THEN
 DO 15230 I=1,NSTREAMS
 DO 15230 J=1,NC
 X1=FLOW(I,J,3)
 IF((ITER.EQ.4).OR.(ICWEGS.EQ.4)) THEN
 X1=FLOW(I,J,2)
 ENDIF
 XP1=FLOW(I,J,2)
 XPP1=STREAM(I,J)
 DNOMO=XPP1-2.0*XP1+XPM1
 IF(DNOMO.LT.1.0-10) GOTO 15235
 Q=(XPP1-XP1)/DNOMO
 IF(Q.GT.0.500) GOTO 15235
STREAM(I,J)=Q*X1+(1.00-Q)*XPP1
IF(STREAM(I,J).LT.0.00) THEN
 STREAM(I,J)=STROLD(I,J)*STROLD(I,NC+1)
ENDIF
FLOW(I,J,1)=XP1
FLOW(I,J,2)=XPP1
FLOW(I,J,3)=STREAM(I,J)
CONTINUE

C CONVERT WEGSTEIN COMPONENT FLOW UPDATES BACK INTO MOLE FRACTIONS
C RECALCULATE TOTAL FLOW
DO 15221 I=1,NSTREAMS
 STREAM(I,NC+1)=0.00D0
 DO 15221 J=1,NC
 STREAM(I,NC+1)=STREAM(I,NC+1)+STREAM(I,J)
15221
DO 15222 I=1,NSTREAMS
 IF(STREAM(I,NC+1).EQ.0.00) GOTO 15222
 DO 15222 J=1,NC
 STREAM(I,J)=STREAM(I,J)/STREAM(I,NC+1)
15222
CONTINUE

C CHECK FOR ITERATION COUNT STOP CODE, I.E. OPCODE(1)=-N.0
15219 IF((OPCODE(1).LT.0.000).AND.((ABS(INT(OPCODE(1))).LE.ITER))
 GOTO 15500
ENDFILE(1)
BACKSPACE(1)

C CHECK FOR MAXIMUM ITERATION FOR THIS INVOCATION OF BERKSULF
 IF((ICOUNT.GT.ICMAX).AND.(ITER.LT.IMAX)) THEN
C CLOSE THE NORMAL OUTPUT FILE
 CLOSE(1)
C SET END OF FILE MARKER FOR STREAMS
 STREAM(NSTREAMS+1,NC+1) = -1.0D0
C OPEN THE TEMPORARY STORAGE FILE AND WRITE OUT THE STREAMS DATA
 OPEN(4,FILE='STREAMS.TMP')
 WRITE(4,*) ITER
 DO 15300 I = 1, NSTREAMS + 1
 WRITE(4,20505) (STREAM(I,J), J = 1, NC)
 15300 WRITE(4,20507) (STREAM(I,J), J = NC+1, NC+5)
 CLOSE(4)
C SAVE THE ACCELERATION ARRAY
 OPEN(9,FILE='WEGST')
 DO 15310 I = 1, NSTREAMS
 DO 15310 J = 1, NC
 WRITE(9,*) (FLOW(I,J,K), K = 1, 3)
 15310 CLOSE(9)
 STOP
ENDIF
IF(ITER.LT.IMAX) GOTO 40
C SHOW THAT IT DID NOT CONVERGE
 WRITE(6,20400)
 WRITE(1,20400)
C ALL DONE, CONVERGED OR NOT
C PRINT ALL THE RESULTS
C PRINT OUT ALL THE STREAMS
C ALSO SAVE DATA IN A DISK FILE
 OPEN(3,FILE='UNITOUT.DAT')
 WRITE(6,20500)
 WRITE(1,20500)
DO 15510 I=1,NSTREAMS
WRITE(1,20510) I,(STREAM(I,J),J=1,NC+5)
15510 WRITE(6,20510) I,(STREAM(I,J),J=1,NC+5)

DO 15515 I=1,NSTREAMS
15515 WRITE(1,20525) I,(STREAM(I,NC+1)·STROLD(I,NC+1))
WRITE(1,20520) ITER
WRITE(6,20520) ITER

C PRINT OUT THE POWER AND HEAT VALUES ASSOCIATED WITH UNIT OPERATIONS
WRITE(6,20600)
WRITE(3,20600)
DO 15520 I=1,NUNITS
WRITE(3,20610) (UNIT(I,J),J=1,4)
15520 WRITE(6,20610) (UNIT(I,J),J=1,4)

CLOSE(1)
CLOSE(3)

C WRITE OUT THE FINAL STREAMS VALUES IN CASE WE WISH TO USE THEM
C AGAIN
C ALSO DELETE TMP FILE
OPEN(4,FILE='STREAMS.TMP')
CLOSE(4,STATUS='DELETE')

C GET RID OF EXISTING FILE
OPEN(4,FILE='STREAMS.OLD')
CLOSE(4,STATUS='DELETE')
OPEN(4,FILE='STREAMS.OLD')

C SET UP PHONY ITERATION COUNT AND SAVE THE STREAMS VALUES
ITER=1
WRITE(4,*) ITER
DO 15600 I=1,NSTREAMS+1
WRITE(4,20505) (STREAM(I,J),J=1,NC)
15600 WRITE(4,20507) (STREAM(I,J),J=NC+1,NC+5)
CLOSE(4)

C ABORT BERKRUN
 CALL BERKSTOP

STOP

C VARIOUS FORMAT STATEMENTS
19950 FORMAT(X,'NOW INITIALIZING STREAM NUMBER ',12)
20000 FORMAT(1X,'FLOWSHEET ITERATION = ',13,' OPERATION NOW = ',1F5.2)
20010 FORMAT(X,'ERROR! STREAM ',13,' SHOULD BE LIQUID')
20020 FORMAT(X,'ERROR! STREAM ',13,' SHOULD BE A VAPOR')
20030 FORMAT(X,'WARNING! STREAM ',13,' CONTAINS BOTH VAPOR AND LIQUID')
20100 FORMAT(X,'ERROR! NON-CONVERGENCE ON UNIT ',F10.2)
20200 FORMAT(X,'WARNING! MIXED LIQUID AND VAPOR STREAM RETURNED BY UNIT ',F10.2)
20300 FORMAT(X,'WARNING! SINGLE PHASE RETURNED BY A FLASH CALCULATION ON UNIT ',F10.2)
20325 FORMAT(X,'WARNING! OPERATION NOT PERFORMED DUE TO ZERO FEED ON UNIT ',F10.2)
20400 FORMAT(1X,'THE SIMULATION DID NOT CONVERGE')
20500 FORMAT(1X,'STREAM=',13,' DELTA FLOW=',D20.10)
20505 FORMAT(1X,20(D11.6,X))
20507 FORMAT(1X,5(D20.10,X))
20510 FORMAT(1X,13,23(D9.4,X),D15.9,X,F4.1)
20515 FORMAT(X,'NOT CONVERGED, STREAM=',13,' VARIABLE=',13)
20520 FORMAT(X,'iteration COUNT=',13)
20525 FORMAT(X,'STREAM=',13,' DELTA FLOW=',D20.10)
20560 FORMAT(X,'UNIT=',17X,'POWER=',24X,'HEAT=',24X,'SIZE')
20600 FORMAT(X,'UNIT=',17X,'POWER=',24X,'HEAT=',24X,'SIZE')
20610 FORMAT(X,'UNIT=',17X,'POWER=',24X,'HEAT=',24X,'SIZE')
;BERKSTOP
;
;FORTRAN CALLABLE SUBROUTINE TO ABORT THE PROCESS BERKRUN.CMD
;THIS ROUTINE IS CALLED WHEN BERKSULF HAS CONVERGED
;IT STOPS THE REPEATED INVOCATIONS BY BERKRUN
;
; LAST UPDATE: 04/21/86
;
; WRITTEN IN DRI RASM86 VER 1.2
;
;EQUATES
CCPM EQU 224 ;SYSTEM CALL ENTRY
P_PDADR EQU 156 ;GET PD ADDRESS
ABORT EQU 157 ;ABORT SPECIFIED PROCESS
P_CNS EQU BYTE PTR 20H ;CONSOLE NUMBER IN PD

CSEG
PUBLIC BERKSTOP

BERKSTOP:
PUSH DS
PUSH ES
MOV AX,SEG APB ;POINT TO ABORT PARAMETER BLOCK
MOV DS,AX ;SEGMENT
MOV CX,P_PDADR ;GET THE PD ADDRESS OF BERKSULF
INT CCPM
MOV BX,AX
MOV BL,ES:P_CNS[BX] ;LOOK UP CURRENT CONSOLE NUMBER
MOV CNS,BL ;SAVE IT IN BLOCK
MOV CL,ABORT ;ABORT BERKRUN
MOV DX,OFFSET APB
INT CCPM
POP ES
POP DS
RETF ;RETURN TO BERKSULF
SUBROUTINE ABSORBER(NSTAGE,NCOMP,P,FEED,ZFEED,VLLIQ,R2CONST,QR,QI,TC,FS,STVAP,STLIQ,STLIQC,IMAX,NCSUB,UNIT,10FLAG,ITKEY)

C LAST UPDATE: 6/10/86

C**
C THIS ROUTINE PERFORMS STAGE TO STAGE CALCULATIONS FOR ABSORBERS
C STRIPPERS, AND DISTILLATION COLUMNS
C
C MAJOR VARIABLES:
C
C FEED = STAGE #, FLOW, AND ENTHALPY OF THE FEEDS TO THE
C COLUMN (MAX. NO. OF FEEDS = 5) FROM THE MAIN PROGRAM
C ZFEED = FEED COMPOSITION
C
C VARIABLES USED IN NEWTON-RAPHSON STAGE TO STAGE CALCULATIONS:
C F = FLOW AND ENTHALPY OF FEED TO EACH STAGE
C ZF = COMPOSITION OF FEED TO EACH STAGE
C T = TEMPERATURE ON STAGE J
C V = VAPOR FLOW FROM STAGE J
C L = LIQUID FLOW FROM STAGE J
C X = LIQUID PHASE COMPOSITION ON STAGE J
C Y = VAPOR PHASE COMPOSITION ON STAGE J
C K = EQUILIBRIUM CONSTANTS FOR STAGE J
C HL = LIQUID MOLAR ENTHALPIES FOR STAGE J
C HV = VAPOR MOLAR ENTHALPIES FOR STAGE J
C DXDT = DERIVATIVES OF K WITH RESPECT TO T
C DHLDT = DERIVS. OF HL WITH RESPECT TO T
C DHVDT = DERIVS. OF HV WITH RESPECT TO T
C R = MOLAR EXTENT OF REACTION
C (=K2*CSO2*CH2S AT EXIT CONDITIONS)
C QH = HEAT ADDED OR REMOVED ON STAGE J
C RS = SIDE DRAW ON STAGE J
C XH2SRXN = EXIT H2S MOLE FRACTION ON A STAGE
C XS02RXN = EXIT SO2 MOLE FRACTION ON A STAGE
C (THESE LAST TWO ARE USED IN THE REACTION SOLVER)
C

C NOTES: ALTHOUGH THE MAIN PROGRAM SUPPORTS 20 COMPONENTS,
C THE MAXIMUM HANDLED BY THIS SUBROUTINE IS 15. IF COMPONENTS
C 16-20 ARE TO BE CONSIDERED IN THE CALCULATIONS THIS CODE WILL
C NEED TO BE CHANGED. HOWEVER, THE NUMBER OF STAGES WILL HAVE
C TO BE REDUCED IN ORDER TO KEEP THE MAXIMUM NUMBER OF VARIABLES
C IN EBND TO 8000 (SEE BAND)
C

IMPLICIT REAL*8 (A-H,O-Z)

REAL*8 FEED(5,4),ZFEED(5,20),F(23,3),ZF(23,15)
REAL*8 T(23),Y(23),L(23),X(23,15),Y(23,15)
REAL*8 K(23,15),NL(23,15),HV(23,15)
REAL*8 DHDT(23,15),DHLDT(23,15)
REAL*8 DHDT(23,15),R(23)
REAL*8 XH2SRXN(23),XS02RXN(23)

C THE FOLLOWING ARRAYS ARE USED FOR INITIALIZING ALL STAGE VARIABLES
REAL*8 KEQ(20),DKEQDT(20),HLIQ(20),HVAP(20)
REAL*8 DHLIQDT(20),DHVAPDT(20),XTEMP(20)
REAL*8 YTEMP(20),FLTEMP,FT(20)

C THE FOLLOWING ARE USED IN THE THOMAS CALCULATION
REAL*8 W(23),O(23),Q(23),AB(23,15),BB(23,15),DB(23,15)
REAL*8 STVAP(25),STLIQ(25),STLIQC(25)
REAL*8 QH(23),RS(23)
REAL*8 Q1(2,2)
REAL*8 ABND(18,18),BBND(18,18),CBND(18,25),DBND(18,37)
REAL*8 GBN(18),XBN(18,18),YBN(18,18)
CHARACTER*11 FNAME, PNAME

INTEGER*2 ALPHA(20)

COMMON/ALPHA/ALPHA

COMMON/BND/ABND, BBND, CBND, DBND, GBND, XBND, YBND,

1 NVAR, NJ

EXTERNAL SULFUR

C SHOW NO ERROR ON DISK IO

IOERR=0

C SET UP AND OPEN OUTPUT FILES FOR THIS CALCULATION
C ABSORBWX.YZ IS A HUMAN READABLE PRINTOUT OF THE RESULTS OF
C THE CURRENT CALCULATION
C PROFILEWX.YZ IS A COMPRESSED FORM OF THE SAME TO BE USED AS
C A SET OF GUESSES FOR THIS UNIT ON THE NEXT ITERATION OF
C THE FLOWSHEET

11=INT(UNIT/10.0D)
12=INT(UNIT-11*10.0D)
13=INT(10.0D*(UNIT-11*10.0D-12))
14=INT(100.0D*(UNIT-11*10.0D-12-FLOAT(13)/10.0D))
FNAME='ABSORB'//CHAR(11+48)//CHAR(12+48)///'.'
1 //CHAR(13+48)//CHAR(14+48)
FNAME='PROFILE'//CHAR(11+48)//CHAR(12+48)///'.'
1 //CHAR(13+48)//CHAR(14+48)

OPEN(10,FILE=FNAME)
CLOSE(10,STATUS='DELETE')

OPEN(10,FILE=FNAME)

C SHOW ENTRY PARAMETERS
WRITE(93456) ITKEY,NCSUB
93456 FORMAT(X,'ITKEY=',I5,','NCSUB=',I5)

WRITE(10,50000) R2CONST,VLIGT,RHOM
50000 FORMAT('K2=',F6.1,'VTRAY=',F6.4,'RHOM=',F5.2)

WRITE(10,50001) QR,TC,FS
WRITE(6,50001) QR,TC,FS
50001 FORMAT(X,'QR=',D12.5,'TC=',F6.2,'FS=',F5.3)

IMAXA=100

C INITIALIZE THE RETURN VALUE MATRICES
DO 10 I=1,NCOMP+3
 STVAP(I)=0.000
 STLIO(I)=0.000
10 STLIQC(I)=0.000

C SET UP INTERSTAGE COOLER/HEATER VALUES AND SIDEDRAW FRACTIONS
DO 15 I=1,NSTAGE
 QH(I)=0.000
15 RS(I)=1.000

C FIND INTERSTAGE COOLERS/HEATERS IN USE AND FILL THEM IN
C THE MATRIX QI CONTAINS STAGE#, HEAT REMOVED FOR EACH
C INTERCOOLER/HEATER IN USE
DO 20 I=1,2
 ISTGE=INT(QI(I,1))
C CHECK FOR ILLEGAL OR NON-EXISTENT STAGE
 IF(ISTGE.EQ.0).OR.(ISTGE.GT.NSTAGE) GOTO 20
 QH(ISTGE)=QI(I,2)
20 CONTINUE

C REBOILER
 QH(1)=QR

C SIDEDRAW AT CONDENSER
RS(NSTAGE)=1.00-FS

C SET MAXIMUM NUMBER OF COMPONENTS FOR SUBROUTINE
 NCOMPOLD=NCOMP
 NCOMP=NCSUB

C SET NUMBER OF VARIABLES AND NUMBER OF INCREMENTS FOR BAND
 NVAR=NCOMP+3
 NJ=NSTAGE

C NOTE THAT THIS PROGRAM DOES THE CALCULATION FROM THE BOTTOM UP
C I.E. J=1 IS AT THE VAPOR INLET OF THE COLUMN

C SET FEED VALUES FOR ALL STAGES. USE MATRIX FEED TO DETERMINE
C WHICH STAGES ARE TO HAVE FEEDS. IF FOR A GIVEN I THE VALUE OF
C FEED(I,2) IS NON-ZERO THEN THE STAGE NUMBER IS GIVEN BY FEED(I,1).
C THE COMPOSITION OF THE FEED IS GIVEN IN ZFEED(I,IX).
C THE FORM OF THE FEED MATRIX IS FEED# BY STAGE,FLOW,TEMP,ENTHALPY
C THE FORM OF THE ZFEED MATRIX IS FEED# BY NCOMPONENTS
C ALL THE FEEDS EXCEPT THE VAPOR ON TRAY 1 ARE ASSUMED TO BE LIQUIDS

C ZERO THE FEED MATRICES
 DO 190 I=1,NSTAGE
 DO 180 J=1,3
180 F(I,J)=0.000
 DO 190 J=1,NCOMP
190 ZF(I,J)=0.000

C FIND FEEDS ACTUALLY IN USE AND SET INTO FEED MATRICES
 DO 200 J=1,5
 IF (FEED(J,2).EQ.0) GOTO 200
C FOUND A FEED. TRANSFER ITS CONTENTS TO THE APPROPRIATE SPOT
C IN THE F MATRIX FOR THE COLUMN
ISTAGE=INT(FEED(J,1))
DO 210 I=2,L
210 F(ISTAGE,I-1)=FEED(J,I)
DO 220 I=1,NCOMP
220 ZF(ISTAGE,I)=ZFEE(J,I)
200 CONTINUE

C WRITE OUT THE CURRENT FEEDS AND LOCATIONS
DO 50010 I=1,NSTAGE
WRITE(10,50020) (F(I,JK),JK=1,3)
50010 WRITE(6,50020) (F(I,JK),JK=1,3)
50020 FORMAT(X,'F(FLOW)= ',D12.5,' F(TEMP)= ',F6.2,
1 ' F(ENTHALPY)= ',D12.5)

C• FOR FIRST TIME THROUGH THE FLOWSHEET
C• SET INITIAL GUESSES FOR ALL T, V, L, AND X'S
C• SET ALL T'S TO AVERAGE OF ENTERING LIQUID T'S
C• SET ALL V'S TO ENTERING VAPOR FEED (ABSORPTION) OR L AT BOTTOM (DISTILLATION)
C• SET ALL L'S TO ENTERING LIQUID PLUS FEEDS
C• SET ALL X'S TO THOSE IN THE ENTERING LIQUID CORRECTING FOR ANY SIDE FEEDS

C• ON SUBSEQUENT TRIPS THROUGH A FLOWSHEET USE THE PROFILE OBTAINED IN
C• THE PREVIOUS ITERATION FOR THE INITIAL GUESSES

270 CONTINUE

IF(IOERR.NE.0) THEN

C• ZERO TEMPORARY FLOW VALUES FOR EACH COMPONENT AND THE MAIN LIQUID STREAM

FTEMP=0.000
DO 280 IX=1,NCOMP
280 FT(IX)=0.000

C• ITERATE FROM THE TOP DOWN
DO 300 J=NSTAGE,2,-1
 V(J)=F(1,1)
 L(J)=FLTEMP+F(J,1)
 FLTEMP=L(J)
 DO 300 IX=1,NCOMP
C- UPDATE COMPONENT FLOWS
 FT(IX)=FT(IX)+F(J,1)*ZF(J,IX)
 X(J,IX)=FT(IX)/FLTEMP
 300 Y(J,IX)=ZF(1,IX)

C-SET VALUES FOR STAGE 1, ADD A SMALL AMOUNT OF THE VAPOR TO THE LIQUID STREAM
V(1)=F(1,1)
L(1)=L(2)+0.1DO*F(1,1)
DO 302 IX=1,NCOMP
 FT(IX)=FT(IX)+0.1DO*F(1,1)*ZF(1,IX)
 X(1,IX)=FT(IX)/L(1)
 302 Y(1,IX)=Y(2,IX)

C-SET TEMPERATURE PROFILES BASED ON FEED TEMPS (ASSUME EQUAL HEAT CAPACITIES)
T(NSTAGE)=F(NSTAGE,2)
DO 303 J=NSTAGE-1,1,-1
 T(J)=(L(J+1)*T(J+1)+F(J,1)*F(J,2))/(L(J+1)+F(J,1))
 303

C-MODIFY GUESSES FOR A DISTILLATION COLUMN
C-SET ALL VAPOR FLOWS -- ASSUME TOTAL REBOILER
 IF(F(1,1).EQ.0.DO) THEN
 DO 304 J=1,NSTAGE
 V(J)=L(J)
 304 Y(J,IX)=X(1,IX)
 ENDIF
C-SET LIQUID FLOWS AND TEMPS FOR STAGES ABOVE THE FEED
C-PROPAGATE THE FLOWS UP THE COLUMN -- ASSUME INFINITE REFLUX
 IF(F(NSTAGE,1).EQ.0.DO) THEN

DO 305 J=1,NSTAGE
 IF(L(J).NE.0.0) GOTO 305
 L(J)=V(NSTAGE)
 DO 305 IX=1,NCOMP
 X(J,IX)=Y(NSTAGE,IX)
305 CONTINUE

C-FIX TEMPERATURE PROFILE
 T(NSTAGE)=F(NSTAGE,2)
 DO 306 J=NSTAGE-1,1,-1
 IF(T(J+1).EQ.0.000) THEN
 T(J)=F(J,2)
 ELSE
 T(J)=(L(J+1)*T(J+1)+F(J,1)*F(J,2))/(L(J+1)+F(J,1))
 ENDIF
306 CONTINUE
 DO 307 J=2,NSTAGE
 IF(T(J).NE.0.000) GOTO 307
 T(J)=T(J-1)
307 CONTINUE
ENDIF

ELSE
 C-READ PROFILE FROM PREVIOUS TRIP THROUGH THE FLOWSHEET AS GUESSES
 C-FOR THIS ITERATION
 C-IF AN ERROR OCCURS THEN GUESSES ARE MADE AS ON THE FIRST ITERATION
 IF((IOFLAG.EQ.0).AND.(ITKEY.EQ.1)) THEN
 IOERR=-1
 GOTO 270
 ENDIF
 OPEN(11,FILE=PNAME,IOSTAT=IOERR,ERR=270)
 DO 308 J=1,NSTAGE
 READ(11,70000,IOSTAT=IOERR,ERR=309,END=309) T(J),V(J),L(J)
 READ(11,70030,IOSTAT=IOERR,ERR=309,END=309) (X(J,IX),IX=1,NCOMP)
308 READ(11,70030,IOSTAT=IOERR,ERR=309,END=309) (Y(J,IX),IX=1,NCOMP)
C: DELETE THE OLD PROFILE
309 CLOSE(11, STATUS='DELETE')
 IF(IOERR.EQ.-1) GOTO 270
 ENDF

C: SET ITERATION COUNTER (MAX. OF TEN ITERATIONS)
 ITER=0

C: SET CONDENSER TEMPERATURE IF SPECIFIED
 IF(TC.NE.0.0) THEN
 T(NSTAGE)=TC
 ENDF

C: MAIN OUTSIDE ITERATION LOOP
1000 CONTINUE

C: DO CALCULATION FROM THE BOTTOM OF THE COLUMN UP
 DO 320 J=1,NSTAGE

C: CALCULATE ALL VALUES FOR K,HL,HV,DKDT,DHLDT,DIVDT
C: CALCULATE VALUES AT EACH J, USE HEAT AND KVAL SUBROUTINES
C: SEE SUBROUNINES FOR ARGUMENT USAGE. NOTE THAT HT IS THE TOTAL AVERAGE
C: MOLAR STREAM ENTHALPY.

C: SET TEMPORARY MATRIX OF ALL X'S AND Y'S FOR USE IN THE SUBROUTINES
C: USE CURRENT K VALUES TO CALCULATE Y'S. USE NORMALIZED MOLE FRACs.

XSUM=0.000
YSUM=0.000
 DO 310 IX=1,NCOMP
 YSUM=YSUM+Y(J,IX)
 XSUM=XSUM+X(J,IX)
310 XSUM=XSUM+X(J,IX)
 DO 330 IX=1,NCOMP
XTEMP(IX)=X(J,IX)/XSUM
YTEMP(IX)=Y(J,IX)/YSUM

CALL HEAT(0,1,NCOMP,T(J),P,XTEMP,HLIQ,HT)
CALL HEAT(1,1,NCOMP,T(J),P,XTEMP,DHLIQDT,HT)
CALL HEAT(0,2,NCOMP,T(J),P,YTEMP,HVAP,HT)
CALL HEAT(1,2,NCOMP,T(J),P,YTEMP,DHYAPDT,HT)

CALL KVAL(0,NCOMP,T(J),P,XTEMP,YTEMP,KEQ)
CALL KVAL(1,NCOMP,T(J),P,XTEMP,YTEMP,DKEQDT)

DO 320 IX=1,NCOMP
HL(J,IX)=HLIQ(IX)
HV(J,IX)=HVAP(IX)
DHLDT(J,IX)=DHLIQDT(IX)
DHYDT(J,IX)=DHVAPDT(IX)
K(J,IX)=KEQ(IX)
320 DKDT(J,IX)=DKEQDT(IX)

WRITE(6,51000)
51000 FORMAT(X, ' PAST THERMO INIT',/)

C MODIFY INITIAL GUESSES FOR COMPONENT BALANCES USING THE THOMAS METHOD

IF(ITER.EQ.0) THEN
DO 450 J=2,NSTAGE
DO 450 IX=1,NCOMP
AB(J,IX)=K(J-1,IX)*V(J-1)/L(J-1)
BB(J,IX)=1.000+(K(J,IX)*V(J))/L(J)
450 DB(J,IX)=ZF(J,IX)*F(J)
DO 455 IX=1,NCOMP
DB(1,IX)=ZF(1,IX)*F(1)
BB(1,IX)=1.000+(K(1,IX)*V(1))/L(1)
455 AB(1,IX)=0.000

C CARRY OUT THOMAS CALCULATION FOR EACH COMPONENT
DO 490 IX=1,NCOMP
 W(1)=BB(1,IX)
 G(1)=DB(1,IX)/W(1)
 Q(1)=-1.0/W(1)
DO 460 J=2,NSTAGE
 W(J)=BB(J,IX)-AB(J,IX)*Q(J-1)
 G(J)=(DB(J,IX)-AB(J,IX)*G(J-1))/W(J)
 Q(J)=-1.0/W(J)
 Q(NSTAGE)=0.000
 X(NSTAGE,IX)=G(NSTAGE)/L(NSTAGE)
 FL=G(NSTAGE)
DO 490 J=NSTAGE-1,-1
 FL=G(J)-Q(J)*FL
 X(J,IX)=FL/L(J)
ITER=ITER+1
GOTO 1000
ENDIF

C IF THE SECOND ORDER RATE CONSTANT IS NON-ZERO
C SOLVE MASS BALANCE EQUATIONS FOR H2S AND SO2 MOLE FRACTIONS ON EVERY
C STAGE. INCLUDE EXPLICIT REACTION DEPENDENCE.
IF(R2CONST.EQ.0.DO) GOTO 501
C SET VARIABLE COUNT AND ZERO ITERATION NUMBER
 NVAR=2
 ITERRXN=0
C CALCULATE THE CONSTANT PART FOR ALL OF THE REACTION TERMS
 RXNTERM=RHOM*RHOM*VLIQT*R2CONST
 IRXN=0
DO 2100 I=1,NSTAGE
 IF((X(I,3).GT.0.000).AND.(X(I,4).GT.0.000)) THEN
 IRXN=1
 ENDIF

 XH2SRXM(I)=X(I,3)
 XSO2RXN(I)=X(I,4)

 IF(IRXN.EQ.0) GOTO 501

C TOP OF RXN SOLVER LOOP
11000 CONTINUE

C ZERO THE BAND X AND Y MATRICES
DO 2110 I=1,2
 DO 2110 J=1,2
 XBND(I,J)=0.000
 2110
 YBND(I,J)=0.000

C STEP THROUGH EQUATIONS FOR EACH STAGE
DO 2150 J=1,NSTAGE

C ZERO THE COEFFICIENT MATRICES
DO 2120 IR=1,2
 GBND(IR)=0.000
 DO 2120 IC=1,2
 ABND(IR,IC)=0.000
 BBND(IR,IC)=0.000
 DBND(IR,IC)=0.000
 2120

IF(J.EQ.1) GOTO 2130

 ABND(1,1)=V(J-1)*K(J-1,3)
 ABND(2,2)=V(J-1)*K(J-1,4)
 GBND(1)=V(J-1)*K(J-1,3)*XH2SRXM(J-1)
 GBND(2)=V(J-1)*K(J-1,4)*XSO2RXN(J-1)
2130
2130 BBND(1,1)=L(J)/RS(J)+V(J)*K(J,3)*ALPHA(3)*RXNTERM*XS02RXN(J)
 BBND(1,2)=ALPHA(3)*RXNTERM*XH2SRXN(J)
 BBND(2,2)=L(J)/RS(J)+V(J)*K(J,4)*ALPHA(4)*RXNTERM*XH2SRXN(J)
 BBND(2,1)=ALPHA(4)*RXNTERM*XS02RXN(J)

 IF(J.EQ.NSTAGE) GOTO 2140

 DBND(1,1)=L(J+1)
 DBND(2,2)=L(J+1)
 GBND(1)=GBND(1)+L(J+1)*XH2SRXN(J+1)
 GBND(2)=GBND(2)+L(J+1)*XS02RXN(J+1)

2140 GBND(1)=GBND(1)+F(J,1)*ZF(J,3)-(V(J)*K(J,3)+L(J)/RS(J))
 *XH2SRXN(J)+ALPHA(3)*RXNTERM*XH2SRXN(J)*XS02RXN(J)
 GBND(2)=GBND(2)+F(J,1)*ZF(J,4)-(V(J)*K(J,4)+L(J)/RS(J))
 *XS02RXN(J)+ALPHA(4)*RXNTERM*XH2SRXN(J)*XS02RXN(J)

 CALL BAND(J)

2150 CONTINUE

C UPDATE VALUES

 DO 2160 J=1,NSTAGE

 IF((XH2SRXN(J)+CBND(1,J)).LT.0.000) THEN
 XH2SRXN(J)=XH2SRXN(J)/2.000
 ELSE
 IF((XH2SRXN(J)+CBND(1,J)).GT.1.000) THEN
 XH2SRXN(J)=(XH2SRXN(J)+1.000)/2.000
 ELSE
 XH2SRXN(J)=XH2SRXN(J)+CBND(1,J)
 ENDIF
 ENDIF

 IF((XS02RXN(J)+CBND(2,J)).LT.0.000) THEN
 XS02RXN(J)=XS02RXN(J)/2.000
 ELSE
 IF((XS02RXN(J)+CBND(2,J)).GT.1.000) THEN
 XS02RXN(J)=(XS02RXN(J)+1.000)/2.000
 ELSE
 XS02RXN(J)=XS02RXN(J)+CBND(2,J)
 ENDIF
 ENDIF

2160 CONTINUE
ELSE
 IF((XSO2RXN(J)+CBND(2,J)).GT.1.000) THEN
 XSO2RXN(J)=(XSO2RXN(J)+1.000)/2.000
 ELSE
 XSO2RXN(J)=XSO2RXN(J)+CBND(2,J)
 ENDIF
ENDIF
CONTINUE

C PERFORM CONVERGENCE CHECK
DO 2170 J=1,NSTAGE
 IF(XH2SRXN(J).EQ.0.000) GOTO 2165
 IF(DABS(CBND(1,J)/XH2SRXN(J)).GT.1.00·3) GOTO 2190
2165 IF(XSO2RXN(J).EQ.0.000) GOTO 2170
 IF(DABS(CBND(2,J)/XSO2RXN(J)).GT.1.00·3) GOTO 2190
2170 CONTINUE

C RXN LOOP CONVERGED, UPDATE MAIN LOOP VALUES
DO 2180 J=1,NSTAGE
 X(J,3)=XH2SRXN(J)
 X(J,4)=XSO2RXN(J)
2180 X(J,3)=XH2SRXN(J)

C EXIT TO MAIN LOOP
GOTO 501

C UPDATE ITERATION COUNT
2190 ITERRXN=ITERRXN+1

WRITE(6,94000) ITERRXN
94000 FORMAT('*'IN RXN LOOP, ITERATION=',I3)

IF(ITERRXN.LT.IMAXA) GOTO 11000
WRITE(6,5250)
WRITE(10,5250)
5250 FORMAT('ERROR! NON-CONVERGENCE IN RXN LOOP IN ABSORBER')
C FALL THROUGH ERROR AND HOPE FOR THE BEST

C SET VARIABLE COUNT BACK TO MAIN LOOP VALUE
501 NVAR=NCOMP+3

C WRITE A BLANK LINE TO MAKE OUTPUT PRETTY
 WRITE(6,5260)
5260 FORMAT(X)

C SET RXN TERMS AS SIDE DRAW FOR EVERY STAGE

 DO 400 J=1,NSTAGE
400 R(J)=X(J,3)*X(J,4)*RHOM*RHOM*VLIQT*R2CONST

C ZERO THE XBND AND YBND MATRICES AT THE START OF AN ITERATION.
 DO 500 I=1,NCOMP+3
 DO 500 J=1,NCOMP+3
 XBND(I,J)=0.000
500 YBND(I,J)=0.000

C BEGIN INNER LOOP. PERFORM J CALLS TO BAND TO SOLVE THE COUPLED EQUATIONS
 DO 10000 J=1,NSTAGE

C FIRST ZERO THE COEFFICIENT MATRICES
 DO 525 IR=1,NCOMP+3
 GBND(IR)=0.000
 DO 525 IC=1,NCOMP+3
 ABND(IR,IC)=0.000
 BBND(IR,IC)=0.000
525 DBND(IR,IC)=0.000

C SEE IF WE ARE AT THE BOTTOM OF THE COLUMN, IF SO ABND IS ALL ZEROS
 IF(J.EQ.1) GOTO 2000
C- FILL ABND WITH J-1 VALUES OF COEFFICIENTS

C- THE ORDER OF VARIABLES IN A GIVEN ROW IS T, V, L, ALL X(IC)

C- THE ORDER OF EQUATIONS IS ALL MASS BAL., HEAT BAL., EQUILIB., MOLE FRACT.

C- VARIABLES: IR=ROW INDEX, IC=COLUMN INDEX, IX=COMPONENT INDEX

C- DO THE MASS BALANCES
DO 530 IR=1,NCOMP
 IX=IR
 IC=IR+3
 ABND(IR,1)=V(J)*X(J,IX)*DKDT(J,IX)
 ABND(IR,2)=K(J)*X(J,IX)
 530 ABND(IR,IC)=V(J)*K(J,IX)

C- DO THE HEAT BALANCE
DO 540 IR=NCOMP+1
 SUMO=0.0D0
 SUM1=0.0D0
 SUMO=SUMO+X(J,IX)*(HV(J,IX)*DKDT(J,IX)+K(J,IX)*DHT(J,IX))
 540 SUM1=SUM1+HV(J,IX)*K(J,IX)*X(J,IX)
 ABND(IR,1)=V(J)*SUMO
 ABND(IR,2)=SUM1
 550 ABND(IR,IC)=V(J)*HV(J,IX)*K(J,IX)

C- AT J-1 THE EQUILIBRIUM AND MOLE FRACTION EQNS. ARE ALL ZEROS

C- FILL IN THE BBND MATRIX AT J

C- MASS BALANCES
DO 560 IR=1,NCOMP
 IX=IR
 IC=IR+3
 BBND(IR,1)=V(J)*X(J,IX)*DKDT(J,IX)

129
BBND(IR,2)=K(J,IX)*X(J,IX)
BBND(IR,3)=X(J,IX)/RS(J)

560 BBND(IR,IC)=V(J)*K(J,IX)+L(J)/RS(J)

C- HEAT BALANCE
IR=NCOMP+1
SUM0=0.000
SUM1=0.000
SUM2=0.000
SUM3=0.000
DO 570 IX=1,NCOMP
SUM0=SUM0+X(J,IX)*(HV(J,IX)+DKDT(J,IX)*K(J,IX)*DHVDT(J,IX))
SUM1=SUM1+X(J,IX)*DUDT(J,IX)
SUM2=SUM2+HV(J,IX)*K(J,IX)*X(J,IX)
SUM3=SUM3+HL(J,IX)*X(J,IX)
BBND(IR,1)=V(J)*SUM0+L(J)*SUM1/RS(J)
BBND(IR,2)=SUM2
BBND(IR,3)=SUM3/RS(J)

570 DO 580 IX=1,NCOMP
IC=IX+3
580 BBND(IR,IC)=V(J)*HV(J,IX)*K(J,IX)*L(J)*HL(J,IX)/RS(J)

C- EQUILIB. EQN.
IR=IR+1
SUM0=0.000
DO 590 IX=1,NCOMP
590 SUM0=SUM0+X(J,IX)*DKDT(J,IX)
BBND(IR,1)=SUM0

DO 600 IX=1,NCOMP
IC=IX+3
600 BBND(IR,IC)=K(J,IX)*1.000

C- MOLE FRACTION
IR=IR+1
DO 610 IX=1,NCOMP
 IC=IX+3
 610 BBND(IR,IC)=1.000

C· CHECK FOR LAST STAGE. IF SO THEN J+1 TERMS ARE ALL ZERO
 IF(J.EQ.NSTAGE) THEN
 GOTO 3000
 ENDIF

C· FILL IN THE DBND AT J+1

C· MASS BALANCES
 DO 620 IR=1,NCOMP
 IX=IR
 IC=IR+3
 DBND(IR,3)=-X(J+1,IX)
 620 DBND(IR,IC)=-L(J+1)

C· HEAT BAL.
 IR=NCOMP+1
 SUM0=0.000
 SUM1=0.000
 DO 630 IX=1,NCOMP
 SUM0=SUM0+X(J+1,IX)*DHEAD(J+1,IX)
 630 SUM1=SUM1+H(J+1,IX)*X(J+1,IX)
 DBND(IR,1)=-L(J+1)*SUM0
 DBND(IR,3)=-SUM1
 DO 640 IX=1,NCOMP
 IC=IX+3
 640 DBND(IR,IC)=-L(J+1)*H(J+1,IX)

C***
C· FILL IN THE RIGHT HAND SIDE OF THE EQNS. (I.E. GBND)

C· CHECK FOR J=1 CONDITION, JUMP TO ALTERNATE GBND CALC IF SO
 IF(J.EQ.1) GOTO 3020

131
C· MASS BALANCES FOR 1<\textit{J}<\textit{NJ}

\begin{verbatim}
 DO 645 IR=1,NCOMP
 IX=IR
 GBNO(IR)=F(J,1)*ZF(J,IX)+ALPHA(IX)*R(J)
 1 +V(J-1)*X(J-1,IX)*X(J-1,IX)-(V(J)*K(J,IX)+L(J)/RS(J))*X(J,IX)
 2 +L(J+1)*X(J+1,IX)
\end{verbatim}

C· HEAT BALANCE FOR 1<\textit{J}<\textit{NJ}

\begin{verbatim}
 IR=NCOMP+1
 SUMO=0.000
 SUM1=0.000
 SUM2=0.000
 SUM3=0.000
 DO 650 IX=1,NCOMP
 SUM0=SUM0+HV(J,IX)*K(J,IX)*X(J,IX)
 SUM1=SUM1+HV(J,IX)*K(J,IX)*X(J,IX)
 SUM2=SUM2+HL(J,IX)*X(J,IX)
 SUM3=SUM3+HL(J,IX)*X(J,IX)
 \end{verbatim}

\begin{verbatim}
 GBNO(IR)=F(J,1)*F(J,3)+V(J-1)*SUM0-V(J)*SUM1-L(J)*SUM2/RS(J)+L(J+1)*SUM3+QH(J)
 1 \end{verbatim}

C JUMP TO EQUILIBRIUM AND MOLE FRACTION BALANCES

GOTO 3010

C· MASS BALANCES FOR \textit{J}=\textit{NJ}

\begin{verbatim}
 DO 655 IR=1,NCOMP
 IX=IR
 GBNO(IR)=F(J,1)*ZF(J,IX)+ALPHA(IX)*R(J)
 1 +V(J-1)*X(J-1,IX)*X(J-1,IX)-(V(J)*K(J,IX)+L(J)/RS(J))*X(J,IX)
\end{verbatim}

C· HEAT BALANCE FOR \textit{J}=\textit{NJ}

\begin{verbatim}
 IR=NCOMP+1
 SUMO=0.000
 SUM1=0.000
 SUM2=0.000
\end{verbatim}
DO 660 IX=1,NCOMP
 SUMO=SUMO+HV(J-1,IX)*K(J-1,IX)*X(J-1,IX)
 SUM1=SUM1+HV(J,IX)*K(J,IX)*X(J,IX)
 SUM2=SUM2+HL(J,IX)*X(J,IX)
660
 GBND(IR)=F(J,1)*F(J,3)+V(J-1)*SUMO-V(J)*SUM1-L(J)*SUM2/RS(J)+QH(J)
1
C JUMP TO EQUILIB AND MOLE FRACTION BALANCES
GOTO 3010

C CALCULATE MASS AND HEAT BALANCES FOR J=1
3020 DO 665 IR=1,NCOMP
 IX=IR
665
 GBND(IR)=F(J,1)*ZF(J,IX)+ALPHA(IX)*R(J)
1 -(V(J)*K(J,IX)+L(J)/RS(J))*X(J,IX)+L(J+1)*K(J+1,IX)

C- HEAT BALANCE FOR J=NJ
IR=NCOMP+1
SUMO=0.000
SUM1=0.000
SUM2=0.000
SUM3=0.000
DO 670 IX=1,NCOMP
 SUM1=SUM1+HV(J,IX)*K(J,IX)*X(J,IX)
 SUM2=SUM2+HL(J,IX)*X(J,IX)
 SUM3=SUM3+HL(J+1,IX)*X(J+1,IX)
670
 GBND(IR)=F(J,1)*F(J,3)-V(J)*SUM1-L(J)*SUM2/RS(J)+L(J+1)*SUM3+
1 QH(J)

C- EQUILIB. EQN.
3010 IR=IR+1
SUMO=0.000
DO 675 IX=1,NCOMP
675 SUMO=SUMO+X(J,IX)*(1.000-K(J,IX))
GBND(IR)=SUM0

C- MOLE FRACTION
 IR=IR+1
 SUM0=0.000
 DO 680 IX=1,NCOMP
 680 SUM0=SUM0+X(J,IX)
 GBND(IR)=1.000·SUM0

C- IF A CONDENSER IS PRESENT AND THIS IS THE TOP STAGE THEN
C- THE EQUATION IS SIMPLY T(J)=TC
 IF((J.EQ.NSTAGE).AND.(TC.NE.0.DO)) THEN
 IR=NCOMP+1
 DO 685 IC=1,NCOMP+3
 685 ABND(IR,IC)=0.00
 BBND(IR,IC)=0.00
 685 DBND(IR,IC)=0.00
 BBND(IR,1)=1.000
 GBND(IR)=TC-T(J)
 ENDIF

C- MATRICES ARE SET, CALL BAND
 WRITE(6,53000) UNIT,ITKEY,ITER,J
53000 FORMAT('+',UNIT='F5.2', FLOWSHEET ITER='I3', T(J)=T(J),
 I STAGE = I2)
 CALL BAND(J)

C- DO NEXT J

10000 CONTINUE

C-EQNS HAVE BEEN SOLVED, UPDATE VARIABLES, SET NEW GUESSES
C- IF A NEGATIVE VALUE IS OBTAINED THE NEW VALUE BECOMES THE
C- PREVIOUS VALUE AVERAGED WITH 0.
C- IF A NEW MOLE FRACTION IS GREATER THAN 1.0 THEN THE NEW VALUE
C- IS THE OLD VALUE AVERAGED WITH 1.0
WRITE(6,50500)
50500 FORMAT(' EOMS SOLVED, NOW UPDATING VALUES')

DO 700 J=1,NSTAGE
 TTEMP=T(J)+CBND(1,J)
 C LIMIT CHANGE IN T TO 20 PERCENT
 IF(DABS((TTEMP-T(J))/T(J)).GT.0.2D0) THEN
 CBND(1,J)=DSIGN(0.2D0*T(J),CBND(1,J))
 ENDIF
 IF((T(J)+CBND(1,J)).LT.0.0D0) THEN
 T(J)=T(J)/2.0D0
 ELSE
 T(J)=T(J)+CBND(1,J)
 ENDIF
 VTEMP=V(J)+CBND(2,J)
 IF(DABS((VTEMP-V(J))/V(J)).GT.0.2D0) THEN
 CBND(2,J)=DSIGN(0.2D0*V(J),CBND(2,J))
 ENDIF
 IF((V(J)+CBND(2,J)).LT.0.0D0) THEN
 V(J)=V(J)/2.0D0
 ELSE
 V(J)=V(J)+CBND(2,J)
 ENDIF
 RLTEMP=L(J)+CBND(3,J)
 IF(DABS((RLTEMP-L(J))/L(J)).GT.0.2D0) THEN
 CBND(3,J)=DSIGN(0.2D0*L(J),CBND(3,J))
 ENDIF
 IF((L(J)+CBND(3,J)).LT.0.0D0) THEN
 L(J)=L(J)/2.0D0
ELSE
 L(J)=L(J)+CBND(3,J)
ENDIF

DO 700 IX=1,NCOMP
 IC=IX+3
 IF((X(J,IX)+CBND(IC,J)).LT.0.000) THEN
 X(J,IX)=X(J,IX)/2.000
 ELSE
 IF((X(J,IX)+CBND(IC,J)).GT.1.000) THEN
 X(J,IX)=(X(J,IX)+1.000)/2.000
 ELSE
 X(J,IX)=X(J,IX)+CBND(IC,J)
 ENDIF
 ENDIF
ENDIF

C CALCULATE NEW Y VALUES

Y(J,IX)=X(J,IX)*K(J,IX)

C REMOVE COMPONENT 'NOISE'

 IF(X(J,IX).LT.1.00-09) THEN
 X(J,IX)=0.000
 ENDIF

700 CONTINUE

WRITE(6,50600)
50600 FORMAT(' PERFORMING CONVERGENCE CHECK')

DO 40200 I=1,NSTAGE
40200 WRITE(6,40000) T(I),V(I),L(I),XH2SRXN(I),XS02RXN(I)
40000 FORMAT(X,'T=',F10.4,,' V=',D10.4,,' L=',D10.4,,' XH2S=',D10.4,1X,' XS02=',D10.4)
DO 40300 I=1,NSTAGE
C40300 WRITE(6,40100) (X(I,IX),IX=1,NCOMP)
C40100 FORMAT(' ',4020.10)

C CHECK FOR CONVERGENCE -- CONVERGE LIQ. MOLE FRACTS
DO 810 J=1,NSTAGE
DO 810 IX=1,NCOMP
 IC=IX+3
 IF(X(J,IX).EQ.0.0D0) GOTO 810
 IF(ABS(CBND(IC,J)/X(J,IX)).GT.1.0D-3) THEN
 WRITE(6,54000) IX,J,X(J,IX)
 ENDIF
54000 FORMAT(X,'NOT CONVERGED IX='+A,IX,' STAGE='+A,IX,' X='+D2O.10)
 GOTO 4000
810 CONTINUE

C FELL THROUGH CHECK LOOP SO MUST HAVE CONVERGED
WRITE(10,40810) UNIT,ITER
C40810 FORMAT(X,' UNIT='+A,UNIT,' ITER='+A,ITER,'/

WRITE(10,60001)
DO 60000 I=1,NSTAGE
60000 WRITE(10,40010) T(I),V(I),L(I)
WRITE(10,40520)
WRITE(10,60050)
WRITE(10,40S00)
DO 60020 I=1,NSTAGE
60020 WRITE(10,40S10) I,(X(I,IX),IX=1,NCOMP)
WRITE(10,40S20)
WRITE(10,60060)
WRITE(10,40S00)
DO 60090 I=1,NSTAGE
60090 WRITE(10,40S10) I,(X(I,IX)*K(I,IX),IX=1,NCOMP)
WRITE(10,40S10)
WRITE(10,60070)
WRITE(10,40500)
DO 60100 I=1,NSTAGE
60100 WRITE(10,40510) I,(X(I,IX)*L(I),IX=1,NCOMP)
WRITE(10,40520)
WRITE(10,60080)
WRITE(10,40500)
DO 60110 I=1,NSTAGE
60110 WRITE(10,40510) I,(X(I,IX)*K(I,IX)*Y(I),IX=1,NCOMP)
60001 FORMAT (' ABSORBER OUTPUT DATA')
60050 FORMAT (' LIQUID COMPONENT MOLE FRACTIONS')
60060 FORMAT (' VAPOR COMPONENT MOLE FRACTIONS')
60070 FORMAT (' LIQUID COMPONENT FLOWS')
60080 FORMAT (' VAPOR COMPONENT FLOWS')
40010 FORMAT (' Ta ',F10.4,' Va ',D10.4,' L=',D10.4)
40500 FORMAT (' TSG',X,3X,'SOLV',3X,3X,'H2O',4X,3X,'H2S',4X,3X,'SO2',
 1 4X,3X,'SULF',3X,3X,'CO2',4X,3X,'N2',5X,3X,'C1',5X,3X,'N2',5X,
 2 3X,'CO',5X,3X,'C2',5X,3X,'C3',5X,3X,'C4',5X,3X,'C5++')
40510 FORMAT (' T13,X,23(D9.4,X),D1S.9,X,F4.1)
40520 FORMAT (X,' ')
C WRITE THE COLUMN PROFILE TO THE .PRO FILE
OPEN(11,FILE=PMAMA)
DO 61000 J=1,NSTAGE
61000 WRITE(11,70000) T(J),V(J),L(J)
WRITE(11,70030) (X(J,IX),IX=1,NCOMP)
70000 FORMAT (3020.10)
70030 FORMAT (14017.10)
GOTO 5000
C- NOT CONVERGED, DO NEXT ITERATION
4000 \text{ITER=ITER+1}
C \text{PRETTY PRINT STATEMENT}
\text{WRITE(6,48200)}
48200 \text{FORMAT(X)}

IF(\text{ITER.LT.IMAXA}) \text{GOTO 1000}

C \text{CHECK TO SEE IF SULFUR PRECIPITATED ON ANY OF THE TRAYS}
C \text{IF SOLUBILITY IS EXCEEDED FLAG IT IN THE OUTPUT}
5000 \text{DO 5010 J=1,NSTAGE}
\text{XS=SULFUR(T(J))}
C
\text{WRITE(6,60200) J,(X(J,5)/XS)*100.000,XS}
\text{WRITE(10,60200) J,(X(J,5)/XS)*100.000,XS}
60200 \text{FORMAT(X, SULFUR SATURATION ON TRAY, SOLUBILITY, ...)}
5010 \text{CONTINUE}

C \text{SET VALUES FOR RETURN STREAMS}
C \text{SET COMPOSITIONS}
\text{DO 910 I=1,NCOMP}
\text{STVAP(I)=X(NSTAGE,I)*K(NSTAGE,I)}
\text{STL1Q(I)=X(1,I)}
910 \text{STL1QC(I)=X(NSTAGE,I)}

C \text{RESET NUMBER OF COMPONENTS TO MAIN LOOP VALUE}
\text{NCOMP=NCOMPOLD}

C \text{SET FLOW, TEMP, PRESSURE, ENTHALPY, AND PHASE}
\text{STVAP(NCOMP+1)=V(NSTAGE)}
\text{STL1Q(NCOMP+1)=L(1)}
\text{STL1QC(NCOMP+1)=L(NSTAGE)*FS/(1.DO-FS)}


```
STVAP(NCOMP+2)=T(NSTAGE)
STLIQ(NCOMP+2)=T(1)
STLIQC(NCOMP+2)=T(NSTAGE)

STVAP(NCOMP+3)=P
STLIQ(NCOMP+3)=P
STLIQC(NCOMP+3)=P

HTV=0.000
HTL=0.000
HTLC=0.000

DO 920 I=1,NCSUB
   HTV=HTV+HV(NSTAGE,I)*X(NSTAGE,I)*K(NSTAGE,I)
   HTL=HTL+HL(1,I)*X(1,I)
   HTLC=HTLC+HL(NSTAGE,I)*X(NSTAGE,I)
920

STVAP(NCOMP+4)=HTV
STLIQ(NCOMP+4)=HTL
STLIQC(NCOMP+4)=HTLC

STVAP(NCOMP+5)=2
STLIQ(NCOMP+5)=1
STLIQC(NCOMP+5)=1

C CLOSE OUTPUT DATA FILES
CLOSE(10)
CLOSE(11)

RETURN
END
```
SUBROUTINE FSPLIT(NC, STREAMI, STREAM1, STREAM2, FLOW)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 STREAMI(NC+5), STREAM1(NC+5), STREAM2(NC+5)

C FLOW SPLITTER
C
C LAST UPDATE: 04/21/86

C SET RETURN VALUES FOR ALL ZI,FLOW,TEMP,PRESS,ENTHALPY,PHASE
DO 10 I=1,NC+5
 STREAM1(I) = STREAMI(I)
10 STREAM2(I) = STREAMI(I)

C SPLIT STREAM BASED ON FLOW - FLOW IS AMOUNT WHICH GOES TO STREAM1
C IF FLOW IS GREATER THAN FEED, SEND ALL TO STREAM1
IF(FLOW.GT.STREAMI(NC+1)) THEN
 STREAM1(NC+1) = STREAMI(NC+1)
 STREAM2(NC+1) = 0.000
ELSE
 STREAM1(NC+1) = FLOW
 STREAM2(NC+1) = STREAMI(NC+1) - FLOW
ENDIF

RETURN
END
SUBROUTINE PHFLASH(NCOMP, STREAM, PFLASH, STRL, STRV, EPSILON, IPhase, IMAX, ERROR)

C ISENTHALPIC OR ADIABATIC FLASH CALCULATION
C FOR MATHEMATICAL DETAILS SEE FOR EXAMPLE KING, PGS. 81-90.
C
C LAST UPDATE: 04/21/86

IMPLICIT REAL*8 (A-H, O-Z)
INTEGER*2 ERROR
INTEGER*2 NCOMP, IMAX, ITER
REAL*8 STREAM(25), PFEED, TFEED, F, ZF(20), HF, PFLASH,
TFLASH, V, L, X(20), Y(20), EPSILON
REAL*8 STRL(25), STRV(25)
REAL*8 TBUB, TDEW, VF
REAL*8 K(20), DKDT(20)
REAL*8 OLDF, OLDG, NEWF, NEWG, SUM0, SUM1, ADD0, ADD1, OGCHK, NGCHK
REAL*8 FDREV, FDER, GDER, GDERT
REAL*8 HL(20), HV(20), DHLDT(20), DHVDT(20), HTL, HTV, HT
REAL*8 HFI(20), DHFIDT(20), HTD, HTB

C SET ERROR RETURN TO NO CONVERGENCE. SET IPhASE TO MIXED
C LIQUID AND VAPOR
ERROR=1
IPhASE=3

C INITIALIZE ITERATION COUNT
ITER=0

C SET VALUES FOR MOLE FRACTIONS - FIRST GUESS
DO 5 1=1,NCOMP
 ZF(I)=STREAM(I)
 X(I)=ZF(I)
 Y(I)=ZF(I)
5

C SET LOCAL STREAM VARIABLES
HF=STREAM(NCOMP+4)
PFEED=STREAMF(NCOMP+3)
TFEED=STREAMF(NCOMP+2)
F=STREAMF(NCOMP+1)

C CALCULATE BUBBLE AND DEW POINTS
 CALL BUBDEW(NCOMP,TFEED,X,Y,TBUB,TDEW,PFLASH,EPSILON,2)

C CALCULATE ENTHALPY OF THE FEED AT THE BUBBLE AND DEW POINTS
 CALL HEAT(0,1,NCOMP,TBUB,PFLASH,X,HL,HTB)
 CALL HEAT(0,2,NCOMP,TDEW,PFLASH,X,HV,HTD)

C SEE IF FEED IS ALL SUPERHEATED VAPOR OR SUBCOOLED LIQUID

 IF(HF.GT.HTD) THEN
 DO 10 I=1,NCOMP
 X(I)=0.000
 V=F
 L=0.000
 IPHASE=2
 GOTO 175
 ENDIF

 IF(HF.LT.HTB) THEN
 DO 15 I=1,NCOMP
 Y(I)=0.000
 L=F
 V=0.000
 IPHASE=1
 GOTO 175
 ENDIF

C**
C HAVE MIXTURE, PERFORM FLASH CALCULATION
C**
C MAKE FIRST GUESS FOR TFLASH AND V/F
VF=(HF-HTB)/(HTD-HTB)
TFLASH=TBUB+VFO*(TDEW-TBUB)

C CALCULATE K
CALL KVAL(0,NCOMP,TFLASH,PFLASH,X,Y,K)

C CALCULATE HL, HV
CALL HEAT(0,1,NCOMP,TFLASH,PFLASH,X,HL,HTL)
CALL HEAT(0,2,NCOMP,TFLASH,PFLASH,Y,HV,HTV)

C CALCULATE F AND G
OLDF=0.0
SUMO=0.000
SUM1=0.000
DO 20 I=1,NCOMP
OLDF=OLDF+(ZF(I)*(K(I)-1.000))/((VF*(K(I)-1.000)+1.000)
SUMO=SUMO+(HV(I)*ZF(I)*K(I))/((VF*(K(I)-1.000)+1.000)
SUM1=SUM1+(HL(I)*ZF(I)/(VF*(K(I)-1.000)+1.000)
20 OLDG=VF*SUMO+(1.000-VF)*SUM1-HF

OLDG=OLDG/HF

C CALCULATE DERIVATIVES DKDT,DHLT,DHVDT
25 CALL KVAL(1,NCOMP,TFLASH,PFLASH,X,Y,DKDT)
CALL HEAT(1,1,NCOMP,TFLASH,PFLASH,X,DHLT,HT)
CALL HEAT(1,2,NCOMP,TFLASH,PFLASH,Y,DHVDT,HT)

C CALCULATE DF/DV,DF/DT,DG/DV,DG/DT
FDERV=0.000
FDERT=0.000
GDERV=0.000
GDERT=0.000
ADD0=0.000
ADD1=0.000
DO 30 I=1,NCOMP
FDERV=FDERV-(ZF(I)*((K(I)-1.000)**2))/((VF*(K(I)-1.000)+1.000)**2)
FDERT = FDERT + (ZF(I) * DKDT(I)) / ((VF*(K(I) - 1.0D0) + 1.0D0)**2)
GDERV = GDERV + (ZF(I) * K(I) * (HV(I) - HL(I))) / ((VF*(K(I) - 1.0D0)
1 + 1.0D0)**2)
ADD0 = VF*K(I)*DHVOT(I) + (1.0D0-VF)*DHLDT(I)
ADD1 = (VF*(1.0D0-VF)*(HV(I)-HL(I))*DKDT(I)) / (VF*(K(I) - 1.0D0)
1 + 1.0D0)
ADD2 = ZF(I) * (ADD0 + ADD1) / (VF*(K(I) - 1.0D0) + 1.0D0)
30 GDERT = GDERT + ADD2
GDERV = GDERV / HF
GDERT = GDERT / HF

C CALCULATE NEW TFLASH AND V
TFLASH = TFLASH + (FDERV * OLDG' + GDERV * OLDF) / (FDERT * GDERV' + FDERT * GDERT)
VFOLD = VF
VF = VF + (GDERT * OLDF - FDERT * OLDG) / (FDERT * GDERV' + FDERT * GDERT)

IF(VF.LT.0.0D0) THEN
 VF = VFOLD / 2.0D0
ENDIF

IF(VF.GT.1.0D0) THEN
 VF = (VFOLD + 1.0D0) / 2.0D0
ENDIF

WRITE(6,20000) TFLASH, VF
20000 FORMAT(X, 'TFLASH = ', D20.10, 'VF = ', D20.10)

C CALCULATE NEW X, Y
V = F * VF
L = F - V

DO 40 I = 1, NCOMP
 X(I) = ZF(I) / ((K(I) - 1.0D0) * VF + 1.0D0)
40 Y(I) = X(I) * K(I)
C CALCULATE NEW K VALUES
 CALL KVAL(O,NCOMP,TFLASH,PFLASH,X,Y,K)
C CALCULATE NEW ENTHALPIES
 CALL HEAT(O,1,NCOMP,TFLASH,PFLASH,X,H,U,TL)
 CALL HEAT(O,2,NCOMP,TFLASH,PFLASH,Y,H,V,TV)
C CALCULATE NEW F AND G FUNCTIONS
 NEWF=0.0
 SUMO=0.000
 SUM1=0.000
 DO 50 I=1,NCOMP
 NEWF=NEWF+(ZF(I)*(K(I)-1.0D0))/(VF*(K(I)-1.0D0)+1.0D0)
 SUMO=SUMO+(HV(I)*ZF(I))/(VF*(K(I)-1.0D0)+1.0D0)
 50 SUM1=SUM1+(HL(I)*ZF(I))/(VF*(K(I)-1.0D0)+1.0D0)
 NEWG=VF*SUMO+(1.0D0*VF)*SUM1-HF
 NEWG=NEWG/HF
 ITER=ITER+1
C NORMALIZE G FOR CONVERGENCE CHECK
 OGCHK=OLDG
 NGCHK=NEWG
C CHECK FOR CONVERGENCE
C IF((DABS(NEWF)+DABS(NGCHK)).GT.(DABS(OLDF)+DABS(OGCHK)))
C GOTO 100
 IF(ITER.GT.IMAX) GOTO 100
 IF((DABS(NEWF)+DABS(NGCHK)).GT.EPSILON) THEN
 OLDF=NEWF
 OLDG=NEWG
 GOTO 25
 ELSE
C CONVERGED, SHOW CONVERGED, HAVE MIXTURE AND THEN EXIT
 ERROR=2
IPHASE=3
GOTO 100
ENDIF

C**
C IF ALL LIQUID OR ALL VAPOR ITERATE TO DETERMINE EXIT TEMP
C**

C SET MOLE FRACTIONS FOR USE IN THERMO SUBROUTINES
175 DO 150 I=1,NCOMP
150 X(I)=STREAMF(I)

C SET FIRST GUESS FOR TEMPERATURE
200 TFLASH=TFEED
225 TOUT=TFLASH
 CALL HEAT(0,IPHASE,NCOMP,TOUT,PMIX,X,HFI,HT)
 CALL HEAT(1,IPHASE,NCOMP,TOUT,PMIX,X,DHFDT,DHT)

C CALCULATE TOTAL ENTHALPIES AND DERIVATIVES
 HT1=HT*STREAMF(NCOMP+1)
 DHT=DHT*STREAMF(NCOMP+1)

C CALCULATE NEW T VALUE
 TFLASH=TOUT*(HT1-(STREAMF(NCOMP+1)*STREAMF(NCOMP+4)))/DHT
 ITER=ITER+1

C CHECK FOR CONVERGENCE
 IF(ABS(TFLASH-TOUT).LE.EPSILON) GOTO 270

C CHECK FOR MAXIMUM NUMBER OF ITERATIONS
 IF(ITER.GT.IMAX) GOTO 100
 GOTO 225

C SHOW CONVERGED CALC, BUT FLAG THE FACT THAT STREAM IS ALL LIQUID OR VAPOR
270 ERROR=3
C SET RETURN STREAM VALUES
100 DO 300 I=1,NCOMP
 STRL(I)=X(I)
300 STRV(I)=Y(I)

C FLOW, TEMP, PRESSURE, ENTHALPY, PHASE
 STRL(NCOMP+1)=L
 STRV(NCOMP+1)=V
 STRL(NCOMP+2)=TFLASH
 STRV(NCOMP+2)=TFLASH
 STRL(NCOMP+3)=PFLASH
 STRV(NCOMP+3)=PFLASH

IF(V.EQ.0.000) THEN
 NTL=HT
 NTV=0.000
ENDIF

IF(L.EQ.0.000) THEN
 NTL=0.000
 NTV=HT
ENDIF

 STRL(NCOMP+4)=NTL
 STRV(NCOMP+4)=NTV

 STRL(NCOMP+5)=1
 STRV(NCOMP+5)=2

RETURN
END
SUBROUTINE XCHG(NC,STREAMHI,STREAMCI,STREAMHO,STREAMCO,
1 UA,EPS,IMAX,ERR)

C HEAT EXCHANGER SUBROUTINE
C
C LAST UPDATE: 06/11/86

C WARNING: THIS ROUTINE WILL NOT CONVERGE FOR VERY LARGE VALUES
C OF UA (UA>10000 KW/DEG K, I.E. UNREALISTIC VALUES). THE
C MAXIMUM "SAFE" VALUE IS DETERMINED BY THE STEP SIZE USED
C TO CALCULATE THE DEVIATIVES WITH RESPECT TO TEMP.

IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 XH(20),XC(20)
REAL*8 CP(20)
REAL*8 STREAMHI(25),STREAMCI(25)
REAL*8 STREAMHO(25),STREAMCO(25)
REAL*8 STRL(25),STRV(25)

INTEGER*2 PHASEC,PHASEH
INTEGER*2 ERR

C SET TEMPERATURE INCREMENT FOR DERIVATIVES
DELT=0.0100

C SET RETURN FOR NO ERROR
ERR=0

C ZERO ITERATION COUNT
ITER=0

C SET MOLE FRACTIONS FOR CALCULATION AND OUTLET STREAMS
DO 10 I=1,NC
 XH(I)=STREAMHI(I)
 STREAMHO(I)=XH(I)
 XC(I)=STREAMCI(I)
 STREAMCO(I)=XC(I)
10

C SET OUTLET FLOWS AND PRESSURES
 STREAMHO(NC+1)=STREAMHI(NC+1)
 STREAMHO(NC+3)=STREAMHI(NC+3)
 STREAMCO(NC+1)=STREAMCI(NC+1)
 STREAMCO(NC+3)=STREAMCI(NC+3)

C SET LOCAL VALUES FOR STREAM PRESSURES, PHASES, TEMPERATURES, AND ENTHALPIES
 PRH=STREAMHI(NC+3)
 PHASEH=INT(STREAMHI(NC+5))
 PRC=STREAMCI(NC+3)
 PHASEC=INT(STREAMCI(NC+5))
 TCI=STREAMCI(NC+2)
 THI=STREAMHI(NC+2)
 HCI=STREAMCI(NC+1)*STREAMCI(NC+4)
 HHI=STREAMHI(NC+1)*STREAMHI(NC+4)

C FOR FIRST GUESSES FOR OUTLET TEMPERATURES ASSUME NO PHASE CHANGE
C CALCULATE HEAT CAPACITIES (I.E. DERIVATIVES)
 CALL HEAT(1,PHASEC,NC,TCI,PRC,XC,CP,CPC2)
 CALL HEAT(1,PHASEH,NC,THI,PRH,XH,CP,CPH1)

C ESTIMATE EXIT TEMPERATURES
 ALPHA=(CPH1*STREAMHI(NC+1))/(CPC2*STREAMCI(NC+1))
 BETA=DEXP(UA*(1.000/(CPC2*STREAMCI(NC+1))·1.000/(CPH1*STREAMHI(NC+1)))
 TCONEY=(THI*(1-BETA)+TCI*BETA*(1.000-ALPHA))/(1.000-ALPHA*BETA)
 THONEY=THI+((TCI-THI)*ALPHA*(1.000-BETA)/(1.000-ALPHA*BETA))

C NOW ITERATE TO CALCULATE EXIT TEMPERATURES ALLOWING FOR POSSIBLE PHASE
C CHANGE(S)

100
TCO=TCONEW
THO=THONEW

C FLASH THE STREAMS AT THE ASSUMED EXIT CONDITIONS TO OBTAIN ENTHALPIES
CALL PTFLASH(NC,STREAMCI,PRC,TCO,STRL,STRV,EPS,IPHC,IMAX,ERR)
HCO=STRL(NC+1)*STRL(NC+4)+STRV(NC+1)*STRV(NC+4)
CALL PTFLASH(NC,STREAMHI,PRH,THO,STRL,STRV,EPS,IPH,IMAX,ERR)
HHO=STRL(NC+1)*STRL(NC+4)+STRV(NC+1)*STRV(NC+4)

C CALCULATE ENTHALPIES AT T + DELTA T FOR USE IN FINDING DERIVATIVES
CALL PTFLASH(NC,STREAMCI,PRC,TCO+DELT,STRL,STRV,EPS,IPH,IMAX,1 ERR)
HCODEL=STRL(NC+1)*STRL(NC+4)+STRV(NC+1)*STRV(NC+4)
CALL PTFLASH(NC,STREAMHI,PRH,THO+DELT,STRL,STRV,EPS,IPH,IMAX,1 ERR)
HHODEL=STRL(NC+1)*STRL(NC+4)+STRV(NC+1)*STRV(NC+4)

C CALCULATE F1,F2, AND DERIVATIVES OF F1,F2 WITH RESPECT TO TCO,THO
F1=FUNCF1(THI,THO,TCI,TCO,HHI,HHO,HCI,UA)
F2=FUNCF2(HHI,HHO,HCI,HCO)
DF1C=FUNCF1(THI,THO,TCI,TCO+DELT,HHI,HHO,HCI,UA)
DF1H=FUNCF1(THI,THO+DELT,TCI,TCO,HHI,HHO,HCI,UA)
DF2C=FUNCF2(HHI,HHO,HCI,HHODEL)
DF2H=FUNCF2(HHI,HHODEL,HCI,HCO)
DF1DTC=(DF1C-F1)/DELT
DF1DTH=(DF1H-F1)/DELT
DF2DTC=(DF2C-F2)/DELT
DF2DTH=(DF2H-F2)/DELT

C UPDATE VALUES FOR TCO, THO
DENOM=DF1DTC*DF2DTH-DF1DTH*DF2DTC
TCONEW=TCO+(F2*DF1DTH-F1*DF2DTH)/DENOM
THONEW=THO+(F1*DF2DTC-F2*DF1DTC)/DENOM

C BOUND TEMPERATURES BY INLET VALUES
IF(TCONEW.LT.TCI) THEN
 TCONEW=(TCO+TCI)/2.000
ENDIF
IF(TCONEW.GT.THI) THEN
 TCONEW=(TCO+THI)/2.000
ENDIF
IF(THONEW.LT.TCI) THEN
 THONEW=(THO+TCI)/2.000
ENDIF
IF(THONEW.GT.THI) THEN
 THONEW=(THO+THI)/2.000
ENDIF
C CHECK FOR CONVERGENCE OF OUTLET TEMPERATURES
IF(DABS((TCONEW-TCO)/TCO).GT.EPS) GOTO 500
IF(DABS((THONEW-THO)/THO).GT.EPS) GOTO 500
C MUST HAVE CONVERGED, FINISH UP RETURN VALUES
GOTO 1000
C DID NOT CONVERGE, IF MORE ITERATIONS LEFT UPDATE VARIABLES AGAIN
C ITERATE ON POSSIBLE FLASH CONDITION UNTIL CONVERGED
500 ITER=ITER+1
 IF(ITER.LT.IMAX) GOTO 100
C SHOW NON-CONVERGENCE ERROR
ERR=1
C SET OUTLET CONDITIONS - T, H, AND PHASE
1000 STREAMCO(NC+2)=TCO
 STREAMCO(NC+4)=HCO/STREAMCO(NC+1)
 STREAMCO(NC+5)=IPHC
 STREAMHO(NC+2)=THO
 STREAMHO(NC+4)=HHO/STREAMHO(NC+1)
 STREAMHO(NC+5)=IPH0
REAL*8 FUNCTION FUNCF1(THI,THO,TCI,TCO,HHI,HHO,HCI,UA)
IMPLICIT REAL*8(A-H,O-Z)
DELT1=THI-TCO
DELT2=THO-TCI
TLM=(DELT1-DELT2)/(LOG(DELT1/DELT2))
FUNCF1=((HHI-HHO)*UA*TLM)/(HHI+HCI)
RETURN
END

REAL*8 FUNCTION FUNCF2(HHI,HHO,HCI,HCO)
IMPLICIT REAL*8(A-H,O-Z)
FUNCF2=(HHI-HHO+HCl-HCO)/(HHI+HCI)
RETURN
END

RETURN
END
SUBROUTINE REBOIL(NC,STRI,STROL,STROV,PVESS,TRB,QIN,IMAX,EPS,
1 ERROR)
C REBOILER SUBROUTINE
C
C LAST UPDATE: 04/21/86
C
IMPLICIT REAL*8(A-H,O-Z)
REAL*8 STRI(25),STROL(25),STROV(25)
INTEGER*2 ERROR

C SHOW NO ERROR
ERROR=0

C FLASH THE STREAM AT THE INDICATED TEMPERATURE
CALL PTFLASH(NC,STRI,PVESS,TRB,STROL,STROV,EPS,IPHASE,IMAX,
1 ERROR)

C CALCULATE THE HEAT INPUT REQUIRED
QIN=STROL(NC+1)*STROL(NC+4)+STROV(NC+1)*STROV(NC+4)-1
1 STRI(NC+1)*STRI(NC+4)

RETURN
END
EXTERNAL SUBROUTINE CONDENSE(NCOMP,PVAP,STREAMI,STREAMO,OOUT,EPSILON,
ERROR)
C CONDENSER SUBROUTINE
C
C LAST UPDATE: 04/21/86
C
IMPLICIT REAL*8(A-H,O-Z)
REAL*8 X(20),Y(20),HL(20)
REAL*8 STREAMI(25),STREAMO(25)
INTEGER*2 ERROR
C SHOW NO ERROR
ERROR=0
C
SET UP NEW LIQUID VALUES
DO 10 I=1,NCOMP
 Y(I)=STREAMI(I)
10 X(I)=Y(I)
TVAP=STREAMI(NCOMP+2)
C CALCULATE BUBBLE POINT. ASSUME THAT THE BUBBLE POINT IS
C THE TEMP IN THE CONDENSER - I.E. ASSUME TOTAL CONDENSER
CALL BUBDEW(NCOMP,TVAP,X,Y,TBUB,TDEW,PVAP,EPSILON,O)
C CALCULATE NEW LIQUID STREAM ENTHALPY AT THE BUBBLE POINT
CALL HEAT(0,1,NCOMP,TBUB,PVAP,X,HL,HTL)
C SET ALL OUTLET STREAM VALUES
DO 20 I=1,NCOMP+1
20 STREAMO(I)=STREAMI(I)
 STREAMO(NCOMP+2)=TBUB
 STREAMO(NCOMP+3)=PVAP
 STREAMO(NCOMP+4)=HTL
 STREAMO(NCOMP+5)=1
C CALCULATE HEAT REMOVED
QOUT=STREAM(nc+1)\ast STREAM(nc+2) \cdot STREAM(nc+1) \ast STREAM(nc+4)

RETURN
END
SUBROUTINE MIXER(NCOMP,STREAM1,STREAM2,STREAMO,PMIX,IPHASE,
$ $ EPSILON,ERROR)
C MIXER SUBROUTINE
C
C LAST UPDATE: 04/21/86
IMPLICIT REAL*8 (A-H,O-Z)
INTEGER*2 ERROR
REAL*8 STREAM1(25),STREAM2(25),STREAMO(25)
REAL*8 STRL(25),STRV(25)
IMAX=20
C CALCULATE EXIT FLOWS FOR MIXTURE
DO 10 la1,NCOMP
 10 STREAMO(I)=STREAM1(I)*STREAM1(NCOMP+1)+STREAM2(I)*
 1 STREAM2(NCOMP+1)
C CALCULATE MOLE FRACTIONS FOR MIXTURE
DO 20 1=1,NCOMP
 20 STREAMO(I)=STREAMO(I)/STREAMO(NCOMP+1)
C SET EXIT PRESSURE AND ENTHALPY
 STREAMO(NCOMP+3)=PMIX
 STREAMO(NCOMP+4)=(STREAM1(NCOMP+4)*STREAM1(NCOMP+1)+
 1 STREAM2(NCOMP+4)*STREAM2(NCOMP+1))/STREAMO(NCOMP+1)
C SET GUESS FOR MIXTURE TEMPERATURE FOR FLASH CALC -- USE AVERAGE
 TFEED=((STREAM1(NCOMP+2)*STREAM1(NCOMP+1)+STREAM2(NCOMP+2)*
 1 STREAM2(NCOMP+1)))/(STREAM1(NCOMP+1)+STREAM2(NCOMP+1))
 STREAMO(NCOMP+2)=TFEED
C DO A FLASH ON THE MIXTURE TO DETERMINE PHASE(S) AND COMPOSITION
 CALL PHFLASH(NCOMP,STREAMO,PMIX,STRL,STRV,EPISO1ON,
1 (PHASE, IMAX, ERROR)

C SET RETURN TEMPERATURE AND PHASE
STREAM(NCOMP+2) = STRL(NCOMP+2)
STREAM(NCOMP+5) = IPHASE

RETURN
END
SUBROUTINE SPLIT(NCOMP,STREAMI,STREAM1,STREAM2,FRACT1)

C SPLITTER SUBROUTINE
C
C LAST UPDATE: 04/21/86

IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 STREAMI(25),STREAM1(25),STREAM2(25)

C SET RETURN VALUES FOR ALL ZI, FLOW, TEMP, PRESS, ENTHALPY, PHASE
DO 10 I=1,NCOMP+5
 STREAM1(I)=STREAMI(I)
 STREAM2(I)=STREAMI(I)
10

C CORRECT VALUES OF FLOW FOR SPLIT
STREAM1(NCOMP+1)=STREAM1(NCOMP+1)*FRACT1
STREAM2(NCOMP+1)=STREAM1(NCOMP+1)*(1-FRACT1)

RETURN
END
SUBROUTINE PUMP(NC, STREAMI, STREAMO, POUT, RHOM, POWER, IMAX, EPS,
 1 ERROR)

C LAST UPDATE: 06/10/86

C PUMPING SUBROUTINE. MODIFIES THE PRESSURE OF A STREAM AND RECALCULATES
C THE ENTHALPY. ASSUMES ISOTHERMAL OPERATION.
C ALSO SETS THE EXIT PHASE COMPOSITION AND CALCULATES THE POWER REQUIREMENT.

IMPLICIT REAL*(A-H,O-Z)
INTEGER*2 ERROR
REAL*8 STREAMI(25), STREAMO(25)
REAL*8 STRL(25), STRV(25)

C TRANSFER ALL VARIABLES FROM INLET TO OUTLET STREAM
DO 10 I=1,NC+5
10 STREAMO(I)=STREAMI(I)

C SET NEW VALUE FOR PRESSURE
STREAMO(NC+3)=POUT

C FLASH THE STREAM TO DETERMINE ENTHALPY AND PHASE
CALL PTFLASH(NC, STREAMO, POUT, STREAMO(NC+2), STRL, STRV, EPS,
 1 IPHASE, IMAX, ERROR)

 STREAMO(NC+4)=(STRL(NC+1)*STRL(NC+4)+STRV(NC+1)*STRV(NC+4))/
 1 STREAMO(NC+1)

 STREAMO(NC+5)=IPHASE

C CALCULATE POWER REQUIREMENT
POWER=(POUT*STREAMI(NC+3))*STREAMI(NC+1)/RHOM

RETURN
END
SUBROUTINE REACTOR(NCOMP, STREAM1, STREAM2, STREAMO, PREACT, OOUT, STREAMO,
 FRACT, RKZ, VREACT, IPhASE, EPSILON, ERROR)

C REACTOR SUBROUTINE
C
C LAST UPDATE: 04/21/86

IMPLICIT REAL*8(A-H, O-Z)
INTEGER*2 ERROR
INTEGER*2 ALPHA(20)
REAL*8 STREAM1(Z5), STREAM2(Z5), STREAMO(Z5)
REAL*8 STRL(Z5), STRV(Z5), HF1(20), DHFIDT(20)
REAL*8 WOLWT(20)

COMMON/ALPH/ALPHA
COMMON/NOLEC/WOLWT

C SHOW NO ERROR YET
ERROR=0

C PERFORM MASS BALANCE
C MIX FIRST, CALCULATE FLOWS BEFORE REACTION

DO 10 I=1, NCOMP
 10 STREAMO(I)=STREAM1(I)*STREAM1(NCOMP+1)+
 STREAM2(I)*STREAM2(NCOMP+1)

C DETERMINE LIMITING REACTANT -- H2S OR SO2
FLOWH2S=STREAMO(3)
FLOWSO2=STREAMO(4)

IF(FLOWH2S.GT.2.000*FLOWSO2) THEN
 C SO2 IS LIMITING
 FLOWCHG=FRACT*FLOWSO2
ELSE
C H2S IS LIMITING
 FLOWCHG=FRACT*FLOWH2S/2.000
ENDIF

C CALCULATE COMPOSITION AFTER REACTION AND TOTAL OUTFLOW
STREAMO(NCOMP+1)=0.000
DO 20 I=1,NCOMP
 STREAMO(I)=STREAMO(I)+ALPHA(I)*FLOWCHG
20 STREAMO(NCOMP+1)=STREAMO(NCOMP+1)+STREAMO(I)

C CONVERT FLOWS TO MOLE FRACTIONS
DO 25 I=1,NCOMP
25 STREAMO(I)=STREAMO(I)/STREAMO(NCOMP+1)

C SET EXIT PRESSURE AND ENTHALPY ACCOUNTING FOR REACTION AND HEAT REMOVAL
STREAMO(NCOMP+3)=PREACT
STREAMO(NCOMP+4)=(STREAM1(NCOMP+4)*STREAM1(NCOMP+1)
1 +STREAM2(NCOMP+4)*STREAM2(NCOMP+1)-OOUT)/
2 STREAMO(NCOMP+1)

C SET GUESS FOR MIXTURE TEMPERATURE FOR FLASH CALC -- USE AVERAGE
TFEED=((STREAM1(NCOMP+2)*STREAM1(NCOMP+1))+((STREAM2(NCOMP+2)*
1 STREAM2(NCOMP+1)))/STREAM1(NCOMP+1)+STREAM2(NCOMP+1))
STREAMO(NCOMP+2)=TFEED

TFLASH=TFEED
STREAMO(NCOMP+2)=TFEED

C SAVE THE TEMP, ENTHALPY VALUE AND INLET PHASE TYPE
SAVET=STREAMO(NCOMP+2)
SAVENTH=STREAMO(NCOMP+4)
SAVEPH=STREAMO(NCOMP+5)

C ITERATE ON SULFUR SOLUBILITY AND FLASH TO DETERMINE EXIT CONDITIONS
IMAX=20
ITER=0
30 ITER=ITER+1
IF(ITER.GT.IMAX) THEN
 ERROR=1
 GOTO 40
ENDIF

TSOL=TFLASH
CALL SULFSOL(NCOMP,STREAMO,STREAMO,TSOL,PREACT,EPSILON,ERROR)

C RECOVER CORRECT TEMP, ENTHALPY (SULFSOL RECALCS ENTHALPY FOR STREAM) AND PHASE
STREAMO(NCOMP+2)=SAVET
STREAMO(NCOMP+4)=SAVENTH
STREAMO(NCOMP+5)=SAVEPH

C DO A FLASH ON THE MIXTURE TO DETERMINE PHASE(S) AND COMPOSITION
CALL PHFLASH(NCOMP,STREAMO,PREACT,STRL,STRV,EPSILON,
1 IPHASE,30,ERROR)

TFLASH=STRL(NCOMP+2)

C CHECK FOR TEMPERATURE CONVERGENCE
IF(DABS(TFLASH-TSOL).GT.EPSILON) GOTO 30

C SET OUTLET VALUES FOR PHASE TYPE AND EXIT TEMPERATURE
C CHECK FOR PRESENCE OF SOLID SULFUR (COMPONENT 17)
40 IF(((STREAMO(17).NE.0.D0).AND.(IPHASE.LE.3)) THEN
 STREAMO(NCOMP+5)=IPHASE+3
ELSE
 STREAMO(NCOMP+5)=IPHASE
ENDIF

STREAMO(NCOMP+2)=TFLASH

IF(IPHASE.EQ.3) THEN
ERROR = 2
ELSE
ERROR = 0
ENDIF

C CALCULATE REACTOR VOLUME FOR PLUG FLOW OPERATION

C INLET CONCENTRATIONS OF SO2 AND H2S
DENOM = (STREAM1(NCOMP+1) + STREAM2(NCOMP+1)) * MOLWT(1)
CSO2 = 1000.00 * FLOWSO2 / DENOM
CH2S = 1000.00 * FLOWH2S / DENOM

C FLOW IN GAL PER SEC
FLOW = STREAM0(NCOMP+1) * MOLWT(1) / 3.79

IF (CH2S.EQ.2.00*CSO2) THEN
 C1 = 1.00 / (1.00*FRACT) - 1.00
 VREACT = FLOW*CONVER/(2.00*RK2*CSO2)
ELSE
IF (CH2S.GT.2.00*CSO2) THEN
 C1 = DLOG((CH2S*2.00*CSO2*FRACT)/(1.00-FRACT))
 C2 = DLOG(CH2S)
 VREACT = FLOW*(1.00/RK2)*(1.00/(CH2S*2.00*CSO2))*C1*C2
ELSE
 C1 = DLOG((CSO2-0.500*CH2S*FRACT)/(1.00-FRACT))
 C2 = DLOG(CSO2)
 VREACT = FLOW*(1.00/RK2)*(1.00/(CSO2-0.500*CH2S))*C1*C2
ENDIF
ENDIF

RETURN
END
SUBROUTINE SULFSOL(NCOMP,STREAMI,STREAMO,TSOL,PSOL,EPSILON,
1 ERROR)

C SULFUR SOLUBILITY ROUTINE
C
C LAST UPDATE: 04/21/86

IMPLICIT REAL*8(A-H,O-Z)
INTEGER*2 ERROR
REAL*8 STREAMI(25),STREAMO(25),X(20),HU(20)

EXTERNAL SULFUR

ERROR=0

C TRANSFER ALL INPUT VALUES TO OUTPUT
DO 10 I=1,NCOMP+5
10 STREAMO(I)=STREAMI(I)

C CALCULATE SULFUR SOLUBILITY
XS=SULFUR(TSOL)

C SEE IF SOLUBILITY HAS BEEN EXCEEDED. SKIP IF NOT
IF(XS_GT.STREAMI(5)) GOTO 100

C CALCULATE FLOWS OF DISSOLVED AND SOLID SULFUR

C TOTAL SULFUR FREE FLOW
FLOWNS=STREAMO(NCOMP+1)*(1.000-STRAINO(5)-STRAINO(17))

C TOTAL SULFUR FLOW
SULF=(STRAINO(5)+STRAINO(17))*STRAINO(NCOMP+1)

C CALCULATE DISSOLVED SULFUR FLOW=XS*FLOWNS/(1.000-XS)
FLOWSU=XS*FLOWNS/(1.000-XS)
C SET OUTLET FRACTIONS OF DISSOLVED SULFUR AND SOLID SULFUR
STREAMO(5)=FLOWSU/STREAMO(NCOMP+1)
STREAMO(17)=(SULF-FLOWSU)/STREAMO(NCOMP+1)

C SHOW STREAM CONTAINS MIX OF LIQUID AND SOLID
IF(STREAMI(NCOMP+5).LT.4.DO) THEN
 STREAMO(NCOMP+5)=STREAMI(NCOMP+5)+3
ELSE
 STREAMO(NCOMP+5)=STREAMI(NCOMP+5)
ENDIF

C SET OUTLET STREAM TEMPERATURE AND PRESSURE
100 STREAMO(NCOMP+2)=TSOL
 STREAMO(NCOMP+3)=PSOL

C CALCULATE OUTLET STREAM ENTHALPY
 DO 150 I=1,NCOMP
150 X(I)=STREAMO(I)
 CALL HEAT(0,1,NCOMP,TSOL,PSOL,X,HU,HT)
 STREAMO(NCOMP+4)=HT
RETURN
END
SUBROUTINE SETTLER(NC,STRI,STRS,STRO,WTS,PS,EPSILON,ERROR)

C SULFUR SETTLER SUBROUTINE
C
C LAST UPDATE: 04/21/86

IMPLICIT REAL*8 (A,H,O,Z)
INTEGER ERROR
REAL*8 STRI(25),STRO(25),STRS(25),XO(20),XS(20),HX(20)
REAL*8 STRIT(25)
REAL*8 MOLWT(20)

COMMON /MOLEC/MOLWT

C SHOW NO ERROR YET
ERROR=0

C MAKE CALL TO SULFUR CRYSTALLIZER ROUTINE TO CHECK SULFUR SATURATION
DO 3 I=1,NC+5
3 STRIT(I)=STRI(I)

CALL CRYSTAL(NC,STRIT,STRI,EPSILON,ERROR)

C INIT TEMPORARY MOLE FRACTION VALUES
DO 5 I=1,NC
XO(I)=0.000
5 XS(I)=0.000

C CONVERT FROM WT % TO WT FRACTION
WTS=WTS/100.000

C CALCULATE THE TOTAL MASS FLOW OF THE INLET STREAM
WTI=0.000
DO 10 I=1,NC
10 WTI=WTI+STRI(I)*STRI(NC+1)*MOLWT(I)
C CALCULATE MASS FLOW OF SOLID SULFUR AND REMOVE IT FROM THE OVERALL FLOW

\[
WS = STR(17) \times STR(NC+1) \times MOLWT(17)
\]

\[
WTI = WTI - WS
\]

C CALCULATE FRACTION OF SOLVENT STREAM TO TRANSFER WITH THE SULFUR AND FRACTION TO REMOVE

\[
FT1 = \frac{WS \times (1.00 - WTS)}{(WTS \times WTI)}
\]

\[
FT2 = 1.000 - FT1
\]

C MAKE SURE THAT SUFFICIENT SOLVENT EXISTS TO YIELD THE DESIRED WT FRACTION OF SULFUR -- IF NOT ENOUGH THEN TRANSFER ALL OF THE SOLVENT STREAM TO THE EXIT SULFUR STREAM

\[
\text{IF(FT1.GT.1.000) THEN}
\]

\[
FT1 = 1.000
\]

\[
FT2 = 0.000
\]

ENDIF

C SET FLOWS FOR BOTH EXIT STREAMS

\[
STRO(NC+1) = 0.000
\]

\[
STRS(NC+1) = 0.000
\]

DO 20 1 = 1, NC

\[
STRS(1) = FT1 \times STR(1) \times STR(NC+1)
\]

\[
STRS(NC+1) = STRS(NC+1) + STRS(1)
\]

\[
STRO(1) = FT2 \times STR(1) \times STR(NC+1)
\]

20

\[
STRO(NC+1) = STRO(NC+1) + STRO(1)
\]

C MOVE ALL OF THE SOLID SULFUR TO THE SULFUR STREAM

\[
\text{STRS(17) = STR(17) \times STR(NC+1)}
\]

\[
\text{STRS(NC+1) = STRS(NC+1) + STRS(17)}
\]

\[
\text{STRO(NC+1) = STRO(NC+1) + STRO(17)}
\]

\[
\text{STRO(17) = 0.000}
\]

C CALCULATE EXIT MOLE FRACTIONS

\[
\text{IF(STRS(NC+1).EQ.0.000) GOTO 30}
\]

DO 25 \[
I = 1, NC
\]

25

GOTO 30
STRS(I) = STRS(I) / STRS(NC+1)

XS(I) = STRS(I)

IF(STRO(NC+1).EQ.0.000D0) GOTO 40

DO 35 I = 1, NC
 STRO(I) = STRO(I) / STRO(NC+1)
 XO(I) = STRO(I)
35

C SET EXIT TEMP, PRESS, AND PHASE

STRO(NC+2) = STRI(NC+2)
STRO(NC+3) = PS
STRO(NC+5) = STRI(NC+5)

IF(STRI(NC+5).LE.3) THEN
 STRS(NC+5) = STRI(NC+5) + 3
ELSE
 STRS(NC+5) = STRI(NC+5)
ENDIF

C CALCULATE EXIT STREAM ENTHALPY

CALL HEAT(0,1,NC,STRO(NC+2),PS,XO,HX,STRO(NC+4))
CALL HEAT(0,1,NC,STRO(NC+2),PS,XS,HX,STRO(NC+4))

RETURN

END
SUBROUTINE WASHER(NC, STRI, STRW, STRO, STRS, PS, WTS, EPSILON, ERROR)

C SULFUR WASHER
C
C LAST UPDATE: 04/21/86

IMPLICIT REAL*8(A-H, O-Z)
LOGICAL ERROR

REAL*8 STRI(25), STRW(25), STRO(25), STRS(25), STRIM(25)

ERROR= .FALSE.

C THE WASHER IS TREATED AS A COMBINATION OF A MIXER (INLET +WATER) AND
C A SETTLER (SULFUR/WATER IS REMOVED FROM THE MAIN LIQUID STREAM)

C CALL MIXER ROUTINE TO BLEND INLET SULFUR SLURRY WITH WATER WASH
CALL MIXER(NC, STRI, STRW, STRIM, PS, IPHASE, EPSILON, ERROR)

C SEND OUTLET OF MIXER TO SETTLER TO REMOVE WASHED SULFUR
CALL SETTLER(NC, STRIM, STRO, STRS, WTS, PS, EPSILON, ERROR)

RETURN
END
SUBROUTINE MELTDEC(NC,STRI,TMELT,PMELT,STRW,STRS,QIN,EPS,ERROR)

C MELTER/DECANTER SUBROUTINE
C
C LAST UPDATE: 04/21/86

IMPLICIT REAL*8(A-H,O-Z)
INTEGER*2 ERROR
REAL*8 STRI(25),STRW(25),STRS(25),HX(20)
REAL*8 X(20)
REAL*8 STL(25),STV(25)

C INITIALIZE OUTPUT STREAM MOLE FRACTIONS TO ZERO
DO 10 I=1,NC
 STRW(I)=0.000
10 STRW(1)=STRW(1)-STRI(17)*STRI(NC+1)

C SET OUTLET FLOWS AND MOLE FRACTIONS
C ASSUME OUTLET SULFUR STREAM IS PURE SULFUR LIQUID
STRS(NC+1)=STRI(17)*STRI(NC+1)
STRS(17)=1.000

C SET EXIT WATER STREAM
C CALCULATE COMPONENT FLOWS AND TOTAL FLOW
 STRW(NC+1)=0.00
 DO 20 I=1,NC
 STRW(I)=STRI(I)*STRI(NC+1)
20 STRW(NC+1)=STRW(NC+1)+STRW(I)
 STRW(NC+1)=STRW(NC+1)-STRI(17)*STRI(NC+1)
 STRW(17)=0.00

C CALCULATE EXIT MOLE FRACTIONS IN WATER STREAM
IF(STRW(NC+1).EQ.0.00) GOTO 35
 DO 30 I=1,NC
 STRW(I)=STRW(I)/STRW(NC+1)
30 STRW(I)=STRW(I)/STRW(NC+1)
C SETOutlet TEMP, PRESS, AND PHASE
35 STRW(NC+2)=TMELT
 STRW(NC+3)=PMELT
 STRW(NC+5)=1

 STRS(NC+2)=TMELT
 STRS(NC+3)=PMELT
 STRS(NC+5)=1

C PERFORM ISOHERMAL FLASH ON WATER STREAM
 IMAX=20
 CALL PTFLASH(NC,STRW,PMELT,TMELT,STL,STV,EPS,IPHASE,IMAX,ERROR)

 STRW(NC+4)=(STL(NC+4)*STL(NC+1)+STV(NC+4)*STW(NC+1))/1
 STRW(NC+1)

 IF(IPHASE.EQ.2) THEN
 STRW(NC+5)=2
 ENDIF

 IF(IPHASE.EQ.3) THEN
 STRW(NC+5)=3
 ENDIF

C CALCULATE ENTHALPY OF EXIT SULFUR STREAM
 DO 40 I=1,NC
40 X(I)=STRS(I)
 CALL HEAT(0,1,NC,TMELT,PMELT,X,HX,STRS(NC+4))

C CALCULATE INPUT HEAT REQUIRED
 QIN=STRW(NC+4)*STRW(NC+1)+STRS(NC+4)*STRS(NC+1)+
 STR(NC+4)*STR(NC+1)

RETURN
END
SUBROUTINE FURNACE(NC,SO2REQ,STSULF,ST2,STAIR,STOUT,TOUT,POUT,
1 GOUT,EPSILON, ERROR)

C FURNACE SUBROUTINE
C
C LAST UPDATE: 04/21/86
C
IMPLICIT REAL*8(A-H,O-Z)
INTEGER*2 ERROR
INTEGER*2 KEY
REAL*8 STSULF(25),ST2(25),STAIR(25),STOUT(25),HX(20),X(20)
REAL*8 CMAT(20,5)

C MATRIX OF COEFFICIENTS FOR COMBUSTION CALCULATIONS
DATA (CMAT(1,1),I=1,5)/0.00,0.00,0.00,0.00,0.00/
DATA (CMAT(2,1),I=1,5)/0.00,0.00,0.00,0.00,1.00/
DATA (CMAT(3,1),I=1,5)/1.50,1.00,1.00,0.00,0.00/
DATA (CMAT(4,1),I=1,5)/0.00,0.00,0.00,0.00,1.00/
DATA (CMAT(5,1),I=1,5)/0.00,0.00,0.00,0.00,0.00/
DATA (CMAT(6,1),I=1,5)/0.00,0.00,0.00,0.00,1.00/
DATA (CMAT(7,1),I=1,5)/0.00,0.00,0.00,0.00,1.00/
DATA (CMAT(8,1),I=1,5)/2.00,0.00,2.00,1.00,0.00/
DATA (CMAT(9,1),I=1,5)/0.50,0.00,0.00,1.00,0.00/
DATA (CMAT(10,1),I=1,5)/0.50,0.00,0.00,1.00,0.00/
DATA (CMAT(11,1),I=1,5)/3.50,0.00,3.00,2.00,0.00/
DATA (CMAT(12,1),I=1,5)/5.00,0.00,4.00,3.00,0.00/
DATA (CMAT(13,1),I=1,5)/6.50,0.00,5.00,4.00,0.00/
DATA (CMAT(14,1),I=1,5)/8.00,0.00,6.00,5.00,0.00/
DATA (CMAT(15,1),I=1,5)/3.00,1.00,2.00,1.00,0.00/
DATA (CMAT(16,1),I=1,5)/4.50,1.00,3.00,2.00,0.00/
DATA (CMAT(17,1),I=1,5)/1.00,1.00,0.00,0.00,0.00/
DATA (CMAT(18,1),I=1,5)/0.00,0.00,0.00,0.00,1.00/
DATA (CMAT(19,1),I=1,5)/0.00,0.00,0.00,0.00,0.00/
DATA (CMAT(20,1),I=1,5)/0.00,0.00,0.00,0.00,0.00/

C NOTE: ON INPUT THE VALUES FOR COMPOSITION, T, P, AND PHASE FOR
C THE AIR STREAM ARE SET. THE FLOW IS CALCULATED BY THIS ROUTINE.
C IT IS ASSUMED THAT THERE IS NOTHING IN THE AIR WHICH CAN BE
C BURNED

C WE ASSUME COMPLETE COMBUSTION OF ALL COMPONENTS WHICH BURN.
C A STOICHIOMETRIC AMOUNT OF OXYGEN IS USED.

C THE INLET STREAMS ARE:
C STSULF = MAIN SULFUR CONTAINING STREAM FOR SO2 PRODUCTION
C ST2 = "JUNK" STREAM CONTAINING ANYTHING WHICH WE WOULD
C LIKE TO BURN (INCLUDING SULFUR COMPS)

C ON INPUT THE TEMPERATURE, PRESSURE AND PHASE OF THE SULFUR STREAM
C SHOULD BE SET. THE FLOW OF STSULF IS ADJUSTED TO YIELD THE CORRECT
C AMOUNT OF SO2 IN THE OUTLET (SO2REQ) TAKING THE SO2 FORMED FROM THE
C "JUNK" STREAM INTO ACCOUNT

ERROR=0

C CALCULATE THE SO2 AVAILABLE FROM THE "JUNK" STREAM
SO2FORM=ST2(4)*ST2(NC+1)
DO 5 I=1,NC
5 SO2FORM=SO2FORM+ST2(I)*ST2(NC+1)*CMAT(I,2)

C ADJUST FLOW OF MAIN SULFUR STREAM TO ACCOUNT FOR SO2 PRODUCED
C BY BURNING THE "JUNK" STREAM
DELSO2=SO2REQ-SO2FORM
SULFSUM=STSULF(4)
DO 7 I=1,NC
7 SULFSUM=SULFSUM+STSULF(I)*CMAT(I,2)
STSULF(NC+1)=DELSO2/SULFSUM

C ZERO THE OUTPUT STREAM
DO 10 I=1,NC+5
10 STOUT(I)=0.000

O2REQ=0.000
C DETERMINE OXYGEN REQUIREMENT
DO 20 I=1,NC
20 O2REQ=O2REQ+(STSULF(I)*STSULF(NC+1)+ST2(I)*ST2(NC+1))*CMAT(1,1)

C CALCULATE INLET AIR REQUIREMENT
 STAIR(NC+1)=O2REQ/STAIR(19)

C TRANSFER ALL INERTS TO THE OUTLET STREAM
DO 30 I=1,NC
30 STOUT(I)=(STSULF(I)*STSULF(NC+1)+ST2(I)*ST2(NC+1)+
 1 STAIR(I))*STAIR(NC+1))*CMAT(I,5)

C DETERMINE AMOUNT OF SO2, CO2, AND H2O FORMED
DO 40 I=1,NC
 STOUT(4)=STOUT(4)+(STSULF(I)*STSULF(NC+1)+ST2(I)*ST2(NC+1))
 1 CMAT(I,2)
 STOUT(2)=STOUT(2)+(STSULF(I)*STSULF(NC+1)+ST2(I)*ST2(NC+1))
 1 CMAT(I,3)
 STOUT(6)=STOUT(6)+(STSULF(I)*STSULF(NC+1)+ST2(I)*ST2(NC+1))
 1 CMAT(I,4)

C CALC TOTAL OUTLET FLOW AND CONVERT COMPONENT FLOWS TO MOLE FRACTIONS
DO 50 I=1,NC
50 STOUT(NC+1)=STOUT(NC+1)+STOUT(I)

DO 60 I=1,NC
60 STOUT(I)=STOUT(I)/STOUT(NC+1)

C CALCULATE AIR ENTHALPY
DO 70 I=1,NC
70 X(I)=STAIR(I)
 CALL HEAT(0,2,NC,STAIR(NC+2),STAIR(NC+3),X,HX,STAIR(NC+4))

C CALCULATE SULFUR STREAM ENTHALPY
DO 75 I=1,NC
75 X(I)=STSULF(I)
 CALL HEAT(0,1,NC,STSULF(NC+2),STSULF(NC+3),X,HX,STSULF(NC+4))
C SET EXIT GAS T,P, PHASE
 STOUT(NC+2) = TOUT
 STOUT(NC+3) = POUT
 STOUT(NC+5) = 2.000

C CALC EXIT GAS ENTHALPY
 DO 80 I = 1, NC
 80 X(I) = STOUT(I)
 CALL HEAT(0, 2, NC, STOUT(NC+2), STOUT(NC+3), X, NX, STOUT(NC+4))

C CALCULATE QOUT
 QOUT = STAIR(NC+1) & STAIR(NC+4) & STSULF(NC+1) & STSULF(NC+4)
 1 ST2(NC+1) & ST2(NC+4) - STOUT(NC+1) & STOUT(NC+4)

RETURN
END
SUBROUTINE COMPRESS(NC,STREAMI,STREAMO,POUT,POWER,IMAX,EPS,ERROR)

LAST UPDATE: 06/10/86

COMPRESSOR SUBROUTINE. USES PRESSURE CHANGE TO CALCULATE THE OUTLET TEMP., PHASE, AND ENTHALPY. ASSUMES ADIABATIC OPERATION AND IDEAL GASSES. ALSO RETURNS THE POWER REQUIRED.

IMPLICIT REAL*8(A-H,O-Z)
INTEGER*2 ERROR
REAL*8 MOLUT(20)
REAL*8 STREAMI(25),STREAMO(25)
REAL*8 STRL(25),STRV(25)

COMMON/MOLEC/MOLUT

TRANSFER ALL VARIABLES FROM INLET TO OUTLET STREAM
DO 10 I=1,NC+5
10 STREAMO(I)=STREAMI(I)

SET NEW VALUE FOR PRESSURE
STREAMO(NC+3)=POUT

CALCULATE THE EXIT TEMPERATURE
STREAMO(NC+2)=STREAMI(NC+2)*((POUT/STREAMI(NC+3))**.028)

FLASH THE STREAM TO DETERMINE ENTHALPY AND PHASE
CALL PTFLASH(NC,STREAMO,POUT,STREAMO(NC+2),STRL,STRV,EPS,IPHASE,IMAX,ERROR)

STREAMO(NC+4)=(STRL(NC+1)*STRL(NC+4)+STRV(NC+1)*STRL(NC+4))/
1 STREAMO(NC+1)

STREAMO(NC+5)=IPHASE
C CALCULATE THE POWER REQUIREMENT

PRATIO=POUT/STREAMI(NC+3)
POCONST=29.09900*STREAMI(NC+2)*STREAMI(NC+1)

IF(PRATIO.LT.5.00) THEN
C SINGLE STAGE COMPRESSION
 POWER=POCONST*(PRATIO**0.2800-1.00)
ELSE
C HIGH COMPRESSION, USE 2 STAGE COMPRESSOR
 POWER=POCONST*2.00*(PRATIO**0.1400-1.00)
ENDIF

IF(STREAMI(NC+5).EQ.3) THEN
 ERROR=2
ELSE
 ERROR=0
ENDIF

RETURN
END
SUBROUTINE SULCENT(NC,P,STRI1,STRI2,STRO1,STRO2,VT1,VT2,
1 EPSILON,ERROR)

C SULFUR CENTRIFUGE ROUTINE
C
C LAST UPDATE: 04/21/86
C
C THE SULFUR CENTRIFUGE SIMulates THE ACTION OF A PUSHER TYPE
C CENTRIFUGE.
C THE ROUTINE CONSISTS OF FOUR OPERATIONS:
C 1. SETTLE INLET SULFUR SLURRY TO FORM INDICATED WTX SLURRY
C 2. WASH SLURRY (USUALLY WITH WATER)
C 3. SETTLE SLURRY TO NEW WTX SULFUR IN EXIT
C 4. MIX LIQUIDS OBTAINED IN STEPS 1 AND 3 TO FORM EXIT LIQUID
C
IMPLICIT REAL*8(A-H,O-Z)
INTEGER*2 ERROR
REAL*8 STRI1(25),STRI2(25)
REAL*8 STRO1(25),STRO2(25)

C STORAGE FOR INTERMEDIATE STREAMS
REAL*8 STRINT1(25),STRINT2(25),STRINT3(25),STRINT4(25)

C DO FIRST SPLIT (CENTRIFUGATION) OF SULFUR FROM INITIAL ENTRANCE STREAM
CALL SETTLER(NC,STRI1,STRINT3,STRINT1,VT1,P,EPSILON,ERROR)

C NOW MIX IN WATER WASH
CALL MIXER(NC,STRINT3,STRI2,STRINT4,P,O,EPSILON,ERROR)

C PERFORM SECOND SPLIT
CALL SETTLER(NC,STRINT4,STRO1,STRINT2,VT2,P,EPSILON,ERROR)

C DO FINAL MIX TO FORM EXIT LIQUID STREAM
CALL MIXER(NC,STRINT1,STRINT2,STRO2,P,O,EPSILON,ERROR)

RETURN
SUBROUTINE PARCOND(NC,STRF,PCOND,TCOND,STRL,STRV,QCHG,EPS,
1 IMAX,ERROR)

C PARTIAL CONDENSER OR ISOTHERMAL FLASH
C
C LAST UPDATE: 04/21/86

IMPLICIT REAL*8(A-H,O-Z)
INTEGER*2 ERROR
REAL*8 STRF(25),STRL(25),STRV(25)

C TREAT PARTIAL CONDENSER AS AN ISOTHERMAL FLASH CALCULATION
CALL PTFLASH(NC,STRF,PCOND,TCOND,STRL,STRV,EPS,IPHASE,
1 IMAX,ERROR)

C CALCULATE ENTHALPY REMOVAL
QCHG=STRL(NC+1)*STRL(NC+4)+STRV(NC+1)*STRV(NC+4)­
1 STRF(NC+1)*STRF(NC+4)
RETURN
END
SUBROUTINE HEATER(NC, STRI, STRO, QIN, EPSILON, ERROR)

C HEATER
C
C LAST UPDATE: 04/21/86

IMPLICIT REAL*8 (A-H, O-Z)
REAL*8 STRI(25), STRO(25), QIN, EPSILON, STRL(25), STRV(25)
REAL*8 HX(20), DHXDT(20), X(20)
INTEGER*2 ERROR

C SET MAXIMUM ITERATIONS FOR TEMPERATURE CONVERGENCE
IMAX=20
ITER=0

C ADD THE HEAT GIVEN BY QIN TO THE STREAM INLET
C FLASH THE STREAM TO SEE IF A PHASE CHANGE OCCURS

C TRANSFER INLET STREAM TO OUTLET STREAM AND SAVE MOLE FRACTIONS
DO 10 I=1,NC+5
 10 STRO(I)=STRI(I)

DO 15 I=1,NC
 15 X(I)=STRO(I)

C CALCULATE UPDATED ENTHALPY
STRO(NC+4)=(STRI(NC+4)*STRI(NC+1)+QIN)/STRI(NC+1)

C FLASH THE STREAM TO CHECK FOR A PHASE CHANGE, DETERMINE OUTLET TEMP
50 CALL PHFLASH(NC, STRO, STRO(NC+3), STRL, STRV, EPSILON, IPHASE, IMAX, 1 ,ERROR)

C SET RETURN PHASE
STRO(NC+5)=IPHASE
SUBROUTINE STORAGE(NC,STREAMI,STREAMO,FLOWIO,ICOMP,TOUT)

C STORAGE OR COMPONENT FLOW SET ROUTINE
C
C LAST UPDATE: 04/21/86

IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 STREAMI(25),STREAMO(25),X(20),HX(20)

C SET RETURN VALUES FOR ALL ZI,FLOW,TEMP,PRESS,ENTHALPY,PHASE
DO 10 I=1,NC+5
10 STREAMO(I)=STREAMI(I)

C MODIFY FLOW BASED ON DESIRED FLOW OF COMPONENT I
C LEAVE COMPOSITION UNCHANGED
STREAMO(NC+1)=FLOWIO/STREAMI(ICOMP)

C MODIFY TEMPERATURE TO THAT SPECIFIED
STREAMO(NC+2)=TOUT

C RECALC ENTHALPY
DO 20 I=1,NC
20 X(I)=STREAMO(I)

IPHASE=INT(STREAMO(NC+5))
PRESS=STREAMO(NC+3)
CALL HEAT(0,IPHASE,NC,TOUT,PRESS,X,HX,STREAMO(NC+4))

RETURN
END
SUBROUTINE CRYSTAL(NC,STRI,STRO,EPSILON,ERROR)

C SULFUR CRYSTALLIZER
C
C LAST UPDATE: 04/21/86

C CALCULATES AND RETURNS THE AMOUNT OF SULFUR WHICH IS TRANSFERED TO
C THE SOLID PHASE BASED ON THE INLET CONDITIONS OF STRI
C USES THE SULFSOL ROUTINE

IMPLICIT REAL*8(A-H,O-Z)
INTEGER*2 ERROR

REAL*8 STRI(25),STRO(25)

C SET TEMPERATURE AND PRESSURE FOR SULFUR SATURATOR
TSOL=STRI(NC+2)
PSOL=STRI(NC+3)

C CALL THE SULFUR SOLUBILITY ROUTINE
CALL SULFSOL(NC,STRI,STRO,TSOL,PSOL,EPSILON,ERROR)

RETURN
END
SUBROUTINE MAKEUP(NC,STREAM1,STREAM0,FLOW10,ICOMP,IMAX,EPS,ERR)

IMPLICIT REAL*8 (A-H,O-Z)

REAL*8 STREAM1(25),STREAM0(25),X(20),HX(20)

REAL*8 STRL(25),STRV(25)

INTEGER*2 ERR

C LAST UPDATE: 06/10/86

C SET FLOW OF COMPONENT ICOMP LEAVING ALL OTHER FLOWS UNCHANGED

C CALCULATE ALL FLOWS

DO 10 I=1,NC
10 STREAM0(I)=STREAM1(I)*STREAM1(NC+1)

C SET FLOW OF ICOMP, CALCULATE NEW MOLE FRACTIONS

STREAM0(ICOMP)=FLOW10

STREAM0(NC+1)=0.000

DO 20 I=1,NC
20 STREAM0(NC+1)=STREAM0(NC+1)+STREAM0(I)

DO 30 I=1,NC
30 STREAM0(I)=STREAM0(I)/STREAM0(NC+1)

C SET TEMPERATURE, AND PRESSURE

STREAM0(NC+2)=STREAM1(NC+2)

STREAM0(NC+3)=STREAM1(NC+3)

C SET ENTHALPY AND PHASE BY FLASH CALCULATION

CALL PTFLASH(NC,STREAM0,STREAM0(NC+3),STREAM0(NC+2),STRL,STRV,
1 EPS,IPHASE,IMAX,ERR)

C SET ENTHALPY

STREAM0(NC+4)=(STRL(NC+1)*STRL(NC+4)+STRV(NC+1)*STRV(NC+4))/
1 STREAM0(NC+1)
SUBROUTINE TSET(NC, STRI, STRO, T, QCHG, IMAX, EPS, ERR)

C TEMPERATURE SETTER ROUTINE
C
C LAST UPDATE: 04/21/86
C
C CHANGE THE TEMPERATURE OF THE STREAM TO T
C RECALC ENTHALPY AND RETURN HEAT REMOVED OR ADDED

IMPLICIT REAL*8(A-H,O-Z)
REAL*8 STRI(25), STRO(25)
REAL*8 STRL(25), STRV(25)
INTEGER*2 ERR

C TRANSFER MOLE FRACTIONS TO OUTLET AND TEMPORARY VECTOR
DO 10 I=1,NC
10 STRO(I)=STRI(I)

C SET EXIT FLOW, TEMPERATURE, PRESSURE, PHASE
STRO(NC+1)=STRI(NC+1)
STRO(NC+2)=T
STRO(NC+3)=STRI(NC+3)
STRO(NC+5)=STRI(NC+5)

C FLASH THE EXIT STREAM

CALL PTFLASH(NC, STRO, STRO(NC+3), T, STRL, STRV, EPS, IPH, IMAX, ERR)

C SET OUTLET STREAM ENTHALPY AND PHASE

STRO(NC+4)=(STRL(NC+1)*STRL(NC+4)+STRV(NC+1)*STRV(NC+4))/
 STRO(NC+1)
STRO(NC+5)=IPH

C CALCULATE ENTHALPY CHANGE
QCHG=(STRO(NC+4)-STRI(NC+4))*STRI(NC+1)
SUBROUTINE HCSSPLIT(NC, STR1, STR01, STR02)

C HYDROCARBON REMOVAL ROUTINE
C
C LAST UPDATE: 04/21/86
C
C ROUTINE TO SPLIT STREAMS LEAVING ALL OF THE HYDROCARBONS
C IN EXIT STREAM 1.
C THIS ROUTINE IS NOT THERMODYNAMICALLY VALID!
C IT SHOULD ONLY BE USED IN CASES WHERE A NEARLY COMPLETE
C SPLIT BETWEEN HYDROCARBONS AND OTHER COMPONENTS CAN BE
C OBTAINED. AN EXAMPLE OF THIS WOULD BE A PHASE SPLIT BETWEEN
C WATER AND HYDROCARBONS. UNDER THESE CONDITIONS THE ROUTINE PERFORMS
C A USEFUL ALTHOUGH NOT STRICTLY "KOSHER" FUNCTION.
C
C IF THE SIMULATION IS EVER UPDATED TO SIMULTANEOUSLY HANDLE TWO
C SEPARATE LIQUID PHASES, THIS ROUTINE CAN BE CHANGED TO AN
C EXTRACTION SUBROUTINE

IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 STRI(25), STR01(25), STR02(25), X1(20), X2(20), HX(20)

C INITIALIZE OUTLET STREAMS
DO 10 I=1,25
 STR01(I)=0.000
10 STR02(I)=0.000

C TRANSFER ALL HYDROCARBONS TO EXIT STREAM 1
 STR01(8)=STRI(8)*STRI(NC+1)
 STR01(11)=STRI(11)*STRI(NC+1)
 STR01(12)=STRI(12)*STRI(NC+1)
 STR01(13)=STRI(13)*STRI(NC+1)
 STR01(14)=STRI(14)*STRI(NC+1)

C CALCULATE EXIT FLOW IN STREAM 1
DO 15 I=1,NC
15 STR01(NC+1)=STR01(NC+1)+STR01(I)
C TRANSFER OTHER COMPONENTS TO EXIT STREAM 2
 DO 20 I=1,NC
20 STRO2(I)=STRI(I)*STRI(NC+1)

C CORRECT STREAM 2 FOR REMOVED HYDROCARBONS
 STRO2(8)=0.000
 STRO2(11)=0.000
 STRO2(12)=0.000
 STRO2(13)=0.000
 STRO2(14)=0.000

C CALCULATE EXIT FLOW IN STREAM 2
 DO 25 I=1,NC
25 STRO2(NC+1)=STRO2(NC+1)+STRO2(I)

C CALCULATE NEW MOLE FRACTIONS
 IF(STRI(NC+1).EQ.0.00) GOTO 35
 DO 30 I=1,NC
30 STRI(I)=STRI(I)/STRI(NC+1)
35 IF(STRO2(NC+1).EQ.0.00) GOTO 45
 DO 40 I=1,NC
40 STRO2(I)=STRO2(I)/STRO2(NC+1)

C SET EXIT TEMP, PRESSURE, AND PHASE
 STRO1(NC+2)=STRI(NC+2)
 STRO1(NC+3)=STRI(NC+3)
 STRO1(NC+4)=STRI(NC+4)
 STRO2(NC+2)=STRI(NC+2)
 STRO2(NC+3)=STRI(NC+3)
 STRO2(NC+4)=STRI(NC+4)

C CALCULATE EXIT ENTHALPIES
DO 50 I=1,NC
X1(I)=STRO1(I)
X2(I)=STRO2(I)

CALL HEAT(0,1,NC,STRO1(NC+2),STRO1(NC+3),X1,KX,STRO1(NC+4))
CALL HEAT(0,1,NC,STRO2(NC+2),STRO2(NC+3),X2,HX,STRO2(NC+4))

RETURN
END
SUBROUTINE PTFLASH(NCOMP, STREAMF, PFLASH, TFLASH, STRL, STRV,
1 EPSILON, IPHASE, IMAX, ERROR)

C ISOTHERMAL FLASH
C
C LAST UPDATE: 06/16/86
C
C REFERENCE: KING, 1971, PGS. 75-80

IMPLICIT REAL*8 (A-H,O-Z)
INTEGER*2 ERROR
INTEGER*2 NCOMP, IMAX, ITER
REAL*8 STREAMF(25), PFEED, TFEED, F, ZF(20), HF, PFLASH,
1 TFLASH, V, L, X(20), Y(20), EPSILON
REAL*8 STRL(25), STRV(25)
REAL*8 TUBS, IDEW, VF
REAL*8 K(20)
REAL*8 OLD, NEW
REAL*8 FDREV
REAL*8 HT, HFI(20)

C SET ERROR RETURN TO AN ERROR CONDITION, SET RETURN ENTHALPIES TO 0
ERROR = 1
ITER = 0
HTL = 0.000
HTV = 0.000

C SET VALUES FOR MOLE FRACTIONS - FIRST GUESS
DO 5 I = 1, NCOMP
2F(I) = STREAMF(I)
X(I) = ZF(I)
5
Y(I) = ZF(I)

C SET LOCAL STREAM VARIABLES
HF = STREAMF(NCOMP + 4)
PFEED = STREAMF(NCOMP + 3)
TFED=STREAMF(NCOMP+2)
F=STREAMF(NCOMP+1)

C CALCULATE F(V/F) AT V/F=0 AND V/F=1 AND USE THESE VALUES TO DETERMINE
C IF MIXTURE CAN BE FLASHED
 CALL KVAL(O,NCOMP,TFLASH,PFLASH,X,Y,K)
 VFO=0.000
 VF1=1.000
 FVF0=0.000
 FVF1=0.000

 DO 7 I=1,NCOMP
 IF(K(I).EQ.0.000) GOTO 7
 FVF0=FVF0+(ZF(I)*(K(I)-1.000))/(VFO*(K(I)-1.000)+1.000)
 FVF1=FVF1+(ZF(I)*(K(I)-1.000))/(VF1*(K(I)-1.000)+1.000)
 7 CONTINUE

C IF F(V/F) IS POSITIVE AT V/F=1 THEN HAVE SUPERHEATED VAPOR
 IF(FVF1.GT.0.000) THEN
 DO 10 I=1,NCOMP
 X(I)=0.000
 V=F
 L=0.000
 IPHASE=2
 ERROR=3
 GOTO 100
 ENDIF

C IF F(V/F) IS NEGATIVE AT V/F=0 THEN HAVE SUBCOOLED LIQUID
 IF(FVF0.LT.0.000) THEN
 DO 15 I=1,NCOMP
 Y(I)=0.000
 L=F
 V=0.000
 IPHASE=1
 ERROR=3
 ENDIF
GOTO 100
ENDIF

C**
C HAVE MIXTURE, PERFORM FLASH CALCULATION
C**

C MAKE FIRST GUESS FOR TFLASH AND V/F
CALL BUBDEW(NCOMP,TFEED,X,Y,TBUB,TDEW,PFLASH,EPSILON,2)
VF=(TFLASH-TBUB)/(TDEW-TBUB)
V=VF*F

C CALCULATE F
OLDF=0.0
DO 20 I=1,NCOMP
20 OLDF=OLDF+(ZF(I)*(K(I)-1))/(VF*(K(I)-1)+1.0D0)

C CALCULATE DF/DV
25 FDERV=0.0D0
DO 30 I=1,NCOMP
30 FDERV=DERV+(ZF(I)*((K(I)-1)**2)/((VF*(K(I)-1)+1.0D0)**2)

C CALCULATE NEW VF, V
VFOLD=VF
VF=VF*OLDF/FDERV

C BOUND VF BETWEEN 0 AND 1 BY AVERAGING OLD VALUE WITH 0 OR 1
IF(VF.GT.1.0D0) THEN
 VF=(VFOLD+1.0D0)/2.0D0
ENDIF
IF(VF.LT.0.0D0) THEN
 VF=VFOLD/2.0D0
ENDIF

V=VF*F
C CALCULATE NEW X,Y
 L=F-V!
 WRITE(6,99000) F,V,L
 99000 FORMAT(X,F=20.10,Y=20.10, L=20.10)
 DO 40 I=1,NCOMP
 X(I)=ZF(I)/((K(I)-1)*VF+1)
 40 Y(I)=X(I)*K(I)
C CALCULATE NEW K VALUES
 CALL KVAL(O,NCOMP,TFLASH,PFLASH,X,Y,K)
C CALCULATE NEW F FUNCTION
 NEWF=0.0
 DO 50 I=1,NCOMP
 50 NEWF=NEWF+(ZF(I)*(K(I)-1))/(VF*(K(I)-1)+1.000)
 IITER=IITER+1
C CHECK FOR CONVERGENCE
 IF(IITER.GT.IMAX) GOTO 100
 IF(DABS(NEWF).GT.EPSILON) THEN
 OLDF=NEWF
 GOTO 25
 ELSE
 IF(IITER.EQ.IMAX) GOTO 100
 ENDIF
C CONVERGED, SHOW NO ERROR (EXCEPT MIXED PHASE), HAVE MIXTURE AND THEN EXIT
 ERROR=2
 IPHASE=3
 GOTO 100
ENDIF
C SET RETURN STREAM VALUES
C CALCULATE STREAM ENTHALPIES
 IF(L.EQ.0.000) GOTO 110
 CALL HEAT(O,1,NCOMP,TFLASH,PFLASH,X,HFI,HTL)
 110 IF(V.EQ.0.000) GOTO 120
CALL HEAT(0,2,NCOMP,TFLASH,PFLASH,Y,HTL,HTV)

C SET EXIT STREAM COMPOSITIONS
120 DO 300 I=1,NCOMP
 STRL(I)=X(I)
300 STRV(I)=Y(I)

C FLOW, TEMP, PRESSURE, ENTHALPY, PHASE
 STRL(NCOMP+1)=L
 STRV(NCOMP+1)=V

 STRL(NCOMP+2)=TFLASH
 STRV(NCOMP+2)=TFLASH

 STRL(NCOMP+3)=PFLASH
 STRV(NCOMP+3)=PFLASH

 STRL(NCOMP+4)=HTL
 STRV(NCOMP+4)=HTV

 STRL(NCOMP+5)=1
 STRV(NCOMP+5)=2

RETURN
END
SUBROUTINE BUBDEW(NCOMP,TFEED,XO,YO,TBUB,TDEW,PVESS,EPSILON,KEY)

C LAST UPDATE: 06/10/86

C THIS ROUTINE CALCULATES THE BUBBLE AND DEW POINTS GIVEN THE FEED
C PROPERTIES AND THE VESSEL TEMPERATURE
C IF KEY=0 THEN CALCULATE BUBBLE POINT
C KEY=1 THEN CALCULATE DEW POINT
C KEY=2 THEN CALCULATE BOTH

IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 XO(ZO),YO(ZO),XT(20),YT(20),XT20),DKDT(20),K1(20)
INTEGER*2 KEY

IMAX=20

C RENORMALIZE MOLE FRACTIONS FOR ANY SOLID OR DISSOLVED SULFUR
C PRESENT IN THE INLET
DO 1 I=1,NCOMP
 X(I)=XO(I)
 Y(I)=YO(I)
 SUM0=1.0*X(I)-X(5)
 SUM1=1.0*Y(I)-Y(5)
1 CONTINUE

C IF STREAM IS ALL SULFUR, SET BUBBLE AND DEW POINTS TO NORMAL SULFUR
C BOILING POINT
 IF(SUM0.EQ.0) THEN
 TBUB=717.7D0
 TDEW=TBUB
 RETURN
 ENDIF

 DO 2 I=1,NCOMP
 X(I)=X(I)/SUM0
 Y(I)=Y(I)/SUM1
 2 CONTINUE
 X(17)=0.000
Y(17) = 0.000
X(5) = 0.000
Y(5) = 0.000

TTEMP = TFEED + 100.000
CALL KVAL(0, NCOMP, TFEED, PVSS, X, Y, K)
CALL KVAL(0, NCOMP, TTEMP, PVSS, X, Y, K1)

SUMB0 = 0.000
SUMB1 = 0.000
SUMD0 = 0.000
SUMD1 = 0.000
DO 100 I = 1, NCOMP
SUMB0 = SUMB0 + X(I)*K(I)
SUMB1 = SUMB1 + X(I)*K1(I)
IF(K(I).EQ.0.000) GOTO 100
IF(K1(I).EQ.0.000) GOTO 100
SUMD0 = SUMD0 + Y(I)/K(I)
SUMD1 = SUMD1 + Y(I)/K1(I)
100 CONTINUE

TBUBNEW = (1.000/TFEED)*((1.000/TTEMP - 1.000/TFEED)*(DLOG(SUMB0)/
1 (DLOG(SUMB0) - DLOG(SUMB1)))+
1.000/TBUBNEW

TDEWNEW = (1.000/TFEED)*((1.000/TTEMP - 1.000/TFEED)*(DLOG(SUMD0)/
1 (DLOG(SUMD0) - DLOG(SUMD1)))+
1.000/TDEWNEW

IF(KEY.EQ.1) GOTO 15
ITER = 0
5 TBUB = TBUBNEW
CALL KVAL(0,NCOMP,TBUB,PVESS,X,Y,K)
CALL KVAL(1,NCOMP,TBUB,PVESS,X,Y,DKDT)

SUMO=0.000
SUM1=0.000
DO 10 I=1,NCOMP
 SUMO=SUMO+X(I)*X(I)
 SUM1=SUM1+X(I)*DKDT(I)
10

TBUBNEW=TBUB·DLOG(SUMO)/(SUM1/SUMO)

IF(TBUBNEW.LT.0.000) THEN
 TBUBNEW=TBUB/2.000
ENDIF

ITER=ITER+1

IF(ITER.GT.IMAX) GOTO 13

IF((DABS(TBUB-TBUBNEW)).GT.EPSILON) GOTO 5

13 WRITE(6,10000) TBUB
10000 FORMAT(X,'TBUB=',F6.2)

IF(KEY.EQ.0) GOTO 25

15 ITER=0
17 TDEW=TDEWNEW

CALL KVAL(0,NCOMP,TDEW,PVESS,X,Y,K)
CALL KVAL(1,NCOMP,TDEW,PVESS,X,Y,DKDT)

SUMO=0.000
SUM1=0.000
DO 20 I=1,NCOMP
IF(K(I).EQ.0.000) GOTO 20
SUMO=SUMO+Y(I)/K(I)
SUM1=SUM1+(Y(I)/K(I)**2)*DXDT(I)
20 CONTINUE

TDEWNEW=TDEW+DLOG(SUMO)/(SUM1/SUMO)

IF(TDEWNEW.LT.0.000) THEN
 TDEWNEW=TDEW/2.000
ENDIF

ITER=ITER+1
IF(ITER.GT.IMAX) GOTO 22

IF(DABS(TDEW-TDEWNEW).GT.EPSILON) GOTO 17

22 WRITE(6,10100) TDEW
10100 FORMAT(X,'TDEW=',F6.2)

25 RETURN
END
REAL*8 FUNCTION SULFUR(T)
IMPLIED REAL*8(A-H,O-Z)

C SULFUR SATURATION FUNCTION
C
C LAST UPDATE: 04/21/86

C CALCULATE AND RETURN THE MOLE FRACTION SULFUR AT SATURATION
C SET THE VALUES OF A AND B TO FIT THE EQU. OF THE FORM
C LN(VTI SULFUR)=A*TM/T+B
C FOR THE SOLVENT OF INTEREST
C NOTE: TM = MELTING POINT OF SULFUR (112.8 C)
C THE CONSTANTS A1,B1 APPLY FOR T<TM WHILE A2,B2 APPLY FOR T>TM

C DATA OF SCIAMANNA, 1986

REAL*8 MOLWT(20)
REAL*8 MOLR

COMMON/MOLEC/MOLWT

DATA A1,B1,A2,B2/-10.899,12.39,-5.64,1.121/
DATA TM/385.95/

C CALCULATE VTI SULFUR, CHECK FOR TEMPERATURE RANGE
IF(T.LT.TM) THEN
 WTS=DEXP(A1*TM/T+B1)
ELSE
 WTS=DEXP(A2*TM/T+B2)
ENDIF

C FOR TEMPERATURES LESS THEN 273.16 K, ASSUME ZERO SOLUBILITY
IF(T.LT.273.16D0) THEN
 WTS=0.000
ENDIF
C CONVERT CALCULATED VALUE TO MOLE FRACTION FOR THIS MIXTURE
WTS=WTS/100.0

C GET RATIO OF MOLECULAR WT OF SULFUR TO THAT OF SOLVENT
MOLR=32.000/WOLUT(1)

SULFUR=WTS/(WTS+MOLR*(1-WTS))

RETURN
END
C Thermodynamic Data Subroutines: Notes
C
C LAST UPDATE: 04/21/86
C
C 1. Calling parameters for Heat and Kval
C
C HEAT(TYPE, PHASE, NCOMP, T, P, XEXPR, HEXPR, HT)
C KVAL(TYPE, NCOMP, T, P, X, Y, KEXPR)
C
C where
C
C TYPE=0 for calculation of enthalpies (HEXPR= Vector of NL, NV, K)
C TYPE=1 for calculation of derivatives (HEXPR=Vector of DNLDT, DXDT, etc.)
C
C PHASE=1 for liquid and 2 for vapor
C (If sulfur is present the phase value may be 4 or 5. These routines
C treat the fluid as a liquid if phase 4 and a vapor if phase 5 for the
C purpose of calculating the properties of the other components)
C
C NCOMP=Number of Components
C
C T=Temperature in degrees K
C
C P=Pressure in KPa
C
C XEXPR= Vector of liquid or vapor mole fractions
C
C HT=Molar average enthalpy for the stream
C
C Components in the Subroutines are numbered as followed:
C 1=SOLV
C 2=H2O
C 3=H2S
C 4=SO2
C 5=SULFUR DISSOLVED IN SOLVENT
C 6=CO2
C 7=N2
C 8=C1
C 9=N2
C 10=CO
C 11=C2
C 12=C3
C 13=C4
C 14=C5+
C 15=CH3SH
C 16=C2H5SH
C 17=PURE SOLID AND LIQUID SULFUR (PHASE SET BY TEMPERATURE)
C 18=PURE LIQUID AND GASEOUS WATER
C 19=O2
C 20=NOT USED

C REFERENCES:
C A. ENTHALPIES
C 1. VAPOR HEAT CAPACITIES - REID ET AL., 1977
C 2. HEATS OF VAPORIZATION - REID ET AL., 1977
C 3. HEATS OF SOLUTION IN TETRAGLYME
C 4. ENTHALPIES OF FORMATION - CRC, 1984
C 5. ENTHALPY OF SOLID AND LIQUID SULFUR - CRC, 1984
C 6. ENTHALPY OF TETRAGLYME - GRANT CHEMICAL, 1982
C
C B. K VALUES
C 1. SOLUBILITIES OF GASES IN TETRAGLYME
C 2. SOLUBILITIES OF GASES IN WATER - WILHELM ET. AL., 1977
C 3. ANTOINE EQUATION CONSTANTS - REID ET. AL., 1977
C 4. TETRAGLYME VAPOR PRESSURE - GRANT CHEMICAL, 1982
C
C C. ENTHALPY DEPARTURE FUNCTION AND FUGACITY COEFFICIENT.
C 1. EQUATIONS AND SOLUTION TO REDLICH-KWONG EQS. OF STATE
C 2. EDMISTER, 1968
C 3. SMITH AND VAN NESS, 1975
C BEGIN THERMODYNAMICS SUBROUTINES

SUBROUTINE HEAT(TYPE,IPHASE,NCOMP,T,P,X,H,HT)
IMPLICIT REAL*8 (A-H,O-Z)
INTEGER*2 TYPE,IPHASE,NCOMP
INTEGER*2 INDEXI(20)
REAL*8 X(20),H(20),HSOLN(20),HVAP(20)
REAL*8 A(20),B(20),C(20),D(20),E(20)
REAL*8 HDEP PHI(20),SOLD(23)

COMMON/THRM/HDEP PHI, SOLD, Z

C AT PRESENT HV=AT+BT**2+CT**3+DT**4+E, NL=HV-HSOLN
C FOR COMPONENT 17, SULFUR, SIMILAR EXPRESSIONS ARE USED FOR THE
C CALCULATION OF THE LIQUID OR SOLID ENTHALPY - PHASE DETERMINED BY
C TEMPERATURE.
C
C CONSTANTS FOR EQNS.

DATA A(1),B(1),C(1),D(1),E(1), HSOLN(1),HVAP(1)/397.1400,
1 0.000,0.000,0.000,-40123.200,78244.5,78244.5/

DATA A(2),B(2),C(2),D(2),E(2),HSOLN(2),HVAP(2)/32.22300,
1 0.1930-2,1.0550-5,-3.5940-9,-2.41805,40665.9,40665.9/

DATA A(3),B(3),C(3),D(3),E(3),HSOLN(3),HVAP(3)/31.92100,
1 0.1450-2,2.4310-5,2.4310-5,0.7580-9,-0.20205,18765.5,18660.6/

DATA A(4),B(4),C(4),D(4),E(4),HSOLN(4),HVAP(4)/23.83700,
1 6.6950-2,-4.9580-5,13.2720-9,-2.96905,35650.0,24915.7/

DATA A(5),B(5),C(5),D(5),E(5),HSOLN(5),HVAP(5)/14.9800,
1 1.3050-2,0.000,0.000,-5622.900,0.000,0.000/

DATA A(6),B(6),C(6),D(6),E(6),HSOLN(6),HVAP(6)/19.78300,
DATA A(7),B(7),C(7),D(7),E(7),HSOLN(7),HVAP(7)/31.13000,
1 7.339D-2,-5.598D-5,17.143D-9,-3.935D-5,11337.8,17154.4/
DATA A(8),B(8),C(8),D(8),E(8),HSOLN(8),HVAP(8)/19.23900,
1 5.209D-2,1.197D-5,-1.310D-9,5577.3,8179.7,8179.7/
DATA A(9),B(9),C(9),D(9),E(9),HSOLN(9),HVAP(9)/27.12600,
1 .927D-2,-1.300D-5,7.640D-9,-1.106D-5,6041.7,6041.7/
DATA A(10),B(10),C(10),D(10),E(10),HSOLN(10),HVAP(10)/30.85000,
1 1.284D-2,2.787D-5,-1.265D-9,-1.038D-5,10300.0,18773.6/
DATA A(11),B(11),C(11),D(11),E(11),HSOLN(11),HVAP(11)/5.40600,
1 17.800D-2,-6.933D-5,8.707D-9,903.7,22392.8/
DATA A(12),B(12),C(12),D(12),E(12),HSOLN(12),HVAP(12)/4.22200,
1 30.607D-2,-15.854D-5,32.126D-9,-1.464D-5,25773.4,25773.4/
DATA A(13),B(13),C(13),D(13),E(13),HSOLN(13),HVAP(13)/9.48100,
1 33.110D-2,-11.076D-5,-2.820D-9,1.261D5,14970.0,14970.0/
DATA A(14),B(14),C(14),D(14),E(14),HSOLN(14),HVAP(14)/3.62300,
1 48.704D-2,25.787D-5,53.014D-9,24560.1,24560.1/
DATA A(15),B(15),C(15),D(15),E(15),HSOLN(15),HVAP(15)/13.26000,
1 14.557D-2,-8.540D-5,20.737D-9,26777.6,26777.6/
DATA A(16),B(16),C(16),D(16),E(16),HSOLN(16),HVAP(16)/14.91200,
1 23.494D-2,-13.553D-5,31.599D-9,26777.6,26777.6/
DATA A(17),B(17),C(17),D(17),E(17),HSOLN(17),HVAP(17)/0.000,
1 0.000,0.000,0.000,0.000,0.000,0.000/
DATA A(18),B(18),C(18),D(18),E(18),HSOLN(18),HVAP(18)/32.22300,
1 0.193D-2,1.055D-5,-3.594D-9,-2.418D5,40655.9,40655.9/
DATA A(19), B(19), C(19), D(19), E(19), NSOLN(19), HVAP(19)/28.08700,
1 -0.000370-2, 1.7450-5, -10.64409, 0.000, 6819.9, 6819.9/
DATA A(20), B(20), C(20), D(20), E(20), NSOLN(20), HVAP(20)/0.000,
1 0.000, 0.000, 0.000, 0.000, 0.000, 0.000/

C DATA FOR PURE SULFUR CALCULATION

DATA TMELTS, ASL, BSL, CSL, ASS, BSS, CSS/392.000, -5622.900, 14.98DO,
1 1.3050-2, -6972.900, 22.5900, 1.040-2/

PHASE=IPHASE

IF(TYPE.EQ.0) GOTO 1000

C CALCULATE DERIVATIVES

DO 10 I=1, NCOMP
10 H(I)=A(I)+Z*B(I)*T+3*C(I)*T**2+4*D(I)*T**3

C CALCULATE ENTHALPY DERIVATIVE FOR PURE SULFUR

IF(T .GE. TMELTS) THEN
 H(17)=BSL+2*CSL*T
ELSE
 H(17)=BSS+2*CSS*T
ENDIF

GOTO 1600

C CALCULATE ENTHALPIES

C FIRST CALCULATE THE ENTHALPY DEPARTURE FUNCTION

1000 CALL RKZ(P, T, X, NCOMP)

DO 20 I=1, NCOMP
20 H(I)=E(I)+A(I)*T+B(I)*T**2+C(I)*T**3+D(I)*T**4
C CORRECT PHASE TYPE FOR PRESENCE OF SULFUR
 IF(PHASE.GT.3) THEN
 PHASE=PHASE-3
 ENDIF

C CHECK FOR LIQUID PHASE
 IF(PHASE.EQ.1) THEN
C IF THERE IS A SMALL AMOUNT OF SOLVENT THEN USE HEAT OF SOLN
 IF(X(1).GT.0.01) THEN
 DO 30 I=1,NCOMP
 H(I)=H(I)-HSOLN(I)
 ELSE
C ELSE USE THE HEAT OF VAPORIZATION
 DO 33 I=1,NCOMP
 H(I)=H(I)-HVAP(I)
 ENDIF
C ELSE USE THE HEAT OF VAPORIZATION
 ELSE
C FOR VAPOR PHASE ADD DEPARTURE FUNCTION CORRECTION FOR PRESSURE
 DO 35 I=1,NCOMP
 H(I)=H(I)+HDEP
 ENDIF
 ELSE
C CALCULATE SULFUR ENTHALPY
 1500 IF(T.GE.TMELTS) THEN
 H(17)=ASL+BSL*T+CSL*T**2
 ELSE
 H(17)=ASS+BSS*T+CSS*T**2
 ENDIF

C CALCULATE AVERAGE MOLAR STREAM ENTHALPY OR AVERAGE DERIVATIVE
 1600 HT=0.000
 DO 40 I=1,NCOMP
 HT=HT+H(I)**X(I)
 40 CONTINUE
 2000 RETURN
SUBROUTINE KVAL(TYPE,NCOMP,T,P,X,Y,K)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 K(20),X(20),Y(20),A(20),B(20),C(20),HO(20),HSOLN(20)
REAL*8 HOW(20),HSOLNW(20)
REAL*8 HDEP,PHI(20),SOLD(23),PHITEMP(20),DXT(20)
REAL*8 MOLWT(20)
INTEGER*2 TYPE

COMMON/THRM/HDEP,PHI,SOLD,Z
COMMON/MOLEC/MOLWT

DATA A(1),B(1),C(1),HO(1),HSOLN(1),HOW(1),HSOLNW(1)/0.000,0.000,0.000,
1 0.000,1.000,0.000,1.000,0.000/
DATA A(2),B(2),C(2),HO(2),HSOLN(2),HOW(2),HSOLNW(2)/18.3036,1381.64,-46.13,7.54,40665.9,1.00,0.000/
DATA A(3),B(3),C(3),HO(3),HSOLN(3),HOW(3),HSOLNW(3)/16.1040,1168.69,-26.06,420.61,18165.5,52362.000,10012.6500/
DATA A(4),B(4),C(4),HO(4),HSOLN(4),HOW(4),HSOLNW(4)/16.1680,12302.35,-35.91,16.96,35650.0,4020.00,23081.9900/
DATA A(5),B(5),C(5),HO(5),HSOLN(5),HOW(5),HSOLNW(5)/0.000,0.000,0.000,1.000,0.000,1.000,0.000/
DATA A(6),B(6),C(6),HO(6),HSOLN(6),HOW(6),HSOLNW(6)/22.589800,14.9542D0,1588.1200,-6.6000,41250000,5511.3,81430.1100/
DATA A(7),B(7),C(7),HO(7),HSOLN(7),HOW(7),HSOLNW(7)/15.2243,1891.84,-7.16,82500.0,8179.1,3779490.00,10315.8800/

END
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>HO</th>
<th>HSOLN</th>
<th>HOW</th>
<th>HSOLNW</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>164.9000</td>
<td>3.1900</td>
<td>41250000</td>
<td>903.7</td>
<td>6867911.00</td>
<td>3026.5400</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>C(10)</td>
<td>HO(10)</td>
<td>HSOLN(10)</td>
<td>HOW(10)</td>
<td>HSOLNW(10)</td>
</tr>
<tr>
<td>14.368600</td>
<td>530.2200</td>
<td>-13.1500</td>
<td>193359.0</td>
<td>6041.7</td>
<td>5521138.00</td>
<td>8872.2800</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>C(11)</td>
<td>HO(11)</td>
<td>HSOLN(11)</td>
<td>HOW(11)</td>
<td>HSOLNW(11)</td>
</tr>
<tr>
<td>15.6637</td>
<td>1511.42</td>
<td>-17.16</td>
<td>12944.6</td>
<td>14706.8</td>
<td>2747805.00</td>
<td>16261.1000</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>HO(12)</td>
<td>HSOLN(12)</td>
<td>HOW(12)</td>
<td>HSOLNW(12)</td>
<td></td>
</tr>
<tr>
<td>15.7260</td>
<td>1872.46</td>
<td>-25.16</td>
<td>2142.00</td>
<td>10300.0</td>
<td>3353518.00</td>
<td>19795.4000</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>C(13)</td>
<td>HO(13)</td>
<td>HSOLN(13)</td>
<td>HOW(13)</td>
<td>HSOLNW(13)</td>
</tr>
<tr>
<td>15.6782</td>
<td>2154.90</td>
<td>-34.42</td>
<td>723.0</td>
<td>14970.0</td>
<td>4086309.00</td>
<td>21618.2000</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>C(14)</td>
<td>HO(14)</td>
<td>HSOLN(14)</td>
<td>HOW(14)</td>
<td>HSOLNW(14)</td>
</tr>
<tr>
<td>15.8333</td>
<td>2477.07</td>
<td>-39.94</td>
<td>998.95</td>
<td>25773.4</td>
<td>8857999.00</td>
<td>18879.9000</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>C(15)</td>
<td>HO(15)</td>
<td>HSOLN(15)</td>
<td>HOW(15)</td>
<td>HSOLNW(15)</td>
</tr>
<tr>
<td>16.1909</td>
<td>2338.38</td>
<td>-34.44</td>
<td>243.86</td>
<td>24560.1</td>
<td>10000000.00</td>
<td>24560.1000</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>C(16)</td>
<td>HO(16)</td>
<td>HSOLN(16)</td>
<td>HOW(16)</td>
<td>HSOLNW(16)</td>
</tr>
<tr>
<td>16.0077</td>
<td>2497.23</td>
<td>-41.77</td>
<td>121.93</td>
<td>26777.6</td>
<td>10000000.00</td>
<td>26777.6000</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>C(17)</td>
<td>HO(17)</td>
<td>HSOLN(17)</td>
<td>HOW(17)</td>
<td>HSOLNW(17)</td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>C(18)</td>
<td>HO(18)</td>
<td>HSOLN(18)</td>
<td>HOW(18)</td>
<td>HSOLNW(18)</td>
</tr>
<tr>
<td>18.3036</td>
<td>3816.44</td>
<td>-46.13</td>
<td>7.54</td>
<td>40665.9</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>C(19)</td>
<td>HO(19)</td>
<td>HSOLN(19)</td>
<td>HOW(19)</td>
<td>HSOLNW(19)</td>
</tr>
<tr>
<td>15.4075</td>
<td>734.55</td>
<td>-6.45</td>
<td>412500.0</td>
<td>6819.9</td>
<td>4132809.00</td>
<td>9686.9000</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>C(20)</td>
<td>HO(20)</td>
<td>HSOLN(20)</td>
<td>HOW(20)</td>
<td>HSOLNW(20)</td>
</tr>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
C**
C CALCULATE K VALUES

C BOUND THE TEMPERATURE TO AVOID CALCULATION OF GARBAGE
C HENRYS LAW VALUES
 IF(T.LT.10.DO) THEN
 TT=10.DO
 ELSE
 TT=T
 ENDIF

C CALCULATE SOLVENT AND WATER WEIGHT FRACTIONS IN THE MIXTURE
 WTS=0.00D0
 DO 5 I=1,NCOMP
 WTS=WTS+MOLWT(I)*X(I)
 5 WTSOL=MOLWT(1)*X(1)/WTS
 WTH2O=MOLWT(2)*X(2)/WTS

C**
C IF THE COMBINED WEIGHT FRACTION OF WATER AND SOLVENT EXCEEDS 0.5 THEN
C THE K VALUES ARE CALCULATED AS A WEIGHTED AVERAGE OF THE HENRYS LAW
C VALUES FOR THE SELECTED COMPONENT IN H2O AND SOLVENT
C OTHERWISE CALCULATE K BY RAOUILS LAW
 IF((WTSOL+WTH2O).GT.0.50D0) THEN

C CALCULATE SOLVENT/WATER WT FRACTIONS EXCLUSIVE OF OTHER COMPONENTS
 WSOL=X(1)*MOLWT(1)
 WH2O=X(2)*MOLWT(2)
 WTOT=WSOL+WH2O
 WSOL=WSOL/WTOT
 WH2O=WH2O/WTOT

C**
C CALCULATE ALL COMPONENTS BY HENRYS LAW
DO 100 I=1,NCOMP
HENRS=HO(1)*EXP(-(HSOLMN(1)/8.314)*(1.000/TT-0.00336))
HENRW=HOW(1)*EXP(-(HSOLMN(1)/8.314)*(1.000/TT-0.00336))
HENRY=EXP(HSOLN*LOG(HENRS)+WH2O*LOG(HENRW))
K(1)=HENRY/P
C**
C RECALCULATE WATER K BY RAULUTS LAW IF WEIGHT FRACTION WATER > 0.1
IF(WTH2O.GT.0.1) THEN
 PS=A(2)*B(2)/(TT+C(2))
C PERFORM RANGE CHECK FOR LOW TEMPS -- I.E.
C CHECK FOR T CLOSE TO C(I) AND T LESS THAN C(I)
 IF((PS.LT.-10.00).OR.(TT+C(2).LE.0.00)) THEN
 PS=1.00-10
 ELSE
 PS=EXP(PS)
 ENDIF
 K(2)=0.1333*PS/P
 K(18)=K(2)
ENDIF
ELSE
C**
C CALCULATE ALL COMPONENTS BY RAULUTS LAW
200 DO 210 I=1,NCOMP
 PS=A(I)*B(I)/(TT+C(I))
C PERFORM RANGE CHECK FOR LOW TEMPS -- I.E.
C CHECK FOR T CLOSE TO C(I) AND T LESS THAN C(I)
 IF((PS.LT.-10.00).OR.(TT+C(I).LE.0.00)) THEN
 PS=1.0-10
ELSE
PS=DEXP(PS)
ENDIF

210 K(I)=0.1333*PS/P
ENDIF

C**
C ALWAYS CALCULATE SOLVENT K (THE EQN BELOW IS FOR TETRAGLYME)
C BY RAOUlTS LAW
 K(1)=(1.000/P)*DEXP(15.48*DOLOG(TT)-91.04)
C**

C**
C ASSUME SOLID AND DISSOLVED SULFUR HAVE NO VAPOR PRESSURE
 K(5)=0.000
 K(17)=0.000
C**

C**
C CALCULATE FUGACITY COEFFICIENT CORRECTION
 CALL RXZ(P,TT,Y,NCOMP)
C**

C**
C FOR DERIVATIVES CALC DEDT
 IF(TYPE.EQ.1) GOTO 1000
C**

C**
C CORRECT K VALUES FOR FUGACITY COEFFICIENT
DO 320 I=1,NCOMP
320 K(I)=K(I)/PHI(I)
RETURN
C**
C CALCULATE DERIVATIVES
C NOTE THAT FOR THE DERIVATIVES PHI IS ASSUMED TO BE INDEPENDENT OF T

C AGAIN MAKE CHECK ON SOLVENT AND WATER MOLE FRACTION

1000 IF(WTSOL+WTH2O).GT.0.5DO THEN

C CALCULATE SOLVENT/WATER WT FRACTIONS EXCLUSIVE OF OTHER COMPONENTS
 WSOL=X(1)*MOLWT(1)
 WTH2O=X(2)*MOLWT(2)
 WTOT=WSOL+WTH2O
 WSOL=WTSOL/WTOT
 WTH2O=WTH2O/WTOT

C**
C CALCULATE DERIVS OF HENRYS LAW VALUES
DO 1100 I=1,NCOMP
 ALPHAS=HO(I)*DEXP(HSOLN(I)/2477.57)
 DHDTS=(ALPHAS*HSOLN(I)/(8.314*TT**2))*DEXP(-HSOLN(I)/(8.314*TT))
 ALPHAM=HNW(I)*DEXP(HSOLM(I)/2477.57)
 DHDTW=(ALPHAM*HSOLM(I)/(8.314*TT**2))*DEXP(-HSOLM(I)/(8.314*TT))
 HENRS=HO(I)*DEXP(-(HSOLN(I)/8.314)*(1.000/TT-0.00336))
 HENRW=HNW(I)*DEXP(-(HSOLM(I)/8.314)*(1.000/TT-0.00336))
 HENRY=DEXP(WTSOL*DLOG(HENRS)+WTH20*DLOG(HENRW))
 DHDTS/HENRS+DHDTS/HENRY
 HDT=WSOL*DHDTS/HENRS+WTH2O*DHDTW/HENRW
1100 DKDT(I)=HENRY*HDT/P

C**
C RECALCULATE FOR WATER USING RAOULTS LAW IF WEIGHT FRACTION W2O>0.1
IF(WTH2O.GT.0.1DO) THEN
 PMM=7.50P
 ALPHA=B(2)/(PMM*(TT+C(2))**2)
 PS=A(2)-B(2)/(TT+C(2))
 IF(PS.LT.-10.DD) THEN
 PS=1.00-10
 ELSE
 ENDIF

END
$DKDT(2) = \text{ALPHA} \cdot \text{DEXP(PS)}$

ENDIF

C PERFORM VALIDITY CHECK ON VAPOR PRESSURE CALCULATION
C IF NOT VALID (I.E. TEMP TOO LOW) THEN SET K TO ARBITRARY LOW VALUE
IF(C(2)+TT).LT.0.000 THEN
 $DKDT(2) = 1.00 \cdot 10$
ENDIF

$DKDT(18) = DKDT(2)$

ENDIF

ELSE

C**
C CALCULATE DERIVS OF RAOUlTS LAW VALUES
C
C CONVERT P TO MM HG
1200 $P = 7.50 \cdot P$

DO 1210 I=1,NCOMP
 $\text{ALPHA} = B(I)/(P*(TT+C(I))^2)$
 PS = A(I)-B(I)/(TT+C(I))
 IF(PS.LT.-10.DO) THEN
 $DKDT(I) = 1.00 \cdot 10$
 ELSE
 $DKDT(I) = \text{ALPHA} \cdot \text{DEXP(PS)}$
 ENDIF
C PERFORM VALIDITY CHECK ON VAPOR PRESSURE CALCULATION
C IF NOT VALID (I.E. TEMP TOO LOW) THEN SET K TO ARBITRARY LOW VALUE
IF((C(I)+TT).LT.0.000) THEN
 $DKDT(I) = 1.00 \cdot 10$
ENDIF

1210 CONTINUE
C CONVERT PRESSURE BACK TO KPA
 P=P/7.50

ENDIF

C**
C CALCULATE DERIVATIVE FOR SOLVENT (TETRAGLYME)
1300 D KD T(1)= (1.000/P)*(15.48/TT)*DEXP(15.48*DLOG(TT)-91.04)

C**
C CORRECT DERIVATIVES FOR FUGACITY COEFFICIENT

C MOVE COEFFICIENTS AT T INTO TEMPORARY STORAGE
 DO 1400 I=1,NCOMP
 1400 PHI TEMP(I)=PHI(I)

C TO GET DPHI/DT INCREMENT T
 CALL RKZ(P,TT+1.000,Y,NCOMP)

C NOW CALCULATE DERIVATIVES TO RETURN
 DO 1450 I=1,NCOMP
 1450 DPHID T=PHI(I)-PHI TEMP(I)/1.000
 K(I)=(PHI(I)*DKDT(I)-K(I)*DPHID T)/(PHI(I)*PHI(I))

RETURN
END
SUBROUTINE RKl(P,T,Y,NCOMP)
C
C LAST UPDATE: 04/21/86

C CALCULATES FUGACITY COEFFICIENTS USING THE REDLICH-KWONG EQUATION
C OF STATE. SEE NOTES FOR DETAILS
C REFERENCES: SMITH AND VAN NESS, 1975, PGS 272-276
C EDMISTER, 1968

IMPLICIT REAL*8(A-H,O-Z)

REAL*a
Y(20),PHI(20),HDEP.SOlD(23)

REAL*8
BI(20),AIJ(20,20),SUM(20)

REAL*8
TC(20),VC(20),ZC(20),PC(20)

COMMON/THRM/HDEP,PHI,SOLD,Z
DATA TC(1),VC(1),ZC(1),PC(1)/705.8,0.0,0.0,0.0/
DATA TC(2),VC(2),ZC(2),PC(2)/647.1,56.0,230,217.6/
DATA TC(3),VC(3),ZC(3),PC(3)/573.2,98.5,284,88.2/
DATA TC(4),VC(4),ZC(4),PC(4)/430.8,122.0,268,77.8/
DATA TC(5),VC(5),ZC(5),PC(5)/1314.0,0.0,0.0,0.0/
DATA TC(6),VC(6),ZC(6),PC(6)/304.2,94.0,274,72.8/
DATA TC(7),VC(7),ZC(7),PC(7)/126.2,89.5,290,33.5/
DATA TC(8),VC(8),ZC(8),PC(8)/190.6,99.0,288,45.4/
DATA TC(9),VC(9),ZC(9),PC(9)/33.2,65.0,305,12.8/
DATA TC(10),VC(10),ZC(10),PC(10)/132.9,93.1,295,34.5/
DATA TC(11),VC(11),ZC(11),PC(11)/305.4,148.0,285,48.2/
DATA TC(12),VC(12),ZC(12),PC(12)/369.8,203.0,281,41.9/
DATA TC(13),VC(13),ZC(13),PC(13)/425.2,255.0,274,37.5/
DATA TC(14),VC(14),ZC(14),PC(14)/469.6,304.0,262,33.0/
DATA TC(15),VC(15),ZC(15),PC(15)/470.0,145.0,268,71.4/
DATA TC(16),VC(16),ZC(16),PC(16)/499.0,207.0,274,54.2/
DATA TC(17),VC(17),ZC(17),PC(17)/1314.0,0.0,0.0,0.0/
DATA TC(18),VC(18),ZC(18),PC(18)/647.1,0.0,0.0,0.0/
DATA TC(19),VC(19),ZC(19),PC(19)/154.6,73.4,288,49.8/
DATA TC(20),VC(20),ZC(20),PC(20)/0.0,0.0,0.0,0.0/

C NOTE THAT THE CRITICAL TEMPS HAVE FOR PURE H2O, PURE SULFUR AND
C PURE SOLVENT HAVE BEEN INCLUDED TO PERMIT CALCULATION OF THE
C MIXTURE CRITICAL TEMP. HOWEVER, THESE COMPONENTS ARE NOT INCLUDED
C IN THE CALC OF THE FUGACITY COEFFS.

DATA A=THIRD/0.3333333333333333/
DATA TW027,TW03/.074074074074,.6666666666667/
DATA A27TH/.057037037037000/
DATA R/82.0500/
DATA RJO/8.31400/
DATA EPSILON/1.00-4/
DATA PI/3.14159265400/

C CONVERT P TO ATM FROM KPA
 PL=P
 PL=PL/101.325

C CHECK TO SEE IF WE HAVE ALREADY DONE THE CALCULATION FOR THESE CONDITIONS
 DO 2 I=1,NCOMP
 IF(SOLD(I).NE.Y(I)) GOTO 4
 2 CONTINUE
 IF(SOLD(21).NE.T) GOTO 4
 IF(SOLD(22).NE.P) GOTO 4

C INPUT PARAMETERS MATCH. LEAVE VALUES UNCHANGED
 GOTO 400

C MAKE ROUGH ESTIMATE OF CRITICAL TEMP OF THE MIXTURE.
C INITIALIZE THE PHI VALUES AND HDEP
 4 HDEP=0.000
 TCMIX=0.000
 DO 3 I=1,NCOMP
 PHI(I)=1.000
 3 TCMIX=TCMIX+Y(I)*TC(I)

C IF THE MIXTURE CRITICAL TEMP IS LESS THAN 100K OR THE CALCULATION
C TEMPERATURE IS LESS THAN 150K THEN
C THIS ROUTINE SUCKS POND WATER. UNDER THESE CONDITIONS ALL PHI(I)
C ARE LEFT SET TO 1.000 AND HDEP=0.000

IF((TOMIX.LT.100.000).OR.(T.LT.150)) GOTO 150

C THE FUGACITY COEFFICIENT CALC IS NOT NECESSARY IF THE PRESSURE IS LOW

IF(PL.LT.2.000) GOTO 150

DO 5 I=1,NCOMP
BI(I)=0.000
SUM(I)=0.000
DO 5 J=1,NCOMP
AIJ(I,J)=0.000

A=0.000
B=0.000

C CALCULATE ALL AIJ, BI

DO 10 I=1,NCOMP
IF(PC(I).EQ.0.000) GOTO 10
BI(I)=0.08670*R*TC(I)/PC(I)
B=B+Y(I)*BI(I)

DO 10 J=1,NCOMP
IF(PC(J).EQ.0.000) GOTO 10
VCIJ=((VC(I))**3+VC(J)**3)/2.0)**3.0
TCIJ=0.80670*R*TC(I)/TC(J)
ZCIJ=(ZC(I)+ZC(J))/2.0
PCIJ=ZC(I)**R*TCIJ/VCIJ
AIJ(I,J)=0.42750*R*AIJ(I,J)
ATEMP=Y(J)*AIJ(I,J)
A=A+Y(I)*ATEMP
SUM(I)=SUM(I)+ATEMP

10 CONTINUE
C MAKE SURE THAT SOMETHING USEFUL WAS IN THE GAS PHASE
C IF NOT THEN SET ALL THE PHI TO 1.0 AND EXIT

IF((A.EQ.0.000).AND.(B.EQ.0.000)) THEN
 DO 25 I=1,NCOMP
 PHI(I)=1.000
 GOTO 150
ENDIF

A2B=A/(B*R*T**1.5)
BP=(B*PL)/(R*T)
SQ=BP*(A2B-BP-1.00)
SR=-A2B*(BP**2)
SM=SQ-ATHIRD
SN=(SQ*ATHIRD+SR-TWO27)
SN2=SN*SN/4.0
SN3=SN*SN/27.00
DIS=SN2+SN3

IF(DIS) 5000,6000,7000
5000
SGN=-1.000*DSIGN(1.000,SW)
THETA=ACOS(SGN*DSORT(-SN2/SN3))
X1=2.00*DSORT(-SM/3.00)*DCOS(THETA/3.00)
X2=2.00*DSORT(-SM/3.00)*DCOS(THETA/3.00+2.00*PI/3.00)
X3=2.00*DSORT(-SM/3.00)*DCOS(THETA/3.00+4.00*PI/3.00)
Z=MAX1(X1,X2,X3)+ATHIRD
GOTO 8000

6000
Z=1.00
WRITE(6,99000)
99000
FORMAT(X,'RKZ IS HOSED'111111111')
GOTO 8000

7000
BTEMP=-SN/2.00+DSORT(DIS)
BM=DSIGN(DABS(BTEMP)**ATHIRD,BTEMP)
BTEMP=-SN/2.00-DSORT(DIS)
BN=DSIGN(DABS(BTEMP)**A1THIRD,BTEMP)
Z=BM+BN+A1THIRD

C CALCULATE PHI VALUES

8000 IF(Z.LT.0.500) GOTO 150

H=(B*PL)/(Z*R*T)
T1=(Z-1.000)/B
T2=LOG(Z/Z*N)
T3=A/(B*R*T**1.5)
T4=2.000/A
T5=LOG(1.000+H)

DO 100 I=1,NCOMP

C CALCULATE FUGACITY COEFFICIENTS. SET UNKNOWN COMPONENTS TO PHI=1

IF(PCI).EQ.0.000 THEN
PHI(I)=1.000
ELSE
PHI(I)=DEXP(BI(I)*T1-T2+T3*(BI(I)/B-T4*SUM(I)))*T4
ENDIF

100 CONTINUE

C CALCULATE THE ENTHALPY DEPARTURE FUNCTION (KJ/KMOLE)

HDEP=RJO*T*(3.000*A)/(2.000*B*R*T**1.5)*LOG(1+H)*1-Z

C SAVE INPUT PARAMETERS FOR SUBSEQUENT ACCESSES

150 DO 200 I=1,NCOMP
200 SOLD(I)=Y(I)
SOLD(21)=T
SOLD(22)=P

400 RETURN
END
SUBROUTINE BAND(J)

C THE EVER POPULAR BAND AND MATINV SUBROUTINES
C REF: NEWMAN, 1968.

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION A(18,18),B(18,18),C(18,25),D(18,37),E(18,19,21)
DIMENSION G(18),X(18,18),Y(18,18)
REAL*8 GAR(500)
COMMON /BNDJ/ A,B,C,D,G,X,Y,N,NJ
COMMON/GARBAGE/GAR
COMMON/EEE/E

101 FORMAT(' DETERM=0 AT J=',I4)
NP1=N+1
IF(J==2) 1,6,8
1 DO 2 I=1,N
D(I,2*N+1)=G(I)
DO 2 L=1,N
LPN=L+N
2 D(I,LPN)=X(I,L)
CALL MATINV(N,2*N+1,DETERM,B,D)
IF (DETERM) 4,3,4
3 WRITE(6,101) J
4 DO 5 K=1,N
E(K,NP1,1)=D(K,2*N+1)
DO 5 L=1,N
E(K,L,1)=-D(K,L)
LPN=L+N
5 X(K,L)=D(K,LPN)
RETURN
6 DO 7 L=1,N
DO 7 K=1,N
DO 7 I=1,N
7 D(I,K)=D(I,K)+A(I,L)*X(L,K)
8 IF (J-NJ) 11,9,9
9 DO 10 I=1,N
DO 10 L=1,N
G(I)=G(I)-Y(I,L)*E(L,NP1,J-2)
DO 10 M=1,N
10 A(I,L)=A(I,L)+Y(I,M)*E(M,L,J-2)
DO 12 I=1,N
D(I,NP1)=G(I)
DO 12 L=1,N
D(I,NP1)=D(I,NP1)+A(I,L)*E(L,NP1,J-1)
DO 12 K=1,N
12 B(I,K)=B(I,K)+A(I,L)*E(L,K,J-1)
CALL MATINV (N,NP1,DETERM,B,D)
IF (DETERM) 14,13,14
WRITE(6,101) J
DO 15 K=1,N
DO 15 M=1,NP1
15 E(K,M,J)=D(K,M)
IF (J-NJ) 20,16,16
DO 17 K=1,N
17 C(K,J)=E(K,NP1,J)
DO 18 JJ=2,NJ
M=NJ-JJ+1
DO 18 K=1,N
C(K,M)=E(K,NP1,M)
DO 18 L=1,N
18 C(K,M)=C(K,M)*E(K,L,M)*C(L,M+1)
DO 19 L=1,N
DO 19 K=1,N
19 C(K,1)=C(K,1)*X(K,L)*C(L,3)
RETURN
END
SUBROUTINE MATINV(N,M,DETERM,B,D)
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION ID(18),B(18,18),D(18,37)
DETERM=1.0D0
DO 1 I=1,N
 ID(I)=0.0D0
DO 18 NN=1,N
BMAX=0.0D0
DO 6 I=1,N
 IF (ID(I)) 2,2,6
 DO 5 J=1,N
 IF (ID(J)) 3,3,5
 IF (DABS(B(I,J))·BMAX) 5,5,4
5 BMAX=DABS(B(I,J))
 IROW=I
 JCOL=J
 CONTINUE
6 CONTINUE
 IF (BMAX) 7,7,8
7 DETERM=0.0D0
 RETURN
8 ID(JCOL)=1
 IF (JCOL·IROW) 9,12,9
9 DO 10 J=1,N
 SAVE=B(IROW,J)
 B(IROW,J)=B(JCOL,J)
10 B(JCOL,J)=SAVE
 DO 11 K=1,N
 SAVE=D(IROW,K)
 D(IROW,K)=D(JCOL,K)
11 D(JCOL,K)=SAVE
12 F=1.0D0/B(JCOL,JCOL)
 DO 13 J=1,N
 B(JCOL,J)=B(JCOL,J)*F
13 DO 14 K=1,N
 D(JCOL,K)=D(JCOL,K)*F
14 CONTINUE
DO 18 I=1,N
IF (I>JCOL) 15,18,15
 F=B(I,JCOL)
 DO 16 J=1,N
 B(I,J)=B(I,J)-F*B(JCOL,J)
 DO 17 K=1,M
 D(I,K)=D(I,K)-F*D(JCOL,K)
 CONTINUE
 RETURN
END
A-IV. Simulation Data Entry Programs

The programs listed below can be used to facilitate data entry to the simulation. These routines have been written to enable the user to create, modify, and examine the data files, STREAMIO.DAT and STREAMS.DAT, which provide the unit operation, unit interconnection, and initial stream information to the simulation program. The code is entirely menu-driven and makes extensive use of the report generation capabilities of the Knowledge Manager Data Base Management System Ver 1.06.
BERKIN, MAIN DATA ENTRY PROGRAM
INVOKE BY TYPING:
KHAN BERKIN

KHAN DATABASE MANAGEMENT PROGRAM FOR USE WITH THE UCB SULFUR
SIMULATION. THIS PROGRAM CAN BE EMPLOYED TO SETUP THE
DATA FILES STREAMIO (UNIT OPERATIONS) AND STREAMS (STREAM DATA)
FOR USE IN THE SIMULATION.

LAST UPDATE: 04/10/86, DWN

E.LSTR=80
CLEAR
OUTPUT "ONE MOMENT PLEASE..."
LOAD CONTEXT FILE FOR UNIT OPERATION INPUT FORMS
LOAD "FORM.ICF"
CLEAR

SET VARIOUS ENVIRONMENT VARIABLES
 E.SERR=TRUE
 E.SUPD=TRUE
 E.LNUM=7
 E.LSTR=80
 E.LMOD=FALSE
 E.ICOM=FALSE

FORM FOR USE WITH STREAMS DATA ENTRY

FORM STRFORM AT 1,25 PUT "ENTER DATA FOR STREAM:"
 AT 1,48 PUT REC
 AT 2,2 PUT "COMPONENT"
 MOLE FRACTION"
 AT 4,2 PUT "SOLV"
 AT 4,28 PUT SOLV
 AT 4,28 GET SOLV
 AT 5,2 PUT "H2O"
AT 5,28 PUT H2O
AT 5,28 GET H2O
AT 6,2 PUT "H2S"
AT 6,28 PUT H2S
AT 6,28 GET H2S
AT 7,2 PUT "SO2"
AT 7,28 PUT SO2
AT 7,28 GET SO2
AT 8,2 PUT "DISSOLVED SULFUR"
AT 8,28 PUT DSULF
AT 8,28 GET DSULF
AT 9,2 PUT "CO2"
AT 9,28 PUT CO2
AT 9,28 GET CO2
AT 10,2 PUT "H2"
AT 10,28 PUT H2
AT 10,28 GET H2
AT 11,2 PUT "C1"
AT 11,28 PUT C1
AT 11,28 GET C1
AT 12,2 PUT "H2"
AT 12,28 PUT H2
AT 12,28 GET H2
AT 13,2 PUT "CO"
AT 13,28 PUT CO
AT 13,28 GET CO
AT 14,2 PUT "C2"
AT 14,28 PUT C2
AT 14,28 GET C2
AT 15,2 PUT "C3"
AT 15,28 PUT C3
AT 15,28 GET C3
AT 16,2 PUT "C4"
AT 16,28 PUT C4
AT 16,28 GET C4
AT 17,2 PUT "C5"
AT 17,28 PUT C5
AT 17,28 GET C5
AT 18,2 PUT "CH3SH"
AT 18,28 PUT CH3SH
AT 18,28 GET CH3SH
AT 19,2 PUT "C2H5SH"
AT 19,28 PUT C2H5SH
AT 19,28 GET C2H5SH
AT 20,2 PUT "SOLID AND LIQUID SULFUR"
AT 20,28 PUT SULF
AT 20,28 GET SULF
AT 21,2 PUT "PURE WATER"
AT 21,28 PUT WATER
AT 21,28 GET WATER
AT 22,2 PUT "O2"
AT 22,28 PUT O2
AT 22,28 GET O2
AT 23,2 PUT "FLOW=
AT 23,7 PUT FLOW
AT 23,7 GET FLOW
AT 23,20 PUT "TEMP="
AT 23,26 PUT TEMP
AT 23,26 GET TEMP
AT 23,34 PUT "PRESSURE=
AT 23,43 PUT PRESS
AT 23,43 GET PRESS
AT 23,56 PUT "PHASE=
AT 23,62 PUT PHASE
AT 23,62 GET PHASE

ENDFORM

FORM OPMENU AT 1,60 PUT "UNIT"
AT 1,65 PUT UNIT
AT 2,25 PUT "OPERATIONS AVAILABLE"
AT 4,1 PUT " 1=ABSORBER/STRIPPER/DISTILLATION"
AT 4,50 PUT " 2=FLOW SPLITTER"
AT 5,1 PUT " 3=ADIABATIC FLASH"
AT 5,50 PUT " 4=HEAT EXCHANGER"
AT 6,1 PUT " 5=REBOILER"
AT 6,50 PUT " 6=CONDENSER"
AT 7,1 PUT " 7=MIXER"
AT 7,50 PUT " 8=SPLITTER"
AT 8,1 PUT " 9=PUMP"
AT 8,50 PUT "10=REACTOR"
AT 9,1 PUT "11=SULFUR SATURATOR"
AT 9,50 PUT "12=SULFUR SETTLER"
AT 10,1 PUT "13=SULFUR WASHER"
AT 10,50 PUT "14=HEATER/DECANTER"
AT 11,1 PUT "15=FURNACE"
AT 11,50 PUT "16=COMPRESSOR"
AT 12,1 PUT "17=SULFUR CENTRIFUGE"
AT 12,50 PUT "18=PARTIAL CONDENSER"
AT 13,1 PUT "19=HEATER"
AT 13,50 PUT "20=STORAGE UNIT"
AT 14,1 PUT "21=CRYSTALLIZER"
AT 14,50 PUT "22=SULFUR SPLITTER"
AT 15,1 PUT "23=MAKE-UP"
AT 15,50 PUT "24=TEMPERATURE SET"
AT 16,1 PUT "25=HYDROCARBON SPLITTER"
AT 23,1 PUT "OPERATION CODE SELECTION"
AT 23,40 PUT OPCODE
AT 23,40 GET OPCODE

ENDFORM

TTEMP=""

CHOICE=0

WHILE CHOICE<>11 DO
CLEAR
FINISH ALL

#ERRNO=0
AT 1,1 OUTPUT "DATABASE CREATION PROGRAM FOR BERKELEY SULFUR PROCESS"
AT 3,1 OUTPUT "YOU CAN:"
AT 4,5 OUTPUT " 1) CREATE A NEW OPCODE MATRIX"
AT 5,5 OUTPUT " 2) ENTER DATA INTO THE OPCODE MATRIX"
AT 6,5 OUTPUT " 3) INSERT A NEW UNIT INTO AN EXISTING OPCODE MATRIX"
AT 7,5 OUTPUT " 4) DELETE A UNIT FROM AN EXISTING OPCODE MATRIX"
AT 8,5 OUTPUT " 5) PRINT THE OPERATIONS SUMMARY"
AT 10,5 OUTPUT " 6) CREATE A NEW STREAMS MATRIX"
AT 11,5 OUTPUT " 7) ENTER DATA INTO THE STREAMS MATRIX"
AT 12,5 OUTPUT " 8) ADD A STREAM TO THE STREAMS MATRIX"
AT 14,5 OUTPUT " 9) NORMAL EXIT -- CREATE STREAMIO AND STREAMS FILES"
AT 16,5 OUTPUT "10) READ OLD STREAMIO AND STREAMS FILES INTO TABLES"
AT 18,5 OUTPUT "11) QUIT WITHOUT CREATING .DAT FILES"
AT 20,5 INPUT CHOICE USING "u" WITH "YOUR SELECTION?"

CLEAR
TEST CHOICE

CASE 1:
STNO=0
1 SETUP NEW OPCODE MATRIX
 CLEAR
 USE STREAMIO
 ATTACH 1 TO STREAMIO
1 EMPTY THE DATABASE OF THE OLD VALUES
 MARK ALL
 COMPRESS STREAMIO

 CLEAR
 AT 8,1 INPUT STNO USING "dd" WITH "NUMBER OF OPERATIONS ="
 CLEAR

1 CREATE TABLE WITH STNO RECORDS
 UCNT=1
 WHILE STNO>0 DO
 ATTACH 1 TO STREAMIO
 UNIT=UCNT
UCNT=UCNT+1
STNO=STNO-1
ENDWHILE

I ADD EXTRA BLANK RECORD WITH UNIT=99 AS END OF FILE DELIMITER

OBTAIN LAST
ATTACH 1 TO STREAMIO
UNIT=99

OBTAIN 0 FROM STREAMIO

BREAK

CASE 2:
I ENTER DATA INTO EXISTING STREAMIO TABLE

CLEAR
USE STREAMIO

MORE="Y"
REC=0
OPC=0

WHILE MORE="Y" DO
INPUT REC USING "dd.dd" WITH "ENTER DESIRED UNIT NUMBER"
OBTAIN FOR UNIT=REC
IF(#FOUND) THEN

CLEAR
PUTFORM OPMENU
TALLY OPMENU
GETFORM OPMENU
OPC=OPCODE
CLEAR
AT 1,60 OUTPUT "UNIT"
AT 1,65 OUTPUT UNIT
PERFORM UNITS
CLEAR
ELSE
 OUTPUT "ERROR! UNIT NOT FOUND"
 OUTPUT "STRIKE ANY KEY TO CONTINUE"
 WAIT
 CLEAR
ENDIF

INPUT MORE USING "U" WITH "MORE UNITS (Y/N)?
ENDWHILE

OBTAIN LAST
UNIT=99
CLEAR
BREAK

CASE 3:
I INSERT A NEW UNIT INTO EXISTING STREAMIO TABLE
UNO=0
REC=0
OPC=0
CLEAR
USE STREAMIO
INPUT UNO USING "dd.dd" WITH "NEW UNIT NUMBER="
OBTAIN LAST
ATTACH 1 TO STREAMIO
I RESET END UNIT FLAG TO NEW END OF FILE
UNIT=99
I BACK UP ONE RECORD TO NEW LAST UNIT
OBTAIN PRIOR
UNIT=UNO
CLEAR
I PROMPT USER FOR DESIRED OPERATION
PUTFORM OPMENU
TALLY OPMENU
GETFORM OPMENU
I SET UP THE UNIT
CLEAR
UNIT=UNO
OPC=OPCODE
AT 1,60 OUTPUT "UNIT"
AT 1,65 OUTPUT UNIT
PERFORM UNITS CLEAR
BREAK

CASE 4:
I DELETE A UNIT FROM STREAMIO
UNO=0
CLEAR
USE STREAMIO
INPUT UNO USING "dd.dd" WITH "ENTER NUMBER OF UNIT TO REMOVE"
OBTAIN FOR UNIT=UNO
IF(#ERRNO<>36) THEN
 REC=CURREC(STREAMIO)
 MARK RANGE REC,REC
 COMPRESS STREAMIO
 CLEAR
 BREAK
ELSE
 OUTPUT "THAT UNIT DOES NOT EXIST!"
 OUTPUT "HIT RETURN TO CONTINUE"
 WAIT
 BREAK
ENDIF
BREAK

CASE 5:
I SEND THE ENTIRE OPERATIONS MATRIX TO THE PRINTER
CLEAR
OUTPUT "HIT RETURN WHEN THE PRINTER IS READY"
WAIT
PERFORM OPRINT
BREAK
CASE 6:
STNO=0
1 SETUP NEW STREAM MATRIX
 CLEAR
 USE STREAMS
 ATTACH 1 TO STREAMS
1 EMPTY THE DATABASE OF THE OLD VALUES
 MARK ALL
 COMPRESS STREAMS
 CLEAR
 AT 8,1 INPUT STNO USING "dd" WITH "NUMBER OF STREAMS =
 CLEAR
1 CREATE STREAMS TABLE WITH STNO RECORDS
 WHILE STNO>0
 ATTACH 1 TO STREAMS
 STNO=STNO-1
 ENDDO
1 APPEND 1 BLANK RECORD TO THE DATABASE AND SET END OF DATA DELIMITER
1 OBTAIN LAST
1 ATTACH 1 TO STREAMS
1 OBTAIN LAST
1 FLOW=1.0
1 OBTAIN 0 FROM STREAMS
BREAK
CASE 7:
1 ENTER DATA INTO EXISTING STREAMS TABLE
 CLEAR
 USE STREAMS
 MORE="Y"
 REC=0
WHILE MORE="Y" DO
 INPUT REC USING "dd" WITH "ENTER DESIRED STREAM NUMBER "
 OBTAIN REC
 IF((ERRNO<>36) AND (FLOW<>-1)) THEN
 BROWSE RANGE REC,REC WITH STRFORM
 CLEAR ELSE
 OUTPUT "THAT STREAM DOES NOT EXIST!"
 OUTPUT "STRIKE ANY KEY TO CONTINUE"
 WAIT ENDIF
 CLEAR
 INPUT MORE USING "u" WITH "MORE STREAMS (Y/N) ? "
ENDWHILE

CLEAR
BREAK

CASE 8:
 ADD A STREAM TO THE END OF THE STREAMS TABLE
 CLEAR
 USE STREAMS

 APPEND 1 BLANK RECORD TO THE DATABASE
 E.LMOD=TRUE
 OBTAIN LAST
 ATTACH 1 TO STREAMS
 OBTAIN PRIOR
 FLOW=0.0
 REC=CURREC(STREAMS)
 PUTFORM STRFORM
 TALLY STRFORM
 GETFORM STRFORM
 E.LMOD=FALSE

CLEAR
BREAK

CASE 9:
 I ALL DONE
 I WRITE NEW STREAMIO AND STREAMS .DAT FILES
 I CLOSE UP SHOP
 CHOICE=11
 OK=""
CLEAR
OUTPUT "NEW STREAMIO AND STREAMS FILES ARE ABOUT TO BE CREATED"
OUTPUT "THIS WILL ERASE THE OLD FILES."
INPUT OK USING "u" WITH "IS THIS WHAT YOU WANT? "

IF OK<>"y" THEN
 BREAK
ENDIF

I SET UP UNIT INDEX FOR USE WITH STREAMIO
USE STREAMIO
INDEX "STRIQ" FOR STREAMIO BY AZ UNIT

FINISH ALL

USE STREAMIO WITH STRIO
USE STREAMS

I REQUEST NUMBER OF ITERATIONS USER WISHES TO PERFORM
ITNO=0

CLEAR
AT 10,1 OUTPUT "PLEASE ENTER THE NUMBER OF ITERATIONS WHICH YOU WOULD"
AT 11,1 OUTPUT "LIKE THE PROGRAM TO PERFORM OR 0 TO ITERATE TO =
AT 12,1 OUTPUT "CONVERGENCE (MAX=9)"
AT 13,1 INPUT ITNO USING "dd" WITH "ITERATIONS="

OBTAIN LAST FROM STREAMIO
OPCODE=-ITNO
I Warn User of zero opcodes imbeded it streamio
RECCNT=CURREC(STREAMIO)-1
OBTAIN 0 FROM STREAMIO
REC=1
WHILE RECCNT>0 DO
 OBTAIN REC FROM STREAMIO
 IF OPCODE=0 THEN
 OUTPUT "WARNING! ZERO OPCODE ENCOUNTERED FOR UNIT ",UNIT," IN RECORD ",REC
 ENDIF
 REC=REC+1
 RECCNT=RECCNT-1
ENDWHILE

I Export data to .DAT files
OUTPUT "CREATING STREAMIO.DAT"
E.CF=2
 CONVERT OPCODE,UNIT,PARAM1,PARAM2,PARAM3,PARAM4,PARAM5,PARAM6,PARAM7,\ PARAM8,PARAM9,PARAM10,PARAM11,PARAM12,PARAM13,PARAM14,PARAM15,PARAM16,\ PARAM17,PARAM18,PARAM19,PARAM20,PARAM21,PARAM22,PARAM23,PARAM24,\ PARAM25,PARAM26,PARAM27,PARAM28 FROM STREAMIO TO "STREAMIO.DAT" ALL
OUTPUT "CREATING STREAMS.DAT"
 CONVERT SOLV,H2O,H2S,SO2,DSULF,CO2,N2,C1,H2,CO,C2,C3,C4,C5,\ CH3SH,C2H5SH,SULF,WATER,O2,UNKNOWN,FLOW,TEMP,PRESS,ENTh,PHASE FROM\ STREAMS TO "STREAMS.DAT" ALL

I Set OPCODE delimiter on streamio back to 0
OBTAIN LAST FROM STREAMIO
OPCODE=0
OUTPUT "ALL DONE! TAKE A BREAK!"
FINISH ALL
BREAK

CASE 10: I READ EXISTING DATA FILES FOR STREAMIO AND STREAMS BACK INTO THE I TABLES OK="" FNAME="" CLEAR OUTPUT "WARNING! THIS OPERATION WILL OVERWRITE EXISTING DATA" OUTPUT "IN THE STREAMS AND STREAMIO DATA TABLE" INPUT OK USING "y" WITH "IS THIS WHAT YOU WANT? " OUTPUT "READING FROM STREAMIO.DAT"

IF OK<>"y" THEN
 BREAK
ENDIF

USE STREAMIO
MARK ALL
COMPRESS STREAMIO

ATTACH FROM "STREAMIO.DAT" TO STREAMIO

FINISH ALL

OUTPUT "READING FROM STREAMS.DAT"

USE STREAMS
MARK ALL
COMPRESS STREAMS

ATTACH FROM "STREAMS.DAT" TO STREAMS WITH SOLV, H2O, H2S, SO2, SULF, \ CO2, N2, C1, CO, C2, C3, C4, C5, C6, C2H5SH, SULF, WATER, O2, \ UNKN, FLOW, TEMP, PRESS, ENTH, PHASE

FINISH ALL
I OFORM.IPF
I SUBROUTINE TO DEFINE THE FORMS FOR DATA ENTRY OF THE DESIRED
I UNIT OPERATION IN STREAMQ.ITB
I RUN THIS PROGRAM TO CREATE THE CONTEXT FILE (OFORM.ICF) FOR USE WITH
I THE DATA ENTRY PROGRAM BERKIN.IFP
I LAST UPDATE: 04/16/86

I ABSORBER/STRIPPER/DISTILLATION
FORM UFORM1 AT 2,20 PUT "ABSORBER/STRIPPER DISTILLATION UNIT"
 AT 4,1 PUT "NUMBER OF STAGES="
 AT 4,50 PUT PARAM1 using "dd"
 AT 4,50 GET PARAM1 using "dd"
 AT 5,1 PUT "PRESSURE (KPA)="
 AT 5,50 PUT PARAM2 using "dddd.dd"
 AT 5,50 GET PARAM2 using "dddd.dd"
 AT 6,1 PUT "VOLUME OF LIQUID ON A TRAY (M3)="
 AT 6,50 PUT PARAM3 using "dd.dd"
 AT 6,50 GET PARAM3 using "dd.dd"
 AT 7,1 PUT "LIQUID MOLAR DENSITY (KMOL/M3)="
 AT 7,50 PUT PARAM4 using "dd.dd"
 AT 7,50 GET PARAM4 using "dd.dd"
 AT 8,1 PUT "SECOND ORDER RATE CONSTANT="
 AT 8,50 PUT PARAM5 using "dddd.dd"
 AT 8,50 GET PARAM5 using "dddd.dd"
 AT 9,1 PUT "FEED1 STREAM NUMBER="
 AT 9,21 PUT PARAM6 using "dd"
 AT 9,21 GET PARAM6 using "dd"
 AT 9,40 PUT "FEED1 STAGE NUMBER="
 AT 9,59 PUT PARAM7 using "dd"
 AT 9,59 GET PARAM7 using "dd"
 AT 10,1 PUT "FEED2 STREAM NUMBER="
 AT 10,21 PUT PARAM8 using "dd"
 AT 10,21 GET PARAM8 using "dd"
 AT 10,40 PUT "FEED2 STAGE NUMBER="
 AT 10,59 PUT PARAM9 using "dd"
 AT 10,59 GET PARAM9 using "dd"
AT 11,1 PUT "FEED3 STREAM NUMBER="
AT 11,21 PUT PARAM10 using "dd"
AT 11,21 GET PARAM10 using "dd"
AT 11,40 PUT "FEED3 STAGE NUMBER=
AT 11,59 PUT PARAM11 using "dd"
AT 11,59 GET PARAM11 using "dd"
AT 12,1 PUT "FEED4 STREAM NUMBER="
AT 12,21 PUT PARAM12 using "dd"
AT 12,21 GET PARAM12 using "dd"
AT 12,40 PUT "FEED4 STAGE NUMBER="
AT 12,59 PUT PARAM13 using "dd"
AT 12,59 GET PARAM13 using "dd"
AT 13,1 PUT "FEED5 STREAM NUMBER="
AT 13,21 PUT PARAM14 using "dd"
AT 13,21 GET PARAM14 using "dd"
AT 13,40 PUT "FEED5 STAGE NUMBER="
AT 13,59 PUT PARAM15 using "dd"
AT 13,59 GET PARAM15 using "dd"
AT 15,1 PUT "EXIT VAPOR STREAM NUMBER="
AT 15,29 PUT PARAM16 using "dd"
AT 15,29 GET PARAM16 using "dd"
AT 15,43 PUT "EXIT LIQUID STREAM NUMBER="
AT 15,70 PUT PARAM17 using "dd"
AT 15,70 GET PARAM17 using "dd"
AT 16,1 PUT "REBOILER HEAT INPUT (KJ/S)="
AT 16,29 PUT PARAM18 using "dddd.dd"
AT 16,29 GET PARAM18 using "dddd.dd"
AT 16,43 PUT "CONDENSER TEMPERATURE (K)="
AT 16,70 PUT PARAM23 using "ddddd.ddd"
AT 16,70 GET PARAM23 using "ddddd.ddd"
AT 17,1 PUT "FRACTION OF CONDENSER LIQUID TO SIDE DRAW="
AT 17,50 PUT PARAM24 using "d.ddd"
AT 17,50 GET PARAM24 using "d.ddd"
AT 18,1 PUT "CONDENSER EXIT LIQUID STREAM NUMBER="
AT 18,50 PUT PARAM25 using "dd"
AT 18,50 GET PARAM25 using "dd"
AT 19,1 PUT "FIRST HEATER/INTERCOOLER STAGE="
AT 19,33 PUT PARAM19 using "dd"
AT 19,33 GET PARAM19 using "dd"
AT 19,40 PUT "HEAT LOAD (KJ/S)="
AT 19,60 PUT PARAM20 using "ddddd.dd"
AT 19,60 GET PARAM20 using "ddddd.dd"
AT 20,1 PUT "SECOND HEATER/INTERCOOLER STAGE="
AT 20,33 PUT PARAM21 using "dd"
AT 20,33 GET PARAM21 using "dd"
AT 20,40 PUT "HEAT LOAD (KJ/S)="
AT 20,60 PUT PARAM22 using "ddddd.dd"
AT 20,60 GET PARAM22 using "ddddd.dd"
AT 21,1 PUT "PROFILE FLAG="
AT 21,15 PUT PARAM26 using "d"
AT 21,15 GET PARAM26 using "d"
AT 22,1 PUT "(=0 GENERATE NEW INITIAL GUESSES)"
AT 23,1 PUT "(=1 USE PROFILE FROM PREVIOUS CALCULATION)"
ENDFORM

1 FLOW SPLITTER
FORM UFORM2 AT 2,20 PUT "FLOW SPLITTER"
 AT 4,1 PUT "INLET STREAM NUMBER="
 AT 4,40 PUT PARAM1 using "dd"
 AT 4,40 GET PARAM1 using "dd"
 AT 5,1 PUT "OUTLET STREAM 1 NUMBER="
 AT 5,40 PUT PARAM2 using "dd"
 AT 5,40 GET PARAM2 using "dd"
 AT 6,1 PUT "OUTLET STREAM 2 NUMBER="
 AT 6,40 PUT PARAM3 using "dd"
 AT 6,40 GET PARAM3 using "dd"
 AT 7,1 PUT "FLOW TO STREAM 1="
 AT 7,40 PUT PARAM4 using "ddddd.dddd"
 AT 7,40 GET PARAM4 using "ddddd.dddd"
ENDFORM

1 ADIABATIC FLASH
FORM UFORM3 AT 2,20 PUT "ADIABATIC FLASH"
 AT 4,1 PUT "INLET STREAM NUMBER="
 AT 4,40 PUT PARAM1 using "dd"
 AT 4,40 GET PARAM1 using "dd"
 AT 5,1 PUT "FLASH PRESSURE="
 AT 5,40 PUT PARAM2 using "dddddd.dd"
 AT 5,40 GET PARAM2 using "dddddd.dd"
 AT 6,1 PUT "OUTLET LIQUID STREAM NUMBER="
 AT 6,40 PUT PARAM3 using "dd"
 AT 6,40 GET PARAM3 using "dd"
 AT 7,1 PUT "OUTLET VAPOR STREAM NUMBER="
 AT 7,40 PUT PARAM4 using "dd"
 AT 7,40 GET PARAM4 using "dd"
ENDFORM

I HEAT EXCHANGER

FORM UFORM4 AT 2,20 PUT "HEAT EXCHANGER"
 AT 4,1 PUT "INLET STREAM 1 (HOT) NUMBER="
 AT 4,40 PUT PARAM1 using "dd"
 AT 4,40 GET PARAM1 using "dd"
 AT 5,1 PUT "INLET STREAM 2 (COLD) NUMBER="
 AT 5,40 PUT PARAM2 using "dd"
 AT 5,40 GET PARAM2 using "dd"
 AT 6,1 PUT "OUTLET STREAM 1 NUMBER="
 AT 6,40 PUT PARAM3 using "dd"
 AT 6,40 GET PARAM3 using "dd"
 AT 7,1 PUT "OUTLET STREAM 2 NUMBER="
 AT 7,40 PUT PARAM4 using "dd"
 AT 7,40 GET PARAM4 using "dd"
 AT 8,1 PUT "UA (KJ/S.K)="
 AT 8,40 PUT PARAM5 using "dddddd.dd"
 AT 8,40 GET PARAM5 using "dddddd.dd"
ENDFORM

I REBOILER
FORM UF0RMS AT 2,20 PUT "REBOILER"
 AT 4,1 PUT "INLET STREAM NUMBER="
 AT 4,40 PUT PARAM1 using "dd"
 AT 4,40 GET PARAM1 using "dd"
 AT 5,1 PUT "OUTLET LIQUID STREAM NUMBER="
 AT 5,40 PUT PARAM2 using "dd"
 AT 5,40 GET PARAM2 using "dd"
 AT 6,1 PUT "OUTLET VAPOR STREAM NUMBER="
 AT 6,40 PUT PARAM3 using "dd"
 AT 6,40 GET PARAM3 using "dd"
 AT 7,1 PUT "PRESSURE="
 AT 7,40 PUT PARAM4 using "dddddd.dd"
 AT 7,40 GET PARAM4 using "dddddd.dd"
 AT 8,1 PUT "TEMPERATURE="
 AT 8,40 PUT PARAM5 using "dddddd.dd"
 AT 8,40 GET PARAM5 using "dddddd.dd"
ENDFORM

I CONDENSER
FORM UF0RMS AT 2,20 PUT "CONDENSER"
 AT 4,1 PUT "INLET STREAM NUMBER"
 AT 4,40 PUT PARAM1 using "dd"
 AT 4,40 GET PARAM1 using "dd"
 AT 5,1 PUT "OUTLET STREAM NUMBER"
 AT 5,40 PUT PARAM2 using "dd"
 AT 5,40 GET PARAM2 using "dd"
 AT 6,1 PUT "PRESSURE="
 AT 6,40 PUT PARAM3 using "dddddd.dd"
 AT 6,40 GET PARAM3 using "dddddd.dd"
ENDFORM

I MIXER
FORM UF0RMS AT 2,20 PUT "MIXER"
 AT 4,1 PUT "INLET STREAM 1 NUMBER="
 AT 4,40 PUT PARAM1 using "dd"
 AT 4,40 PUT PARAM2 using "dd"
 AT 4,40 PUT PARAM3 using "dd"
 AT 4,40 GET PARAM3 using "dd"
 AT 4,40 PUT PARAM4 using "dd"
 AT 4,40 GET PARAM4 using "dd"
 AT 4,40 PUT PARAM5 using "dd"
 AT 4,40 GET PARAM5 using "dd"
AT 4,40 GET PARAM1 using "dd"
AT 5,1 PUT "INLET STREAM NUMBER=
AT 5,40 PUT PARAM2 using "dd"
AT 5,40 GET PARAM2 using "dd"
AT 6,1 PUT "OUTLET STREAM NUMBER="
AT 6,40 PUT PARAM3 using "dd"
AT 6,40 GET PARAM3 using "dd"
AT 7,1 PUT "PRESSURE="
AT 7,40 PUT PARAM4 using "ddddddd.dd"
AT 7,40 GET PARAM4 using "ddddddd.dd"
ENDFORM

I SPLITTER
FORM UF0RM8 AT 2,20 PUT "SPLITTER"
AT 4,1 PUT "INLET STREAM NUMBER="
AT 4,40 PUT PARAM1 using "dd"
AT 4,40 GET PARAM1 using "dd"
AT 5,1 PUT "OUTLET STREAM 1 NUMBER="
AT 5,40 PUT PARAM2 using "dd"
AT 5,40 GET PARAM2 using "dd"
AT 6,1 PUT "OUTLET STREAM 2 NUMBER="
AT 6,40 PUT PARAM3 using "dd"
AT 6,40 GET PARAM3 using "dd"
AT 7,1 PUT "FRACTION OF INLET TO OUTLET STREAM 1=
AT 7,50 PUT PARAM4 using "d.dddd"
AT 7,50 GET PARAM4 using "d.dddd"
ENDFORM

I PUMP
FORM UF0RM9 AT 2,20 PUT "PUMP"
AT 4,1 PUT "INLET STREAM NUMBER="
AT 4,40 PUT PARAM1 using "dd"
AT 4,40 GET PARAM1 using "dd"
AT 5,1 PUT "OUTLET STREAM NUMBER="
AT 5,40 PUT PARAM2 using "dd"
I REACTOR

FORM UFORM10 AT 2,20 PUT "REACTOR"
AT 4,1 PUT "INLET STREAM 1 NUMBER="
AT 4,40 PUT PARAM1 using "dd"
AT 4,40 GET PARAM1 using "dd"
AT 5,1 PUT "INLET STREAM 2 NUMBER="
AT 5,40 PUT PARAM2 using "dd"
AT 5,40 GET PARAM2 using "dd"
AT 6,1 PUT "OUTLET STREAM NUMBER="
AT 6,40 PUT PARAM3 using "dd"
AT 6,40 GET PARAM3 using "dd"
AT 7,1 PUT "PRESSURE="
AT 7,40 PUT PARAM4 using "ddddddd.dd"
AT 7,40 GET PARAM4 using "ddddddd.dd"
AT 8,1 PUT "HEAT REMOVED (KJ/S) ="
AT 8,40 PUT PARAM5 using "ddddddd.dd"
AT 8,40 GET PARAM5 using "ddddddd.dd"
AT 9,1 PUT "FRACTION CONVERSION="
AT 9,40 PUT PARAM6 using "d.ddddd"
AT 9,40 GET PARAM6 using "d.ddddd"
AT 10,1 PUT "SECOND ORDER RATE CONSTANT="
AT 10,40 PUT PARAM7 using "ddddddd.dd"
AT 10,40 GET PARAM7 using "ddddddd.dd"

ENDFORM

I SULFUR SATURATOR
FORM UFORM11 AT 2,20 PUT "SULFUR SATURATOR"
 AT 4,1 PUT "INLET STREAM NUMBER="
 AT 4,40 PUT PARAM1 using "dd"
 AT 4,40 GET PARAM1 using "dd"
 AT 5,1 PUT "OUTLET STREAM NUMBER="
 AT 5,40 PUT PARAM2 using "dd"
 AT 5,40 GET PARAM2 using "dd"
 AT 7,1 PUT "TEMPERATURE="
 AT 7,40 PUT PARAM3 using "dddd.dd"
 AT 7,40 GET PARAM3 using "dddd.dd"
 AT 8,1 PUT "PRESSURE="
 AT 8,40 PUT PARAM4 using "dddd.dd"
 AT 8,40 GET PARAM4 using "dddd.dd"
ENDFORM

I SULFUR SETTLER
FORM UFORM12 AT 2,20 PUT "SULFUR SETTLER"
 AT 4,1 PUT "INLET STREAM NUMBER="
 AT 4,50 PUT PARAM1 using "dd"
 AT 4,50 GET PARAM1 using "dd"
 AT 5,1 PUT "OUTLET SULFUR STREAM NUMBER="
 AT 5,50 PUT PARAM2 using "dd"
 AT 5,50 GET PARAM2 using "dd"
 AT 6,1 PUT "OUTLET SOLVENT STREAM NUMBER="
 AT 6,50 PUT PARAM3 using "dd"
 AT 6,50 GET PARAM3 using "dd"
 AT 7,1 PUT "WT% SULFUR IN SULFUR STREAM="
 AT 7,50 PUT PARAM4 using "ddd.dd"
 AT 7,50 GET PARAM4 using "ddd.dd"
 AT 8,1 PUT "PRESSURE="
 AT 8,50 PUT PARAM5 using "dddddd.dd"
 AT 8,50 GET PARAM5 using "dddddd.dd"
ENDFORM

I SULFUR WASHER
FORM UFORM13 AT 2,20 PUT "SULFUR WASHER"
 AT 4,1 PUT "INLET SULFUR STREAM NUMBER="
 AT 4,50 PUT PARAM1 using "dd"
 AT 4,50 GET PARAM1 using "dd"
 AT 5,1 PUT "INLET WASH STREAM NUMBER="
 AT 5,50 PUT PARAM2 using "dd"
 AT 5,50 GET PARAM2 using "dd"
 AT 6,1 PUT "OUTLET WASH STREAM NUMBER="
 AT 6,50 PUT PARAM3 using "dd"
 AT 6,50 GET PARAM3 using "dd"
 AT 7,1 PUT "OUTLET SULFUR STREAM NUMBER="
 AT 7,50 PUT PARAM4 using "dd"
 AT 7,50 GET PARAM4 using "dd"
 AT 8,1 PUT "WT% SULFUR IN SULFUR STREAM="
 AT 8,50 PUT PARAM5 using "ddd.dd"
 AT 8,50 GET PARAM5 using "ddd.dd"
 AT 9,1 PUT "PRESSURE="
 AT 9,50 PUT PARAM6 using "dddd.dd"
 AT 9,50 GET PARAM6 using "dddd.dd"
ENDFORM

MELTER/DECANTER
FORM UFORM14 AT 2,20 PUT "MELTER/DECANTER"
 AT 4,1 PUT "INLET STREAM NUMBER="
 AT 4,50 PUT PARAM1 using "dd"
 AT 4,50 GET PARAM1 using "dd"
 AT 5,1 PUT "OUTLET NON-SULFUR STREAM NUMBER="
 AT 5,50 PUT PARAM2 using "dd"
 AT 5,50 GET PARAM2 using "dd"
 AT 6,1 PUT "OUTLET SULFUR STREAM NUMBER="
 AT 6,50 PUT PARAM3 using "dd"
 AT 6,50 GET PARAM3 using "dd"
 AT 7,1 PUT "TEMPERATURE="
 AT 7,50 PUT PARAM4 using "dddd.dd"
 AT 7,50 GET PARAM4 using "dddd.dd"
 AT 8,1 PUT "PRESSURE="
AT 8,50 PUT PARAMS using "dddd.ddd"
AT 8,50 GET PARAMS using "dddddd.ddd"
ENDFORM

I FURNACE
FORM UFORM15 AT 2,20 PUT "FURNACE"
AT 4,1 PUT "INLET SULFUR STREAM NUMBER="
AT 4,50 PUT PARAM1 using "dd"
AT 4,50 GET PARAM1 using "dd"
AT 5,1 PUT "INLET RESIDUAL STREAM NUMBER="
AT 5,50 PUT PARAM2 using "dd"
AT 5,50 GET PARAM2 using "dd"
AT 6,1 PUT "INLET AIR STREAM NUMBER="
AT 6,50 PUT PARAM3 using "dd"
AT 6,50 GET PARAM3 using "dd"
AT 7,1 PUT "FLOW OF SO2 OUT OF FURNACE="
AT 7,50 PUT PARAM4 using "dddd.ddddd"
AT 7,50 GET PARAM4 using "dddd.ddddd"
AT 8,1 PUT "OUTLET STREAM NUMBER="
AT 8,50 PUT PARAM5 using "dd"
AT 8,50 GET PARAM5 using "dd"
AT 9,1 PUT "OUTLET TEMPERATURE="
AT 9,50 PUT PARAM6 using "dddd.ddd"
AT 9,50 GET PARAM6 using "dddd.ddd"
AT 10,1 PUT "OUTLET PRESSURE="
AT 10,50 PUT PARAM7 using "dddd.ddd"
AT 10,50 GET PARAM7 using "dddddd.ddd"
ENDFORM

I COMPRESSOR
FORM UFORM16 AT 2,20 PUT "COMPRESSOR"
AT 4,1 PUT "INLET STREAM NUMBER="
AT 4,50 PUT PARAM1 using "dd"
AT 4,50 GET PARAM1 using "dd"
AT 5,1 PUT "OUTLET STREAM NUMBER="
AT 5,50 PUT PARAM2 using "dd"
AT 5,50 GET PARAM2 using "dd"
AT 6,1 PUT "OUTLET PRESSURE="
AT 6,50 PUT PARAM3 using "dddd.dd"
AT 6,50 GET PARAM3 using "dddd.dd"
ENDFORM

I SULFUR CENTRIFUGE
FORM UFORM17 AT 2,20 PUT "SULFUR CENTRIFUGE"
 AT 4,1 PUT "INLET STREAM NUMBER="
 AT 4,50 PUT PARAM1 using "dd"
 AT 4,50 GET PARAM1 using "dd"
 AT 5,1 PUT "INLET WASH STREAM NUMBER="
 AT 5,50 PUT PARAM2 using "dd"
 AT 5,50 GET PARAM2 using "dd"
 AT 6,1 PUT "OUTLET SULFUR SLURRY STREAM NUMBER="
 AT 6,50 PUT PARAM3 using "dd"
 AT 6,50 GET PARAM3 using "dd"
 AT 7,1 PUT "OUTLET LIQUID STREAM NUMBER="
 AT 7,50 PUT PARAM4 using "dd"
 AT 7,50 GET PARAM4 using "dd"
 AT 8,1 PUT "PRESSURE="
 AT 8,50 PUT PARAM5 using "dddddd.dd"
 AT 8,50 GET PARAM5 using "dddddd.dd"
 AT 9,1 PUT "WTX SULFUR TO SLURRY IN FIRST SEPARATION="
 AT 9,50 PUT PARAM6 using "ddddd.dd"
 AT 9,50 GET PARAM6 using "ddddd.dd"
 AT 10,1 PUT "WTX SULFUR TO SLURRY IN EXIT="
 AT 10,50 PUT PARAM7 using "ddddd.dd"
 AT 10,50 GET PARAM7 using "ddddd.dd"
ENDFORM

I PARTIAL CONDENSER
FORM UFORM18 AT 2,20 PUT "PARTIAL CONDENSER"
 AT 4,1 PUT "INLET STREAM NUMBER="
I HEATER
FORM UFORM19 AT 2,20 PUT "HEATER"
 AT 4,1 PUT "INLET STREAM NUMBER="
 AT 4,5 PUT PARAM1 using "dd"
 AT 4,5 GET PARAM1 using "dd"
 AT 5,1 PUT "OUTLET STREAM NUMBER="
 AT 5,5 PUT PARAM2 using "dd"
 AT 5,5 GET PARAM2 using "dd"
 AT 6,1 PUT "TEMPERATURE="
 AT 6,5 PUT PARAM3 using "dddd.dd"
 AT 6,5 GET PARAM3 using "dddd.dd"
 AT 7,1 PUT "OUTLET LIQUID STREAM NUMBER="
 AT 7,5 PUT PARAM4 using "dd"
 AT 7,5 GET PARAM4 using "dd"
 AT 8,1 PUT "OUTLET VAPOR STREAM NUMBER="
 AT 8,5 PUT PARAM5 using "dd"
 AT 8,5 GET PARAM5 using "dd"
ENDFORM

I STORAGE
FORM UFORM20 AT 2,20 PUT "STORAGE UNIT"
 AT 4,1 PUT "INLET STREAM NUMBER="
 AT 4,5 PUT PARAM1 using "dd"
 AT 4,5 GET PARAM1 using "dd"
 AT 5,1 PUT "OUTLET STREAM NUMBER="
 AT 5,5 PUT PARAM2 using "dd"
 AT 5,5 GET PARAM2 using "dd"
ENDFORM
AT 5,50 PUT PARAM2 using "dd"
AT 5,50 GET PARAM2 using "dd"
AT 6,1 PUT "OUTLET FLOW OF COMPONENT"
AT 6,25 PUT PARAM4 using "dd"
AT 6,25 GET PARAM4 using "dd"
AT 6,40 PUT "(MOL/I) ="
AT 6,52 PUT PARAM3 using "dddddd.dddd"
AT 6,52 GET PARAM3 using "dddddd.dddd"
AT 7,1 PUT "OUTLET TEMPERATURE ="
AT 7,52 PUT PARAM5 using "dddddd.dd"
AT 7,52 GET PARAM5 using "dddddd.dd"
AT 9,1 PUT "THIS UNIT SETS THE FLOW OF THE DESIRED COMPONENT"
AT 10,1 PUT "AND SCALES THE OUTPUT FLOWS OF THE OTHER COMPONENTS"
AT 11,1 PUT "AT THE SAME COMPOSITION AS THE INLET"
ENDFORM

1 CRYSTALLIZER
FROM UFORM21 AT 2,20 PUT "CRYSTALLIZER"
AT 4,1 PUT "INLET STREAM NUMBER ="
AT 4,50 PUT PARAM1 using "dd"
AT 4,50 GET PARAM1 using "dd"
AT 5,1 PUT "OUTLET STREAM NUMBER ="
AT 5,50 PUT PARAM2 using "dd"
AT 5,50 GET PARAM2 using "dd"
ENDFORM

1 SULFUR SPLITTER
FROM UFORM22 AT 2,20 PUT "SULFUR SPLITTER"
AT 4,1 PUT "INLET STREAM NUMBER ="
AT 4,50 PUT PARAM1 using "dd"
AT 4,50 GET PARAM1 using "dd"
AT 5,1 PUT "OUTLET SULFUR STREAM NUMBER ="
AT 5,50 PUT PARAM2 using "dd"
AT 5,50 GET PARAM2 using "dd"
AT 6,1 PUT "OUTLET LIQUID STREAM NUMBER="
AT 6,50 PUT PARAM3 using "dd"
AT 6,50 GET PARAM3 using "dd"
AT 7,1 PUT "FRACTION OF LIQUID TO SULFUR STREAM="
AT 7,50 PUT PARAM4 using "d,dddd"
AT 7,50 GET PARAM5 using "d,dddd"
ENDFORM

I MAKEUP
FORM UFORM23 AT 2,20 PUT "MAKEUP UNIT"
AT 4,1 PUT "INLET STREAM NUMBER="
AT 4,50 PUT PARAM1 using "dd"
AT 4,50 GET PARAM1 using "dd"
AT 5,1 PUT "OUTLET STREAM NUMBER="
AT 5,50 PUT PARAM2 using "dd"
AT 5,50 GET PARAM2 using "dd"
AT 6,1 PUT "OUTLET FLOW OF COMPONENT (ICMOLE/S) ."
AT 6,55 PUT PARAM3 using "ddddd.ddddd"
AT 6,55 GET PARAM3 using "ddddd.ddddd"
AT 9,1 PUT "THIS UNIT SETS THE OUTLET FLOW OF THE DESIRED COMPONENT"
AT 10,1 PUT "WHILE PASSING THE FLOWS OF THE OTHER COMPONENTS THROUGH"
AT 11,1 PUT "FROM THE INLET TO THE OUTLET!"
ENDFORM

I TSET
FORM UFORM24 AT 2,20 PUT "TSET ROUTINE"
AT 4,1 PUT "INLET STREAM NUMBER="
AT 4,50 PUT PARAM1 using "dd"
AT 4,50 GET PARAM1 using "dd"
AT 5,1 PUT "OUTLET STREAM NUMBER="
AT 5,50 PUT PARAM2 using "dd"
AT 5,50 GET PARAM2 using "dd"
AT 6,1 PUT "SET TEMPERATURE OF OUTLET="
AT 6,50 PUT PARAM3 using "ddddd.dd"
AT 6,50 GET PARAM3 using "ddddd.dd"
ENDFORM

I HYDROCARBON SPLITTER
FORM UFORN25 AT 2,20 PUT "HYDROCARBON SPLITTER"
AT 4,1 PUT "INLET STREAM NUMBER="
AT 4,50 PUT PARAM1 using "dd"
AT 4,50 GET PARAM1 using "dd"
AT 5,1 PUT "OUTLET HYDROCARBON STREAM NUMBER="
AT 5,50 PUT PARAM2 using "dd"
AT 5,50 GET PARAM2 using "dd"
AT 6,1 PUT "OUTLET HYDROCARBON FREE STREAM NUMBER="
AT 6,50 PUT PARAM3 using "dd"
AT 6,50 GET PARAM3 using "dd"
ENDFORM

SAVE TO "OFORM"
I UNITS.IPF

I

I UNIT PRINTOUT SUBROUTINE FOR USE WITH BERKIN
I USED FOR NORMAL DATA ENTRY TO STREAMIO.ITB
I SENDS THE FORM TO THE SCREEN

I LAST UPDATE: 04/13/86

TEST OPC

CASE 1:

PUTFORM UFORM1
TALLY UFORM1
GETFORM UFORM1
BREAK

CASE 2:

PUTFORM UFORM2
TALLY UFORM2
GETFORM UFORM2
BREAK

CASE 3:

PUTFORM UFORM3
TALLY UFORM3
GETFORM UFORM3
BREAK

CASE 4:

PUTFORM UFORM4
TALLY UFORM4
GETFORM UFORM4
BREAK

CASE 5:

PUTFORM UFORM5
TALLY UFORM5
GETFORM UFORM5
BREAK

CASE 6:
PUTFORM UFORM6
TALLY UFORM6
GETFORM UFORM6
BREAK

CASE 7:
PUTFORM UFORM7
TALLY UFORM7
GETFORM UFORM7
BREAK

CASE 8:
PUTFORM UFORM8
TALLY UFORM8
GETFORM UFORM8
BREAK

CASE 9:
PUTFORM UFORM9
TALLY UFORM9
GETFORM UFORM9
BREAK

CASE 10:
PUTFORM UFORM10
TALLY UFORM10
GETFORM UFORM10
BREAK

CASE 11:
PUTFORM UFORM11
TALLY UFORM11
GETFORM UFORM11
BREAK

CASE 12:
PUTFORM UFORM12
TALLY UFORM12
GETFORM UFORM12
BREAK

CASE 13:
PUTFORM UFORM13
TALLY UFORM13
CASE 14:
PUTFORM UFORM14
TALLY UFORM14
GETFORM UFORM14
BREAK

CASE 15:
PUTFORM UFORM15
TALLY UFORM15
GETFORM UFORM15
BREAK

CASE 16:
PUTFORM UFORM16
TALLY UFORM16
GETFORM UFORM16
BREAK

CASE 17:
PUTFORM UFORM17
TALLY UFORM17
GETFORM UFORM17
BREAK

CASE 18:
PUTFORM UFORM18
TALLY UFORM18
GETFORM UFORM18
BREAK

CASE 19:
PUTFORM UFORM19
TALLY UFORM19
GETFORM UFORM19
BREAK

CASE 20:
PUTFORM UFORM20
TALLY UFORM20
GETFORM UFORM20
BREAK
CASE 21:
 PUTFORM UFORM21
 TALLY UFORM21
 GETFORM UFORM21
 BREAK
CASE 22:
 PUTFORM UFORM22
 TALLY UFORM22
 GETFORM UFORM22
 BREAK
CASE 23:
 PUTFORM UFORM23
 TALLY UFORM23
 GETFORM UFORM23
 BREAK
CASE 24:
 PUTFORM UFORM24
 TALLY UFORM24
 GETFORM UFORM24
 BREAK
CASE 25:
 PUTFORM UFORM25
 TALLY UFORM25
 GETFORM UFORM25
 BREAK
OTHERWISE:
 OUTPUT "ERROR! ILLEGAL UNIT IGNORED"
 OUTPUT "STRIKE ANY KEY TO CONTINUE."
 WAIT
ENDTEST
ROUTINE TO SEND THE ENTIRE OPCODE MATRIX TO THE PRINTER
THE OUTPUT IS IN THE SAME FORM AS THAT WHICH IS DISPLAYED
ON THE SCREEN FOR DATA ENTRY.
ALL ENTRIES ARE DISPLAYED FOUR TO A PAGE EXCEPT FOR
THE ABSORBER/STRIPPER/DISTILLATION WHICH OCCUPIES AN ENTIRE PAGE
LAST UPDATE: 03/28/86, DWN

E.PMAR=4
E.PWID=80

USE STREAMIO
OBTAIN FIRST
UCOUNT=0

WHILE UNIT<>99

IF OPCODE=1 THEN
 EJECT
ENDIF

PRINT " =
PRINT "UNIT=",UNIT

TEST OPCODE

CASE 1:
 PRINT UFORM1
 UCOUNT=-1
 EJECT
 BREAK

CASE 2:
 PRINT UFORM2
BREAK

CASE 3:
 PRINT UF0RM3
BREAK

CASE 4:
 PRINT UF0RM4
BREAK

CASE 5:
 PRINT UF0RM5
BREAK

CASE 6:
 PRINT UF0RM6
BREAK

CASE 7:
 PRINT UF0RM7
BREAK

CASE 8:
 PRINT UF0RM8
BREAK

CASE 9:
 PRINT UF0RM9
BREAK

CASE 10:
 PRINT UF0RM10
BREAK

CASE 11:
 PRINT UF0RM11
BREAK
CASE 12:
 PRINT UFORM12
BREAK
CASE 13:
 PRINT UFORM13
BREAK
CASE 14:
 PRINT UFORM14
BREAK
CASE 15:
 PRINT UFORM15
BREAK
CASE 16:
 PRINT UFORM16
BREAK
CASE 17:
 PRINT UFORM17
BREAK
CASE 18:
 PRINT UFORM18
BREAK
CASE 19:
 PRINT UFORM19
BREAK
CASE 20:
 PRINT UFORM20
BREAK
CASE 21:
 PRINT UFORM21
BREAK
CASE 22:
 PRINT UFORM22
BREAK
CASE 23:
 PRINT UFORM23
BREAK
CASE 24:
 PRINT UFORM24
BREAK
CASE 25:
 PRINT UFORM25
BREAK
ENDTEST

PRINT "=
PRINT "=
PRINT "=
PRINT "=

UCOUNT=UCOUNT+1

IF UCOUNT=4 THEN
 EJECT
 UCOUNT=0
ENDIF

OBTAIN NEXT

ENDWHILE
KMAN DATA BASE TABLE STRUCTURES FOR STREAMIO.ITB AND STREAMS.ITB

<table>
<thead>
<tr>
<th>Field</th>
<th>Read Access</th>
<th>Write Access</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>#MARK LOGIC</td>
<td>A</td>
<td>A</td>
<td>(default)</td>
</tr>
<tr>
<td>OPCODE</td>
<td>A</td>
<td>A</td>
<td>"dd\n"</td>
</tr>
<tr>
<td>UNIT</td>
<td>A</td>
<td>A</td>
<td>"dd.dd"</td>
</tr>
<tr>
<td>PARAM1</td>
<td>A</td>
<td>A</td>
<td>"dddddd.dddddd"</td>
</tr>
<tr>
<td>PARAM2</td>
<td>A</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>
Write Access: A
Picture: "dddddddddd"

Field: PARAM3 NUM
Read Access: A
Write Access: A
Picture: "dddddd.dddddd"

Field: PARAM4 NUM
Read Access: A
Write Access: A
Picture: "dddddd.dddddd"

Field: PARAM5 NUM
Read Access: A
Write Access: A
Picture: "dddddd.dddddd"

Field: PARAM6 NUM
Read Access: A
Write Access: A
Picture: "dddddd.dddddd"

Field: PARAM7 NUM
Read Access: A
Write Access: A
Picture: "dddddd.dddddd"

Field: PARAM8 NUM
Read Access: A
Write Access: A

Field: PARAM9 NUM
Read Access: A.................
Write Access: A.................
Picture: "dddddd.ddddd"

Field: PARAM10 NUM
Read Access: A.................
Write Access: A.................
Picture: "dddddd.ddddd"

Field: PARAM11 NUM
Read Access: A.................
Write Access: A.................
Picture: "dddddd.ddddd"

Field: PARAM12 NUM
Read Access: A.................
Write Access: A.................
Picture: "dddddd.ddddd"

Field: PARAM13 NUM
Read Access: A.................
Write Access: A.................
Picture: "dddddd.ddddd"

Field: PARAM14 NUM
Read Access: A.................
Write Access: A.................
Picture: "dddddd.ddddd"
Field : PARAM21 NUM
Read Access : A
Write Access : A
Picture : "dddddddddddddd"

Field : PARAM22 NUM
Read Access : A
Write Access : A
Picture : "dddddddddddddd"

Field : PARAM23 NUM
Read Access : A
Write Access : A
Picture : "dddddddddddddd"

Field : PARAM24 NUM
Read Access : A
Write Access : A
Picture : "dddddddddddddd"

Field : PARAM25 NUM
Read Access : A
Write Access : A
Picture : "dddddddddddddd"

Field : PARAM26 NUM
Read Access : A
Write Access : A
Picture : "dddddddddddddd"
Field: PARAM27 NUM
Read Access: A..................
Write Access: A..................
Picture: "dddddd..dddddd"

Field: PARAM28 NUM
Read Access: A..................
Write Access: A..................
Picture: "dddddd..dddddd"
Table name : STREAMS
File name : STREAMS.ITB
Read Access : A
Write Access : A
Creation Date : 04/10/85
Modification Date : 04/02/86
Number of Records : 54

Field : #MARK LOGIC
Read Access : A
Write Access : A
Picture : (default)

Field : N2 NUM
Read Access : A
Write Access : A
Picture : "d.ddddd"

Field : N2 NUM
Read Access : A
Write Access : A
Picture : "d.ddddd"

Field : CO NUM
Read Access : A
Write Access : A
Picture : "d.ddddd"

Field : CO2 NUM
Read Access : A
Write Access : A
Picture : "d.ddddd"
<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Read Access</th>
<th>Write Access</th>
<th>Picture</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>NUM</td>
<td>A</td>
<td>A</td>
<td>"d.ddddd"</td>
</tr>
<tr>
<td>C2</td>
<td>NUM</td>
<td>A</td>
<td>A</td>
<td>"d.ddddd"</td>
</tr>
<tr>
<td>C3</td>
<td>NUM</td>
<td>A</td>
<td>A</td>
<td>"d.ddddd"</td>
</tr>
<tr>
<td>C4</td>
<td>NUM</td>
<td>A</td>
<td>A</td>
<td>"d.ddddd"</td>
</tr>
<tr>
<td>C5</td>
<td>NUM</td>
<td>A</td>
<td>A</td>
<td>"d.ddddd"</td>
</tr>
<tr>
<td>H2S</td>
<td>NUM</td>
<td>A</td>
<td>A</td>
<td>"d.ddddd"</td>
</tr>
</tbody>
</table>
Field: SO2 NUM
Read Access: A..............
Write Access: A..............
Picture: "d.ddddd"

Field: H2O NUM
Read Access: A..............
Write Access: A..............
Picture: "d.ddddd"

Field: SOLV NUM
Read Access: A..............
Write Access: A..............
Picture: "d.ddddd"

Field: DSULF NUM
Read Access: A..............
Write Access: A..............
Picture: "d.ddddd"

Field: CH3SH NUM
Read Access: A..............
Write Access: A..............
Picture: "d.ddddd"

Field: C2H5SH NUM
Read Access: A..............
Write Access: A..............
Picture: "d.ddddd"
Field : SULF NUM
Read Access :
Write Access :
Picture : "d.dddd"

Field : WATER NUM
Read Access :
Write Access :
Picture : "d.dddd"

Field : O2 NUM
Read Access :
Write Access :
Picture : "d.dddd"

Field : UNKN NUM
Read Access :
Write Access :
Picture : "d.dddd"

Field : FLOW NUM
Read Access :
Write Access :
Picture : "dddddddddd"

Field : TEMP NUM
Read Access :
Write Access :
Picture : "ddddd.dd"

Field : PRESS NUM
Read Access: A
Write Access: A
Picture: "dddddd.dd"

Field: ENTH NUM
Read Access: A
Write Access: A
Picture: "dddddd.dd"

Field: PHASE NUM
Read Access: A
Write Access: A
Picture: "d.d"
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.