Lawrence Berkeley National Laboratory
Recent Work

Title
ESSENTIAL NONLINEARITY OF PHASE-SENSITIVE DETECTOR CHARACTERISTICS

Permalink
https://escholarship.org/uc/item/76v9f3w7

Author
Leskovar, Branko.

Publication Date
1968-08-01
ESSENTIAL NONLINEARITY OF PHASE-SENSITIVE DETECTOR CHARACTERISTICS

Branko Leskovar

August 1968
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ESSENTIAL NONLINEARITY OF PHASE-SENSITIVE DETECTOR CHARACTERISTICS

Branko Leskovač

August 1968
ESSENTIAL NONLINEARITY OF PHASE-SENSITIVE DETECTOR CHARACTERISTICS

BRANKO LESKOVAR
Lawrence Radiation Laboratory, University of California
Berkeley, California

ABSTRACT
The effect of essential nonlinearity of detector characteristics in a phase-sensitive detection system is studied and determined theoretically in detail over a wide dynamic range of optimum and nonoptimum operating conditions, assuming that the input signal is in the narrow-band Gaussian noise. Minimum, maximum, and limiting values of nonlinearities of detector characteristics are determined by means of computer-aided analysis.

I. INTRODUCTION
In many cases of practical interest, there is concern about the nonlinear behavior of phase-sensitive system characteristics over a wide dynamic range of operating conditions. For example, in wide-band Fourier-transform high resolution nuclear-magnetic-resonance and electron-spin-resonance spectrometry, total system nonlinearity is of prime importance. System nonlinearity is determined by the essential nonlinearity of the phase-sensitive detector used. Essential nonlinearities result from the inherent detector behavior in detection amplitude or phase of the input signal in the presence of noise. They do not involve nonlinearities resulting from the nonlinearity of the characteristics of the electronic components used.

In previous work [1] essential nonlinearity analysis of detector characteristics was presented for particular operating conditions. Based on this, further effort has been expanded by means of computer-aided analysis to include a very wide dynamic range of optimum and nonoptimum operating conditions.

According to Fig. 1, the normalized form of the phase-sensitive characteristics used for determination of detector nonlinearities as a function of the input signal-to-noise ratio \(x = \frac{V_s}{V_o} \), and the reference wave-to-input noise ratio \(\mu = \frac{V_c}{V_o} \) is given by

\[
\frac{V_o}{V_o} = \eta_d \left(\frac{\pi}{2} \right)^{1/2} \left\{ u[v(x)] - y[t(x)] \right\},
\]

(1)

Fig. 1. Phase-sensitive detector.
where functions \(u[v(x)] \) and \(y[t(x)] \) are given by

\[
\begin{align*}
u[v(x)] &= {}_1F_1 \left(-\frac{1}{2}; 1; -\frac{\mu^2 + x^2 + 2\mu x \cos \psi}{2}\right) \quad (2) \\
y[t(x)] &= {}_1F_1 \left(-\frac{1}{2}; 1; -\frac{\mu^2 + x^2 - 2\mu x \cos \psi}{2}\right) \quad (3)
\end{align*}
\]

By using a notation consistent with Ref. 1, \(V_0 \) is the detector output signal, \(V_a \) is the root-mean-square value of the input narrow-band noise, \(\eta_d \) is the detection efficiency, \(V_s \) is the amplitude of the input sine signal, \(V_c \) is the amplitude of the reference wave, \(\psi \) is the phase angle between the input signal and the reference wave, and \({}_1F_1 \) denotes the confluent hypergeometric function defined by

\[
{}_1F_1(a; b; \pm p) = \sum_{n=0}^{\infty} \frac{(a)_n}{(b)_n} \cdot \frac{(\pm p)^n}{n!} \quad (4)
\]

where \((a)_n = a(a+1) \cdots (a+n-1) \), \((a)_0 = 1 \),

\((b)_n = b(b+1) \cdots (b+n-1) \), \((b)_0 = 1 \).

Generally, three important cases of the nonlinearity of the phase-sensitive detector characteristics have been found. In the first case, the detector nonlinearity \(N_A \) has been determined as a function of \(x \) for the phase angle \(\psi \) between the input signal and the reference wave equal to \(2\pi n \), where \(n = 0, \pm 1, \pm 2, \ldots \). In the second and the third cases, the detector nonlinearities \(N_B \) and \(N_C \) have been obtained as a function of the phase angle and \(x \). In all cases, nonlinearities \(N_A, N_B, \) and \(N_C \) have been evaluated from the extent of their departure from the tangent drawn from the characteristic at points \(x = 0, \psi_2 = (2n+1)\pi/2, \) and \(\psi_1 = 2n\pi \), respectively.

II. NONLINEARITY OF DETECTOR CHARACTERISTICS RELATING TO THE INPUT SIGNAL-TO-NOISE RATIO FOR PHASE ANGLE \(\psi = 2\pi n \)

For this case the essential nonlinearity \(N_A \) can be calculated over a wide range of operating conditions by means of

\[
N_A = 1 - \frac{1}{x\mu} \frac{\gamma[f(x)] - \omega[e(x)]}{\chi(\mu)} \quad (6)
\]

where \(\gamma[f(x)] = {}_1F_1 \left(-\frac{1}{2}; 1; -\frac{\mu^2 + x^2}{2}\right) \quad (7) \)

\(\omega[e(x)] = {}_1F_1 \left(-\frac{1}{2}; 1; -\frac{\mu^2 - x^2}{2}\right) \quad (8) \)

\(\chi(\mu) = {}_1F_1 \left(\frac{1}{2}; 2; -\frac{\mu^2}{2}\right) \quad (9) \)
By means of a digital computer, the nonlinearity N_A as a function of x with μ as parameter is calculated and plotted (Fig. 2). High-accuracy numerical calculations of the confluent hypergeometric function in Eq. (6) are performed in two different ways. Where the variable of the hypergeometric function is smaller than 20, the function is expressed and calculated in terms of the modified Bessel functions of the first kind according to the relations:

\[
\begin{align*}
\mathbf{1}_1F_1\left(-\frac{1}{2};1;-p\right) &= \exp\left(-\frac{p}{2}\right)\left[I_0\left(\frac{p}{2}\right) + x I_1\left(\frac{p}{2}\right)\right] \\
\mathbf{1}_1F_1\left(-\frac{1}{2};2;-p\right) &= \exp\left(-\frac{p}{2}\right)\left[I_0\left(\frac{p}{2}\right) + I_1\left(\frac{p}{2}\right)\right]
\end{align*}
\] (10, 11)

For the hypergeometric function variable larger than 20, asymptotic expansion is used according to the following formula:

\[
\mathbf{1}_1F_1(a;b; -p) \sim \frac{\Gamma(b)}{\Gamma(b-a)} p^a \sum_{n=0}^{\infty} \frac{(a)_n (a-b+1)_n}{n! p^n}
\] (12)

where $Re p > 0$, $(a)_n$ is defined by Eq. (5), and

\[
(a-b+1)_n = (1+a-b)(2+a-b) \ldots (n+a-b)(a-b+1) = 1.
\] (13)

The total error of the calculated nonlinearity values $N_A \approx 5 \times 10^{-7}$ if one uses expression (4) and the first eight terms on the right-hand side of Eq. (12), including computer limitations.

Curves in Fig. 2 show that the nonlinearity N_A can be considerably decreased by increasing μ/x. For example, increasing μ/x for one order of magnitude will decrease the nonlinearity by three orders of magnitude, for $x = 1$. Furthermore, the nonlinearity is even more reduced for

![Fig. 2. Behavior of the nonlinearity N_A for the phase angle $\psi = 2\pi$.](image_url)
larger amounts of x. It can be seen that for $\mu = 10$ increasing μ by one order of magnitude decreases the nonlinearity more than four orders of magnitude. Consequently, the gain in the decrease of nonlinearity will be larger for larger x for the same increase of μ/x. However, for purposes of obtaining the largest output signal and a wide dynamic range in the wide-band phase-sensitive detection application by using solid-state components, x is close in value to μ. In such applications the essential nonlinearity can have an appreciable value, especially for small μ and x. With increasing μ and x the essential nonlinearity is gradually decreased, as can be concluded by a comparison of the curves given in Fig. 2. For $\mu = x$, approximation values of the nonlinearity N_A can be seen from Fig. 2: 8.5, 5.2, 0.51, and 0.035% for x equals 1, 10, 10^2, and 10^3, respectively. However, if both μ and x are greater than 10, μ always has to be slightly larger than x. If this condition is not satisfied the nonlinearity can reach an unacceptably high value; e.g., for $\mu = 100$ and $x = 80$ the nonlinearity $\approx 0.01\%$. On the other hand, for $\mu = 100$ and $x = 120$, nonlinearity is more than three orders of magnitude larger, more than approximately 10%. This amount is unacceptable for most practical applications. Generally, the nonlinearity deterioration will be larger for larger values of both μ and x under previously mentioned conditions. Consequently, wherever the essential nonlinearity is of prime importance, the maximum x value should be always smaller than μ, irrespective of other demands that can be imposed on the phase-sensitive detection system for other reasons. This is particularly important in applications in which x varies in a wide dynamic range. If x is only 10% smaller than μ the nonlinearity N_A can be reduced by more than 1.5 orders of magnitude; this can be concluded by inspection and comparison of curves (in Fig. 2) for $\mu = 10^2$, 10, and 100.

III. NONLINEARITIES OF DETECTOR CHARACTERISTICS RELATING TO THE PHASE ANGLE BETWEEN THE INPUT SIGNAL AND THE REFERENCE WAVE

The essential nonlinearities N_B and N_C of the detector characteristics with respect to the phase angle between the input signal and the reference wave can be determined over a wide range of operating conditions (according to Ref. 1) by expressions

$$N_B = 1 - \frac{1}{x\mu} \frac{u[v(x)] - y[t(x)]}{w[f(x)]}$$

and

$$N_C = 1 - \frac{u[v(x)] - y[t(x)]}{\phi[g(x)] - z[h(x)]}$$

where other functions are defined by relations (2) and (3) and by

$$w[f(x)] = \frac{1}{\sqrt{\pi}} \left[\frac{1}{2}; 2; - \frac{\mu^2 + x^2}{2} \right],$$

$$\phi[g(x)] = \frac{1}{\sqrt{\pi}} \left[\frac{1}{2}; 1; - \frac{\mu + x}{2} \right],$$

$$z[h(x)] = \frac{1}{\sqrt{\pi}} \left[\frac{1}{2}; 1; - \frac{\mu - x}{2} \right] .$$

Nonlinearities N_B and N_C have been calculated in relation to the phase characteristic operating points $\psi_2 = (2n+1) \pi/2$ and $\psi_1 = 2n \pi$, respectively. Both nonlinearities depend upon ψ, x, and μ. By using Eqs. (14) through (18), nonlinearities N_B and N_C are numerically
calculated, and shown in Fig. 3. The signal-to-noise and the reference wave-to-noise ratios of 1, 10^2, 10^3, and 10^4 are chosen as parameters.

The curves in the figure show that for $\mu = x = 1$, the nonlinearity N_B will be smaller than 1% if the phase-angle deviation is $\Delta \psi \leq 0.95 \pi/12$. The phase-angle deviation can be $\Delta \psi \leq 1.76 \pi/12$ for the same nonlinearity value if $\mu = x \geq 10$. The maximum nonlinearity $N_{B\text{,max}}$ appears at the point $\psi = 2n\pi$, but its value depends on x and μ. For the case $\mu = x$, the following maximum nonlinearities $N_{B\text{,max}}$ can be calculated from Eq. (14): 35.41, 15.28, 10.52, 10.02, and 9.97% for x of $1, 10, 10^2, 10^3$, and 10^4. Generally, the maximum nonlinearity will be smaller for a larger μ and x. However, to obtain a better insight into nonlinearity behavior with x variation, the nonlinearity N_B is calculated and plotted in Figs. 4 and 5 with fixed values of $\mu = 1, 10^2, 10^3$, and 10^4, and $\psi = 0, \pi/6, \pi/4, \pi/3, 5\pi/12, 11\pi/24, 47\pi/96$, and $99\pi/200$.

The minimum nonlinearity $N_{B\text{,min}}$ is obtained with respect to x, for μ and ψ as parameters, if the following condition is satisfied:

$$w[f(x)] \left\{ \left(\frac{x^2}{2} + \frac{\mu \cos \psi}{2} x \right) s[v(x)] - \left(\frac{x^2}{2} - \frac{\mu \cos \psi}{2} x \right) m[t(x)] + y[t(x)] - u[v(x)] \right\}$$

$$- \left(\frac{x}{2} \right)^2 K[f(x)] \left\{ y[t(x)] - u[v(x)] \right\} = 0,$$

where $w[f(x)]$, $y[t(x)]$, $u[v(x)]$ are given by relations (16), (3), and (2), respectively. The other functions are defined by

$$s[v(s)] = _1F_1 \left(\frac{1}{2}; 2; -\frac{s^2 + x^2 + 2ux \cos \psi}{2} \right),$$
$$m[t(x)] = _1F_1 \left(\frac{1}{2}; 2; -\frac{s^2 + x^2 - 2ux \cos \psi}{2} \right),$$
$$K[f(x)] = _1F_1 \left(\frac{3}{2}; 3; -\frac{s^2 + x^2}{2} \right).$$

![Fig. 3. Comparison of nonlinearities N_B and N_C.](image)
Fig. 4. Nonlinearity N_B as a function of the input signal-to-noise ratio with the phase angle ψ as parameter and the reference wave-to-input noise ratio $V_c/V_\sigma = 1, 10$.

Fig. 5. Nonlinearity N_B as a function of the input signal-to-noise ratio with the phase angle ψ as parameter and the reference wave-to-input noise ratio $V_c/V_\sigma = 10^2, 10^3, 10^4$.
From curves in Fig. 4 it can be seen that for \(\mu = 1 \) the nonlinearity \(N_B \) will be practically independent of \(x \). Curves have a small minimum at the point \(x = 2.482 \). However, the strong dependence of nonlinearity upon the phase angle is readily evident. Furthermore, for \(\mu > 10 \) the nonlinearity minimum value \(N_{B,\min} \) strongly depends upon \(\mu \) and \(x \) ratios, as well as on phase angle \(\psi \). For any phase-angle value, the detector characteristics will have a nonlinearity minimum if \(\mu \) is close to \(x \). Approximate values of the minimum nonlinearity input signal-to-noise ratio can be found from the transcendental equation (19) for any amount of \(\mu \) and \(\psi \) by a numerical method. The minimum nonlinearity \(N_{B,\min} \) is approximately a half order of magnitude smaller than its average value for almost any value of \(\psi \). Generally, \(N_{B,\min} \) will be smaller for larger \(x \) and \(\mu \).

Figure 3 also illustrates the behavior of nonlinearity \(N_C \) for \(\mu = x = 1, 10, 10^2, 10^3, \) and \(10^4 \). Nonlinearity \(N_C < 1\% \) if the phase angle deviation \(\Delta \psi \approx 0.53 \pi/12 \), for \(x = \mu = 1 \). The phase-angle deviation can be \(\Delta \psi \approx 0.28 \pi/12 \) for the same nonlinearity value if \(\mu = x = 1 \). Furthermore, for obtaining the optimum detector operating conditions, the nonlinearity \(N_C \) is calculated and plotted in Figs. 6 and 7 for \(\mu = 1, 10, 10^2, 10^3, \) and \(10^4 \); and \(\psi = 47\pi/96, \pi/3, \pi/4, \pi/12, \pi/24, \pi/48, \pi/96, \) and \(\pi/300 \). The maximum nonlinearity \(N_{C,\max} \) is calculated with respect to \(x \), for \(\mu \) and \(\psi \) as parameters, by a numerical method from

\[
\left\{ \begin{array}{l}
\phi [g(x)] - z[h(x)] \\
\left(\frac{x}{2} - \frac{\mu}{2} \cos \psi \right) m[t(x)] - \left(\frac{x}{2} + \frac{\mu}{2} \cos \psi \right) s[v(x)]
\end{array} \right\}
\]

\[
+ \left\{ \begin{array}{l}
\left(\frac{x}{2} + \frac{\mu}{2} \right) \rho [g(x)] - \left(\frac{x}{2} - \frac{\mu}{2} \right) \ell [h(x)]
\end{array} \right\}
\left\{ \begin{array}{l}
u[v(x)] - y[t(x)]
\end{array} \right\} = 0,
\]

where \(u[v(x)], y[t(x)], \phi [g(x)], z[h(x)], s[v(x)], \) and \(m[t(x)] \) are given by relations (2), (3), (17), (18), (20), and (21), respectively. Other functions are defined by

\[
\rho [g(x)] = \text{hyp1}_1 \left[\frac{1}{2} ; 2 ; - \frac{\mu + x}{2} \right]
\]

(24)

\[
\ell [h(x)] = \text{hyp1}_1 \left[\frac{1}{2} ; 2 ; - \frac{\mu - x}{2} \right]
\]

(25)

From curves in Figs. 5 and 6 it follows that nonlinearity \(N_C \) will be almost independent of \(x \) for \(\mu = 1 \). For any value of \(\psi \), curves have a maximum for \(x = 2.536 \). The nonlinearity will strongly depend on the phase angle for any values of \(\mu \) and \(x \) as well as upon \(x \) if \(\mu > 10 \). Generally, in these cases, the nonlinearity \(N_C \) will have a maximum value for a given \(\psi \), if the ratios \(\mu \) and \(x \) are approximately equal. A numerical solution of transcendental equation (23) gives \(x \) of the maximum nonlinearity \(N_{C,\max} \). It is approximately one to two orders of magnitude larger than its average value for any value of \(\psi \). The maximum nonlinearity will be larger than its average value for larger \(\mu \) and \(x \) and for smaller \(\psi \).

CONCLUSIONS AND COMPARISONS

A comparison of Eqs. (14) and (15) and of curves for \(N_B \) and \(N_C \) in Fig. 3 shows that the nonlinearity \(N_B \) is smaller than the nonlinearity \(N_C \) for the same phase-angle deviation \(\Delta \psi \) around the operating point. In addition to the above curves (\(N_B \) and \(N_C \) versus \(\psi \) for constant \(x \)), another set of curves in Figs. 4 and 5 shows \(N_B \) and \(N_C \) versus \(x \) for constant \(\mu \) and \(\psi \). The curves of Figs. 4 and 5 show that for a fixed \(\mu \) and \(\psi \), the proper choice of \(x \) will minimize the nonlinearity \(N_B \). The best value of the input signal-to-noise ratio can be found by solution of transcendental equation (19). For \(\psi = \pi/4 \) and \(\mu = 1, 10, 10^2, 10^3, \) and \(10^4 \), the nonlinearity
Fig. 6. Nonlinearity \(N_C \) as a function of the input signal-to-noise ratio with the phase angle \(\psi \) as parameter and the reference wave-to-input noise ratio \(V_C/V_\sigma = 1, 10 \).

Fig. 7. Nonlinearity \(N_C \) as a function of the input signal-to-noise ratio with the phase angle \(\psi \) as parameter and the reference wave-to-input noise ratio \(V_C/V_\sigma = 10^2, 10^3, 10^4 \).
N_B is minimized for $x = 2.48274, 1.00935, 1.00004, 1.00000,$ and 1.00000, respectively. Any other x value can be considered as a nonoptimum one, although the nonlinearity increase will not be significant for $\mu = 1$ and for small ψ. Furthermore, the proper value of x will also minimize the nonlinearity N_C, which can be concluded from Figs. 6 and 7. For this purpose it is important to avoid the region where curve N_C versus x has a maximum. This particularly nonoptimum x value can be found for any x and ψ by numerical solution of Eq. (23). If $\psi = \pi/24$ and $\mu = 1, 10, 10^2, 10^3,$ and 10^4, the nonlinearity N_C is maximized for $x = 2.53699, 1.01915, 1.00010, 1.00000,$ and 1.00000, respectively. From comparison of N_B and N_C curves it can be seen that nonoptimum values of x will have far larger influence on the nonlinearity N_C than on the nonlinearity N_B behavior. As such, the nonoptimum x values maximally increase the N_B for approximately a half order of magnitude in the worst case. However, N_C nonoptimum x values increase N_C for two orders of magnitude in the worst case. Consequently, one should choose, whenever possible, the phase angle $\psi_2 = (2n + 1)\pi/2$ as an operating point. In this case the larger permissible phase deviation for the same nonlinearity, and the significantly smaller nonlinearity for nonoptimum signal-to-noise ratio, will result in comparison with operating point $\psi = 2n\pi$ (case of N_C).

ACKNOWLEDGMENT

The author thanks E. Coleman for computer programming.

This work was done under the auspices of the U. S. Atomic Energy Commission.

REFERENCES

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.