Title
ON THE RESISTANCE TO ELECTRODES AT NONUNIFORM POTENTIAL

Permalink
https://escholarship.org/uc/item/77n9j6m0

Author
Kevraar, John.

Publication Date
1970-09-01
ON THE RESISTANCE TO ELECTRODES AT NONUNIFORM POTENTIAL

John Newman

September 1970

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

LAWRENCE RADIATION LABORATORY
UNIVERSITY of CALIFORNIA BERKELEY
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
On the Resistance to Electrodes at Nonuniform Potential

John Newman
Inorganic Materials Research Division,
Lawrence Radiation Laboratory, and
Department of Chemical Engineering,
University of California, Berkeley

September, 1970

Nanis and Kesselman\(^1\) have recently raised the question of the definition of the resistance in electrode configurations where the primary potential distribution does not prevail and where, instead, surface and concentration overpotentials must exist. They have given a valid justification for defining the resistance as an average potential over the surface of the disk, divided by the total current to the disk.

As Wagner\(^2\) has stated, the term electrical resistance is confusing in situations where the potential varies along the boundary of the electrolytic solution. The potential of the electrode is uniform. The ohmic potential drop, the surface overpotential, and the concentration overpotential vary with position on the electrode in such a way that their sum is uniform. There should be no ambiguity if these variations are described in detail.

In such a situation, Newman\(^3\) emphasized the ohmic potential drop and the current density to the center of a disk electrode. Thus, the current-potential curve was calculated by adding the ohmic potential drop, and concentration and surface overpotentials at this point. The same overall curve would be obtained by performing the addition at the edge of the disk or at any point between the center and the edge. Emphasis was placed
on the center of the disk in part because the concentration and surface overpotentials at that point are easily computed from the local current density.

This ohmic potential drop is not, of course, directly comparable to the average resistance. In order to use the average resistance, one would first need to know at what point on the electrode the ohmic potential drop is given by the average resistance. At this point he would then need to know the local current density and the local surface concentration in order to calculate the concentration and surface overpotentials.

Newman has used a simple equivalent circuit to describe the impedance of a disk electrode system in frequency dispersion in capacity measurements. The low-frequency limit, when the interfacial impedance is purely capacitive, coincides with Nanis and Kesselman's result for uniform current density, \(4r_0 K R_{\text{eff}} = 1.08076 \). When faradaic reactions are involved, the value of the effective resistance in the equivalent circuit is different because it includes the impedance of the interface. Thus, the entire electrode system is used to define the effective impedance in this case.

In a later paper, Newman points out that, for the secondary distribution on a disk electrode, one can estimate the ohmic potential drop from the total current and the resistance for the primary potential distribution. The surface overpotential obtained by subtracting this ohmic potential from the electrode potential can be associated, with little error, with the average current density.
References

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.