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Curvature in orbital dynamics

Michael Nauenberg
Department of Physics
University of California, Santa Cruz, CA 95064

Abstract

The physical basis and the geometrical significance of the equation
for the orbit of a particle moving under the action of external forces is
exhibited by deriving this equation in a coordinate-independent rep-
resentation in terms of the radius of curvature of the orbit. Although
this formulation already appeared in Newton’s Principia, it has been
ignored in virtually all modern textbooks on classical mechanics up
to the present time. For orbits of small eccentricities, this orbit equa-
tion is used to obtain approximate solutions that illustrate the role of
curvature. It is shown that this approach leads to a simple graphical
method for computing orbits for central forces, which is similar to a
method attributed to Newton. He applied it to the case of a con-
stant central force, and sent a diagram of the orbit to Robert Hooke
in 1679. The result is compared to the corresponding path of a ball
revolving inside an inverted cone that Hooke described in his response
to Newton.

Introduction

A basic problem in classical mechanics is the derivation of the equation for
the orbit of a particle moving under the action of a central force. In modern
textbooks this equation is generally obtained by starting with the equations
of motion written in polar coordinates, and then applying the conservation
of angular momentum to replace the time by the polar angle as the indepen-
dent variable. This derivation, however, does not exhibit the physical and



geometrical significance of the resulting orbit equation, and it hides the im-
portant role of curvature in dynamics. The calculus of curvature, which was
developed by Newton and somewhat earlier by Huygens [2], guided Newton
in his earliest efforts to develop orbital dynamics [3]- [5]. Newton first intro-
duced the concept of curvature in the first edition (1687) of his Principia,
and he applied it without explanation to a calculation of motion in dense
media and to some lunar inequalities [5] [7]. Later, in the second edition
(1713), he used curvature to derive relations for central forces, but only as
an alternate method. The role of curvature in dynamics was re-discovered
in 1705 by Abraham De Moivre, and was discussed by Jakob Hermann in
1717 and by other contemporary mathematicians [8], but it has been gener-
ally ignored by historians of science, and, although it appeared in some older
texbooks in classical mechanics [9][10] [11], it has been left out of virtually
all modern textbooks.

The main purpose of this paper is to discuss the role of curvature in
orbital dynamics from a physics perspective, and to describe its historical
background. In section I we give the standard derivation of the orbit equa-
tion in polar coordinates as it is presented in modern textbooks of classical
mechanics. In addition, we obtain a generalization of this equation for the
case of non-central forces. In section II we give a coordinate-independent
derivation of the orbit equation in terms of the radius of curvature of the
orbit, which exhibits its physical basis and geometrical significance. In sec-
tion III we discuss Newton’s own geometric derivation of this equation for
the special case of central forces, as it first appeared in the second edition
(1713) of the Principia in Prop. 6, Corollary 3 [12]. In section IV we illus-
trate the role of curvature in understanding the properties of central force
orbits by discussing a perturbation solution for orbits of small eccentricity.
In section V we describe a simple graphical method based on the curvature
equation developed in sections II and III, which was originally developed in
a similar form by Newton and applied by him to obtain approximate or-
bits for various central forces [4]. In the case of a constant central force,
Newton sent a diagram of the orbit in a letter to Robert Hooke, and Hooke
responded that this diagram corresponded to the orbit of a ball rolling in
an inverted cone. We have repeated Hooke’s experiment, and in Fig. 6 we
show a stroboscopic picture of the orbit which confirms Hooke’s observation.
This section is followed by a brief summary. In appendix A we present a
simple geometrical derivation of the radius of curvature of an orbit in polar



coordinates. In Appendix B we discuss an important historical application
by Clairaut and d’Alembert of the orbit equation to the lunar inequalities,
which is considered to be a major landmark in establishing the universality of
Newton’s theory of gravitation. In appendix C we calculate by perturbation
theory the motion of a point mass moving on the surface of an inverted cone.

I The standard derivation of the orbit equation

For central force motion it was first shown by Newton in his great mas-
terpiece, the Principia, that the orbit is confined to a plane and that the
angular momentum, which is normal to this plane, is a constant [1]. In mod-
ern textbooks of classical mechanics, this conservation law is applied in the
derivation of the orbit of a particle of mass m moving under the action of a
central force f by writing the equation of motion in polar coordinates r, # in
the plane of the orbit. In this case this equation takes the form

&r P f O

dt2 m2r3  m’

where ”
I =mr’— 2
mr o (2)

is the constant angular momentum. The time variable ¢ in Eq. (1) can be
replaced by the polar angle # as an independent variable by the transforma-
tion

dr [ du
- = 3
dt m df’ (3)
where v = 1/r. Taking the time derivative of Eq. (3) and using Eq. (2), we
obtain P 242
r u? d*u
=7 4
dt? m? dp? )
Substituting this relation in Eq. (1) leads to the standard textbook form for

the orbit equation
d*u mf
— 4 u=—-"=. 5
do? 1?u? (5)
This equation can also be readily generalized for the case that there is a
force component g normal to the radial direction. In this case the angular



momentum [ is not conserved, and its rate of change is

dl

pri rg. (6)

Instead of Eq. (4), we now have

Fr_ Pl dd "
dt? m?2 d62  m2dodo
Substituting this expression in the equation of motion, Eq. (1), we obtain
[4], [13] P .
U= g (f ). (8)
Applying the relation d/dt = (I/mr?)(d/df), Eq. 2, the angular momentum
equation, Eq. 6, can also be written in the form

di?>  2mg

with # as the independent variable.

This orbit equation has a physical and geometrical significance in terms of
the radius of curvature of the orbit which is not manifest in this derivation.
Consequently, this significance has remained unnoticed, although Newton
had considered the role of curvature in the determination of central forces
already in 1664, and he later discussed it in his Principia [3] [4] [5]. In the
next section we apply the Huygens-Newton relation for the radial acceleration
of circular orbits to exhibit the geometrical significance of the orbit equation
[14].

II Geometrical derivation of the orbit equation

To obtain a geometrical and coordinate-independent form of the orbit equa-
tion, Eq. (8), we consider the component a, of the acceleration which is
normal to the tangent of the orbit at a given point of the orbit (see Fig. 1).
This component of the acceleration is related to the velocity v and the radius
of curvature p of the orbit at this point by the well known Huygens-Newton
relation for circular motion [14]

<

a, = —. (10)



Figure 1: Segment of an orbit with the center of force at C, and radius of
curvature p, showing the direction of the velocity v, the normal accelera-
tion a,, the radial component of the force, f (for attractive forces), and the
component of the force normal to the radial direction, g.



In terms of the radial and angular components f and g of the force, the
normal component of the acceleration is determined by the relation

an, = —%[fsm(oz) + geos(a)], (11)

where « is the angle between the radial and tangential directions of motion
(see Fig. 1). Writing the angular momentum in the form

I = morsin(a), (12)

and applying this expression for [ to eliminate the velocity v on the right
hand side of Eq. (10), leads to a coordinate independent relation between
the radius of curvature p of the orbit and the components f and g of the
force [3],[4], [5],[7]

L= T 4 geotla). (13)

psind(a)

This relation corresponds to the orbit equation, Eq. (8), that we derived in
the previous section. Indeed, it can be readily shown ( see Appendix A) that
the radius of curvature p is given in polar coordinates by [15]

1 d*u
(== 14
psin3(a) (d02 +u), (14)
where 14
u
=—— 1
cot(a) ) (15)
and u = 1/r [16].

This coordinate-independent derivation exhibits the underlying physical
and geometrical significance of the orbit equation, Eq. (8), in terms of the
radius of curvature p of the orbit, which is not manifest in the conventional
derivation given in section I. Remarkably, this relation was applied by New-
ton to calculate a hypothetical lunar orbit in the first (1687) edition of the
Principia (Book III, Prop. 28), and appeared later in the second edition
(1713) (Book 1, Prop. 6 Cor. 3), as an alternate expression for the case of
central forces, g = 0, [3]. But in modern classical mechanics textbooks, the
role of curvature in orbital dynamics has been neglected.



Figure 2: Newton’s diagram for the proof of Proposition 6, including the
circle of curvature at P.

III. Newton’s derivation of the curvature equation

In this section I discuss Newton’s original derivation of the curvature equa-
tion for the case of central forces. Readers who are not interested in the
historical background of Eq. (13) can skip this section without loss of un-
derstanding of the underlying physics. From a cryptic remark in his 1664
notebook, called the “Waste book”, it is evident that at that time New-
ton had already considered the relation Eq. (10) for a central force f, by
generalizing the expression for the acceleration that he and, independently,
Christiaan Huygens had derived for circular motion [14]. In Prop. 6, Book
1, of the Principia, Newton derived several geometrical expressions for the
central force acting on a body which travels in an orbit satisfying angular
momentum conservation ( Kepler’s area law in Prop. 1,2 ) [17],[18]. Refer-
ring to Fig. 2, which describes the motion of “a body P revolving about a
center S along the curve APQ”, Newton concluded at the end of Corollary
3 that

...the centripetal force will be inversely as the solid SY? x PV
[12].

The line SY is perpendicular to the tangent at P, but the point V in Fig.
2 was not defined in Prop. 6. From the text [19] of Corollary 3, however,
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one infers that PV is the chord of the circle of curvature at P which passes
through the center S, and the intersection of this chord with the circle of
curvature gives the location of V. Therefore PV = 2psin(«a), where p is the
radius of this circle or the curvature radius of the orbit at P, and « is the
angle between the radial line SP and the tangential line PY at P. Since
SY = rsin(«), Newton’s result can be written in the form
1 1

SY2 x PV 2pr2sin3(a)’

which corresponds to the curvature form of the orbit equation, Eq. (13). The
factor 12, however, is missing in this derivation because Newton defined the

small time interval d¢ for the body to move from P to a nearby point () on
the orbit, see Fig. 2, to be proportional to the area of the triangle PQ.S,

5t x SP x QT, (17)

where QT is perpendicular to SP. This relation is Kepler’s area law, that
the area swept by the radial vector is proportional to the time, but Newton
left out the constant of proportionality, 1/l, which depends on the angular
momentum [ of the orbit.

Newton’s expression for the central force also follows from a geometrical
relation for curvature, discussed more fully in Lemma 11, which is stated
succinctly at the end of corollary 3:

For PV is equal to QP%/QR [12].

Here QR is the displacement of the orbit at () from the tangential line at P
in a direction parallel to the radial line SP. Hence, during the small interval
of time ¢t for the body to move from P to @), the acceleration due to the
central force is given by 2QR/(6t)?, and setting the velocity v = QP/dt, we

have
Jorce 9 QR

force (16)

2
=2 = (13)
m (6t) 0t " PV’ psin(a)

which corresponds to Eq. (10). This derivation closely follows Newton’s
derivation for the central force in the case of circular motion, but before 1679
he did not understand the physical origin (central forces) of angular momen-
tum conservation (Kepler’s area law). This conservation law, which Newton
understood only after his correspondence that year with Robert Hooke [20],
[21], is essential to relate the velocity v to the conserved angular momentum
by the relation Eq. (12).




IV. Application of the curvature equation to perturba-
tion theory

To illustrate the usefulness of curvature in understanding orbital motion, we
consider the general solution of the orbit equation, Eq. (5), in the neighbor-
hood of a circular orbit of radius ry centered at the origin of an attractive
force. To first order in the deviation from this orbit, which is measured by
the eccentricity parameter €, we assume that [22]

1 1
— = —(1 + ecos(v8)), (19)
T To
where v is a constant. For € < 1 this relation corresponds to the equation of
an elliptical orbit whose major axis is rotating continuously and turns by an
amount 27(1/v —1) during a period of the orbit. Substituting this expression
for 7 in Eq. (5), one finds that for a given value of the angular momentum
[, the mean radius ry is determined by the balance between centrifugal and
central forces for a circular orbit of radius rg
2 2
Vg l
=m—=—-, 20
f(ro) M = g (20)

where | = muvgrg, while to first order in €

rof'(ro)
f(To) ’

where f'(r) = df(r)/dr. According to Eq. (14), the radius of curvature p, to
first order in ¢, is given by

v=,3+ (21)

p = 1o[l — (1 — v*)cos(v0)]. (22)

As an example, for an attractive force of the power law form f(r) = x/r",
where x and the exponent n are constants, we obtain from Eq. (21)

v=1+3—n. (23)

This result implies that for motion confined near a circular orbit we must have
n < 3. For n = 2, corresponding to an inverse square central force, v = 1,

9



and Eq. (19) is the exact solution, valid to all orders in €, representing a conic
section with one of the foci at the origin of the central force. To first order in
¢, the radius of curvature, Eq. (22), is a constant, and therefore the shape of
the orbit remains circular in this approximation. This property explains the
spectacular success of Ptolemaic astronomy, which for centuries accounted
for the best observations of the motion of planets that, fortunately, have
rather small eccentricities, by assuming that their orbits where composed of
circular motions [23]. For n = —1, corresponding to a force which depends
linearly on r (Hooke’s law), ¥ = 2 and the orbit is also an ellipse, but now
the origin of force is at the center of this ellipse, and the curvature depends
linearly on e.

The approximation of orbits with small eccentricity by a precessing el-
lipse, Eq. (19), was first described graphically by Newton in a letter to Robert
Hooke written on Dec. 13, 1679. In this letter Newton included a diagram
for an orbit AFOGHIKL shown in Fig. 3, for the case that the central ra-
dial force is a constant with center at C. Although this orbit is qualitatively
correct, the angle AOC, where O is the point in the orbit closest to C, should
be 7/v/3 a 104° for small eccentricities, but in the diagram AOC ~ 130°.
Evidently Newton made an error which is discussed in detail in references
[4] [21]. The correct form of the orbit is shown in Fig. 4, which is well
approximated by the solution of a rotating ellipse given in Eq. (19).

By the time, however, that Newton began writing the Principia, he was
able to demonstrate (see Book I, Proposition 44) that a precessing ellipse,
Eq. (19) is the ezact solution for a central force consisting of a linear combi-
nation of an inverse square force and inverse cube force in the form

v (1=vHrg

f(r)oc— +

r 73 ’ (24)

where 7y is the radius of the circular orbit, as can be verified directly by
substituting Eq. (19) in Eq. (5). In Proposition 45, example 2, Newton then
obtained Eq. (23) for v for an 1/r" force by approximating this force near
r = ro by Eq. (24), and in Corollary 2, he calculated the rate of precession
of the axis for the approximate elliptical orbit of the moon revolving around
the earth, due to the gravitational attraction of the Sun [24].

The solution Eq. (19) of the orbit equation, which is valid only to first
order in the eccentricity parameter € for a general attractive central force in
the neigborhood of r = ry, indicates that the corresponding orbit oscillates

10



Figure 3: Newton’s diagram in his Dec. 13, 1679 letter to Hooke
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Figure 4: Precessing elliptical orbit for a constant central force.

around the circular orbit at a radius r = r as a function of the polar angle
6. Such an orbit, however, is incorrectly illustrated in one of the best known
modern textbooks of classical mechanics - see Fig. 5, [25].

In Fig. 5 the radius of curvature p of the orbit diverges near r = ry
where it also changes sign. But to first order in e the radius of curvature
p, Eq. (22), does not diverge. Moreoever, the geometrical form of the orbit
equation, Eq. (13), shows that if p diverges and changes sign near r = ry,
then correspondingly the central force vanishes and changes sign near r = ry.
But if such a domain existed, it would lie outside the range of validity of first
order perturbation theory, which is the basis for the approximate orbit so-
lution, Eq. (19), and the expression for the radius of curvature, Eq. (22).
An understanding of the relation between central forces and orbital curva-
ture, Eq. (14), would have avoided these long standing errors, which have
remained during the past half century in all editions of this popular text-
book on classical mechanics [25]. After the completion of this paper it was
called to my attention by the editor of AJP that recently these errors have
also been pointed out by Martin Tiersen [29].

12



FIGURE 313 o
Orbit for motion in a central force deviating
slightly from a circular orbit.

Figure 5: Reproduced from H. Goldstein, ” Classical Mechanics”

V. Newton’s graphical curvature method

Another application of the curvature equation, Eq. (13), is a simple graphi-
cal method for obtaining an approximate orbit which recently has been at-
tributed to Newton [4]. Referring to Fig. 6, suppose that the particle is
initially located at A, and that it is moving with a velocity v along the direc-
tion Aa perpendicular to the radial direction AO measured from the center
of force at O. Then the radius of curvature p from Eq. (13) is given by

12

mr? fsin3(a)’ (25)

p =
where [ is the angular momentum, | = mor, r = AO, and o = 7/2.

The curvature graphical method proceeds as follows: Take a line segment,
AQ = p along the initial radial direction AO, and rotate it counterclockwise
about (Q by a small angle d¢ to obtain a small arc AB of the curve. Next,
draw the line OB which determines the radial distance r; = OB, and then
obtain the angle oy = bBO between the tangential line bB and the radial
line OB. Substituting 7 = r; and @ = «; in Eq. (25) gives the radius
of curvature p; of the orbit at B, and drawing the line segment BP = p;
along BQ determines the location P of the corresponding center of curvature.
Likewise, the next arc BC is obtained by rotating the line BP about P

13
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Figure 6: Graphical construction of an orbit by the curvature method



through the angle d¢. This graphical operation is repeated as shown in Fig.
6 to give an approximate orbit ABC'DFEF made up of small arc segments of
varying radius of curvature. When the radius of curvature vector intersects
the origin O, as is the case here with F'T', the angle o becomes again equal
to /2, and the orbit will have reached its minimum distance to the origin
0. Subsequent branches can be obtained by mirror reflections of this orbit
about an axis along the direction of this radius of curvature.

In a similar way, Newton was able to approximately calculate orbits for
general central forces [26]. This is shown in a diagram, Fig. 3, which is
contained in a letter he wrote to Robert Hooke [4], [27] on Dec. 13, 1679,
for the special case of a constant radial central force. Hooke responded to
Newton in a letter dated Jan 6, 1680, that

Your Calculation of the Curve by a body attracted by an equall
power at all Distances from the center Such as that of a ball
Roulling in an inverted Concave Cone is right and the two auges
[apsides| will not unite for about a third of a Revolution...[28]

We have verified Hooke’s remarkable observation by taking a stroboscopic
picture of a ball revolving inside a cone shown in Fig. 7. A theoretical
calculation for this motion is discussed in Appendix C.

Summary

The main focus of this paper has been to discuss the role of curvature in
orbit dynamics and the underlying physical basis of the orbit equation. For
those readers who are interested in the history of physics we have include
section IIT and also several endnotes on the origin of these concepts in the
work of Newton and Huygens, but these can be skipped without any loss in
understanding the physical ideas. We have shown that the orbit equation,
expressed in polar coordinates, Egs. (5) and (8), has a physical and geomet-
rical significance which is exhibited in terms of the radial acceleration for
motion along a circle as a function of the radius of curvature of the orbit.
A representation of the orbit equation is given in a coordinate-independent
form, as was first formulated by Newton in the second edition (1713) of the
Principia, and was re-discovered by several mathematicians who were apply-
ing the differential calculus to Newton’s mechanics later in the eighteenth

15



Figure 7: Stroboscopic picture of a ball rolling inside an inverted cone with
an aperture o = 60° degrees

century [8]. Although these results were included in older texbooks on clas-
sical mechanics, currently they are ignored in the presentation of orbital
motion in virtually all modern texbooks. We have presented here, in modern
notation, a derivation of the orbit equation which is based on curvature and
closely follows Newton’s original derivation, and we have used it to determine
the motion of near-circular orbits. We also have shown that the curvature
equation suggests a simple and effective graphical method for obtaining the
solution of orbits for the case of central forces which originally was developed
in similar form by Newton.
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Appendix A, Geometric derivation of the radius of cur-
vature

Referring to Fig. 8, consider a small arc of the curve of length do, and
draw the two normals to the curve from the end points of the arc to their
intersection at a point O. The radius of curvature p is defined by the relation

do = pdo (26)

where
00 ~ Vor?2 + r2662 (27)

and d¢ is the angle at O between the two normals. The angle « between the
radial and tangential directions satisfies the relations'

cot(a) = ——— (28)

and

sin(«) (29)

1+ (/) (dr/db)?
The negative sign in Eq. 28 appears because the angle # is assumed to
increase in the counter clockwise direction in Fig. 1. Hence in the limit that
00 becomes vanishingly small, p can be written in the form

do r df

P46 ™ Sinfa) do e
From Fig. 1 we see that
0o = 60 — da, (31)
and from Eq. (28) we obtain
do o, o Lodr, 1dr
g ()2 - =2 2
db sin™(@) r2(d9) rd02] (32)
Hence, substitutinng Eq. (29) for sin(a)) we have
da 2 dr 1d?r 1 dr
0 g 2@y 1A 2 O
o 0 20 LT (O, (33)

lthe negative sign appears below because the angle 6 is assumed to increase in the
counter clockwise direction, and then dr/df is negative in Fig. 1

17



and applying the relation

d? 1 2 dr, 1
D= 2Oy 2rap? 34
= el (34)
we obtain ” » .
- = i 2 - —
g =TS (a)(d02 + 1)7“' (35)
Finally, by substituting this expression into Eq. (30), we obtain
1 d? 1
(=11
psind(a) (d02 + )7“ (36)

This is the expression for the radius of curvature p in polar coordinates,
Eq. (14), which Newton already obtained in 1671 [15]. Our derivation of the
orbit equation, Eq. (13), exhibits the underlying geometrical significance of
this differential equation in terms of the curvature of the orbit.

Appendix B: Non-central force: The orbital dynamics
of Clairaut and d’Alembert

As an illustration of the application of the curvature equation for the case
of non-central forces, Eq. (8), I consider a very important historical solution
of this equation: the first correct approximation of the perturbed orbit of
the moon due to the effect of the gravitational attraction of the Sun. Such a
solution was first obtained in 1751 by Alexis Clairaut, and a few years later
by Jean Rond d’Alembert [13], for small values of the eccentricity parameter
€. In Propositions 25 and 26, Book 3 of the Principia, Newton had shown
that the solar perturbation can be approximated by an effective force acting
on the moon with a radial component

GM,M,,r
fp= _271%3(1 + cos(2¢)) (37)
and an angular component
3GM,M,,r .
9p = —Tsm(w% (38)

where M, is the mass of the sun, M, is the mass of the moon, R is the
earth-sun distance, and ¢ = (1 —m)# is the angle between the moon and the

18



Figure 8: A segment of a curve of lqugth 6o, showing two normals to this
curve separated by a small distance do, intersecting at O making a small
angle d¢. The radial directions associated with these two normals intersect
at the center C' at a small angle §f, and the corresponding change in angle
with respect to the tangential direction is da



sun, as seen from the earth (Newton’s constant G was introduced only later
on). Hence the orbit equation, Eq. (8), takes the form
d? 1 GM) W dr

el R VAR el
Gz TV =72 eV~ T g (39)

and
h? =242 / dor*w, (40)

where V = f,/Mp,, W = g,/M,, and h = [/M,,. Using the approximation of
a revolving ellipse, Eq. (19), for r as a function of 6 in Eqs. (37)- (40), gives

r?V = m2§M[1 — 3ecos(v0) + 3cos(2¢) — %[003(21/1 + v0) + cos(2¢ — v0)],
(41)
2
WT% = MTGM[cosﬂw + vb) — cos(2¢ — vb)], (42)
and
5 19 3m? 4
h? = hg[l + T[cos(Z@b) — gecos(Qw + vB) — decos(2¢ — v0)). (43)

These expressions indicate that to order em?, there also must appear terms
proportional to cos(21¢p+v0) and cos(21)—v) on the left hand side of the orbit
equation, Eq. (39). To obtain such terms, Clairaut introduced an improved
approximation for r in the form

1 1

— = —[1 + ecos(v) + xcos(2v) + dcos(2 + vh) + ycos(2¢) — vh)]  (44)
A To

where § and vy are new coefficients determined by matching the corresponding

terms proportional to cos(2¢+v6) and cos(2¢)—vf) that appear in Egs. (41)-

(43). This matching implies that

15me

— 4
v g (45)
and )
§=— 572 ¢ (46)

20



An unexpected result is that the coefficient 7 is only of order me instead of
order m?e as in the case of §. Therefore the contribution to r of the corre-
sponding cosine term cos(2¢ — vf) should not be neglected in the evaluation
of the right hand side of Eq. (39), and one finds that the contribution of
this term gives rise to additional terms proportional to cos(vf) on the right
hand side of Eq. (39) which modifies the previous evaluation of v. In par-
ticular the term 72V gives the added term —(9m?GM~/4)cos(vf), he term
Wrdr/df contributes —(3m?GM~/4)cos(vf), and the term h? contributes
—(6m?y/v)cos(v). Collecting all of these additional terms proportional to
cos(v8) on the right hand side of Eq. (39) leads to the new relation

3

(2~ 1) =1+ oy

— 4
: (47)
Finally, substituting Eq. (45) for v one obtains Clairaut’s and d’Alembert’s

result 3 -
y=1-mi(1+ Tm) (48)

Although the parameter m = 1/13.36 in this expression is small, in the
correction term this is compensated by the large factor 75/8 and accounted
for Newton’s missing factor of two in the rate of rotation of the lunar axis.
Today we would regard with suspicion such a large correction due to a higher
order perturbation calculation, but at the time Euler proclaimed, in a letter
to Clairaut on June 29, 1751, that

...the more I consider this happy discovery, the more important
it seems to me...for it is very certain that it is only since this
discovery that one can regard the law of attraction reciprocal
proportional to the squares of the distances as solidly established
and on this depends the entire theory of astronomy [13].

Appendix C, Orbital motion in an inverted cone

Approximating the motion of a ball revolving inside an inverted cone by the
motion of a point mass, the equations of motion in cylindrical coordinates
r, 0,z (see Fig. 9) are

d*r 12 Fcos(a)

el - _ 49
dt2  m?2r3 m (49)
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and

d’z _ Fsin(a)

B m Y
where m is the mass of the ball, [ = mr2df/dt is the conserved angular
momentum about the axis of symmetry, « is the angle of aperture of the
cone, g is the acceleration due to gravity, and F is the effective force acting
on the ball in the direction normal to the surface of the cone. The constraint
that the ball moves on the inside surface of the inverted cone is given by

(50)

z = rcotan(a). (51)

Applying this equation to eliminate the unknown force F' from Egs. (49) and
(50), we obtain the effective radial equation of motion

r  Psin?() gsin(2a)
- _ = — ) 52
dt? m2r3 2 (52)
Finally, substituting d?r/dt? = —1*u?m?d?u/df we have
d*u 9 mf
g Tusin (o) = L (53)

where v = 1/r, and f = mgsin(2a)/2 is the effective radial force. An
approximate solution is obtained by setting

u = ug(1 — ecos(v0) (54)

for an orbit deviating by a small amount from a circular orbit of radius
ro = 1/ug, where the eccentricity € is a small parameter. Substituting this
expression in Eq. (53) yields

v = V3sin(a) (55)

to first order in €. This expression should be compared with the result ob-
tained for a constant central force, ¥ = v/3. The stroboscopic picture shown
in Fig. 7 was obtained with a cone with o = 60° degrees, which accounts for
the difference between the observed orbit and the calculated orbit shown in
Fig. 4
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Figure 9: This figure shows the polar coordinates r, 6, z in an inverted cone,
and the direction of the force of gravity g and the total force F' acting on a
body revolving inside this cone.
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