Title
L=2, 4 MIXING RATIOS IN Am243 d-DECAY AND MAGNETIC PERTURBATION EFFECTS

Permalink
https://escholarship.org/uc/item/75s2j75b

Authors
Asaro, F.
Siegbahn, K.

Publication Date
1963-09-01
L = 2, 4 MIXING RATIOS IN Am243 α-DECAY AND MAGNETIC PERTURBATION EFFECTS

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California
Contract No. W-7405-eng-48

L = 2, 4 MIXING RATIOS IN Am^{243} \alpha-DECAY AND MAGNETIC PERTURBATION EFFECTS

F. Asaro and K. Siegbahn

September 1963
L = 2, 4 MIXING RATIOS IN Am243 α-DECAY AND MAGNETIC PERTURBATION EFFECTS

F. Asaro and K. Siegbahn

Lawrence Radiation Laboratory
University of California
Berkeley, California

Our investigations are concerned primarily with the attenuation coefficient, a_2, of free atoms or ions determined by integral α-γ directional correlations from Am243 under an applied magnetic field. The technique1,2 involves preparation of a very thin source of Am243 on a thin backing plate and detecting those α particles which pass through the plate. The recoil nuclei associated with the detected α particles are ejected from the backing plate into vacuum. After traveling some fraction of a millimeter in the vacuum system most of the Np239 recoils emit a 75 keV gamma ray. The pertinent part of the Am243 alpha decay scheme is shown in Figure 1. The principal correlation with which we are concerned is that between the most intense alpha group, α_{75}, and the intense 75 keV El gamma ray. This alpha group is composed principally of a mixture of $L = 0$ and $L = 2$ alpha waves. The alpha groups, α_{118} and α_{174}, are composed principally of $L = 2$ with small amounts of $L = 4$. By a simple approximation given by Bohr, Fröman and Mottelson3 (RFM) for transitions of these types it is easy to calculate the $L = 2$ contribution in the main group from the intensities of either α_{118} or α_{174}. The ratio of $L = 2$ to $L = 0$ in α_{75} is then $\delta^2 = 0.22$ (RFM)1,2 as determined from α_{118}. Comparison of α_{118} and α_{174}, and of similar groups in many the nuclei show a deviation in the approximation of ~ 30%. A discrepancy of this type also might extend to the main group, α_{75}. Chasman and Rossmussen4 (CR) have analyzed this discrepancy in U235 as a function of the interaction of the nuclear quadrupole moment with the alpha wave. They have concluded for U235 that the $L = 2$ contribution in the main group should be increased by ~ 40%. The resulting theoretical anisotropies5 are
are 45.6% (BFM) and 50.2% (CR). This uncertainty will be reflected in all of our values of \(G_2 \) and will be in addition to the listed standard deviations.

In the early work\(^1,2\) it was found that the correlation \(\gamma_73 \) with recoils going into vacuum was highly attenuated with a \(G_2 \) of 0.11 (BFM) where \(W(\theta) = 1 + A_2 G_2 P_2 \cos \theta \). This attenuation was ascribed\(^1,2\) to the hyperfine interaction. With the sample reversed, such that the recoils travelled into the Ag backing plate rather than into vacuum, \(G_2 \) had a value of 0.5 (BFM).

In the present experiment\(^5\) with a sample about an order of magnitude thicker than in the early work, \(G_2 \), for recoils going into vacuum, was found to be 0.17 ± 0.02 (CR) or 0.19 ± 0.02 (BFM). Our values are consistent with the hard core value of \(G_2 \), 0.20. The vacuum anisotropy was studied as a function of an external magnetic field applied parallel to the path of the alpha particles. The magnet was designed by Professor Siegbahn and is shown in Fig. 2. It can operate continuously at a field of 11000 gauss. The field is constant to 10% over the surface of the sample. The observed anisotropies as a function of the applied magnetic field are shown in Fig. 3. It is seen that nearly all of the correlation is restored with 11000 gauss. Figure 4 shows the variation of \(1 - G_2 \) as a function of the applied magnetic field (CR). The indicated exponential dependence of \(1 - G_2 \) on \(H \) is very likely fortuitous because of the relatively large standard deviations.

The anisotropy was also measured with the alpha particles going directly into vacuum and the recoils going into the Ag backing plate. No increase in anisotropy was observed with an applied magnetic field. With and without an 11000 gauss magnetic field the respective values (CR) were 0.52 ± 0.05 and 0.59 ± 0.02.

A Ag cover foil was placed about 0.005 cm away from the sample so that the recoils would strike the cover foil after spending \(\sim 1.5 \times 10^{-10} \) sec in vacuum. With no applied magnetic field, the anisotropy was still highly attenuated \((G_2 \lesssim 0.2) \). Under an applied magnetic field of 11000 gauss \(G_2 \) was restored to a
value of 0.62 (CR) or 7.70 (BFM). The significance of this experiment is that the vacuum perturbation of the correlation takes place is appreciably less than 1.5×10^{-10} seconds.

The correlation between α_{118} and α_{75} was measured with the recoils in an α environment. This was an attempt to determine the $L = 2$ and $L = 4$ admixtures in α_{118}. Figure 5 shows the gamma ray spectrum in coincidence with α_{118}. The energies and relative intensities of the observed gamma rays were 75 keV (~91%), 88 keV (~3%), and 118 keV (~6%). The observed anisotropy, after finite-size corrections, is 0.075 ± 0.023. Figure 6 shows the theoretical values of the anisotropy as a function of various mixtures of $L = 2$ and $L = 4$ waves. The experimental value of the anisotropy was corrected by assuming $G_2 = 0.59$ (CR), the same value as found for α_{75}. The value of δ ($L = 4/L = 2$) is then -0.17 ± 0.10, exclusive of the error in G_2. For 233U favored alpha decay Chasman and Rasmussen deduced the $L = 2$ and $L = 4$ waves had the same sign. In earlier analyses of alpha decay transition probabilities of even-even nuclei, Rasmussen had deduced that the $L = 4$ wave would change sign in the vicinity of Cm (one atomic number higher than Am). Our negative value of δ may mean that the $L = 4$ wave has changed sign for Am^{243} favored alpha decay. With the standard deviations in our measurements, however, there is a 5% possibility that δ has a positive sign, exclusive of any error in G_2. Finally the value of G_2 may be in error. If a substantial perturbation of the $\alpha_{75} - \gamma_{75}$ correlation occurs in $<10^{-10}$ seconds due to a quadrupole interaction, then the perturbation will be smaller for the $\alpha_{118} - \gamma_{118}$ correlation since the quadrupole moment of the 118 keV rotational state should be much smaller than that of the 75 keV state. The probability that δ can be positive might then be as high as ~15%. Therefore our value for negative value of δ is suggestive but not conclusive.
FOOTNOTES AND REFERENCES

* Work performed under the auspices of the U.S. Atomic Energy Commission.

† Present address: Institute of Physics, University of Uppsala, Uppsala, Sweden.

FIGURE CAPTIONS

Figure 1. Partial alpha decay scheme of Am241.

Figure 2. α-γ angular correlation magnet and detector arrangement.

Figure 3. Am$^{241} (\alpha_{75} + \alpha_{118}) - \gamma_{75}$ angular correlation as a function of an applied magnetic field. The recoiling nuclei are in a vacuum environment.

Figure 4. The attenuation factor, g_2, for the Am$^{241} (\alpha_{75} + \alpha_{118}) - \gamma_{75}$ correlation in a vacuum environment as a function of an applied magnetic field. The theoretical anisotropy was calculated with the correction of Chasman and Rasmussen. The dashed line, which is the best representation of the data from 1-12 kgauss, can be expressed by the equation $l - g_2 = 0.7 \times 10^{-0.06H}$.

Figure 5. Gamma ray spectrum in coincidence with Am$^{241} \alpha_{118}$.

Figure 6. Am$^{241} \alpha_{118} - \gamma_{75}$, angular correlation anisotropy.
Fig. 1.
Fig. 2.
Hard-core anisotropy

Theoretical anisotropy
(Bohr, Froman, and Mottelson)

Theoretical anisotropy
(Bohr, Froman, and Mottelson
with Chasman and Rasmussen
U233 correction)

Magnetic field parallel to a path (kG)

Fig. 3.
Fig. 4.

$W = 1 - G_2 0.355 P_2 \cos \theta$

Magnetic field parallel to a path (kG)
Am$^{243}a_{118} - \gamma_{75}$
Angular correlations
- 90-deg spectrum-

75 keV

88 keV

118 keV

Peak shape from $\alpha_{75} - \gamma$ coincidences

Coincidences per channel

Channel number (gamma-ray energy)

Fig. 5.
Am243 α_{118} - γ_{75} angular correlation

δ^2 from α-group intensities

Theoretical anisotropy

Experimental anisotropy

Standard deviation

$\delta^2 = \text{Intensity } L=4\alpha / \text{Intensity } L=2\alpha$

Fig. 6.
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.