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RESEARCH ARTICLE Open Access

MotifMap: integrative genome-wide maps of
regulatory motif sites for model species
Kenneth Daily1,2, Vishal R Patel1,2, Paul Rigor1,2, Xiaohui Xie1,2 and Pierre Baldi1,2,3*

Abstract

Background: A central challenge of biology is to map and understand gene regulation on a genome-wide scale.
For any given genome, only a small fraction of the regulatory elements embedded in the DNA sequence have
been characterized, and there is great interest in developing computational methods to systematically map all
these elements and understand their relationships. Such computational efforts, however, are significantly hindered
by the overwhelming size of non-coding regions and the statistical variability and complex spatial organizations of
regulatory elements and interactions. Genome-wide catalogs of regulatory elements for all model species simply
do not yet exist.

Results: The MotifMap system uses databases of transcription factor binding motifs, refined genome alignments,
and a comparative genomic statistical approach to provide comprehensive maps of candidate regulatory elements
encoded in the genomes of model species. The system is used to derive new genome-wide maps for yeast, fly,
worm, mouse, and human. The human map contains 519,108 sites for 570 matrices with a False Discovery Rate of
0.1 or less. The new maps are assessed in several ways, for instance using high-throughput experimental ChIP-seq
data and AUC statistics, providing strong evidence for their accuracy and coverage. The maps can be usefully
integrated with many other kinds of omic data and are available at http://motifmap.igb.uci.edu/.

Conclusions: MotifMap and its integration with other data provide a foundation for analyzing gene regulation on
a genome-wide scale, and for automatically generating regulatory pathways and hypotheses. The power of this
approach is demonstrated and discussed using the P53 apoptotic pathway and the Gli hedgehog pathways as
examples.

Background
A central challenge of biology is to map and understand
gene regulation on a genome-wide scale. For any given
genome, only a small fraction of the regulatory elements
embedded in the DNA sequence have been characterized,
and there is great interest in developing computational
methods to systematically map all these elements and
understand their relationships. Such computational efforts,
however, are significantly hindered by the overwhelming
size of non-coding regions and the statistical variability
and complex spatial organizations of regulatory elements
and interactions, especially in mammalian species.
While many gene-specific, condition-specific, and fac-

tor-specific resources for motif binding sites exist [1-4],

it is perhaps surprising that genome-wide systematic
catalogs of binding sites for most species do not. Past
efforts have focused primarily on the yeast and fly gen-
omes and with severe restrictions, for instance in terms
of data (e.g. ChIP-seq only) or genomic regions (e.g.
promoter only). The prototype MotifMap system [5]
used an improved comparative genomics approach to
provide one of the first genome-wide maps for the
human genome and test its accuracy. This system, how-
ever, has several limitations including the direct use of
coarse genome alignments for searching for binding
sites leading to missed and incorrectly scored sites, and
the unavailability of maps for other model species.
Furthermore, while the available lists of transcription
factors are not exhaustive, new information about tran-
scription factors and regulatory interactions is continu-
ously being produced and thus such maps must be
periodically updated.
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Here we describe improvements to the prototype
methods that are used with a new whole-genome align-
ment and an expanded list of transcription factors to
create a new, more comprehensive, map for the human
genome. Furthermore, we apply the updated methodol-
ogy to the genomes of other model organisms for which
alignments and estimated phylogenetic trees are avail-
able, creating genome-wide maps for the yeast, worm,
fly and mouse genomes.
At its core, MotifMap uses data from transcription

factor binding motif databases, specifically JASPAR [6]
and TRANSFAC [7]. For yeast and fly, we have supple-
mented the matrices available from JASPAR and
TRANSFAC with those available from a number of pub-
lications (see Additional file 1 for a full list of the
sources for each species). The binding matrices are used
to search a reference genome for binding sites and pro-
duce three scores at each site. The first score is the
Normalized Log-Odds (NLOD) score derived from the
position weight matrix of the corresponding transcrip-
tion factor. The second score is the Bayesian Branch
Length Score (BBLS) to measure the degree of evolu-
tionary conservation. Functional elements, such as those
playing a regulatory role, often evolve more slowly than
neutral sequences and can be detected by their higher
level of conservation. MotifMap uses publicly available
whole genome alignments and the corresponding phylo-
genetic trees to leverage the power of comparative geno-
mics in order to eliminate false positive hits. The third
score is the False Discovery Rate (FDR) estimated by
using Monte Carlo methods. The three scores at each
site are used, in combination with other filters, to gener-
ate genome-wide maps.
The quality of the maps is assessed and compared

against our previous results [5] as well as other methods
[8,9] in various ways, including comparison to experi-
mental data, such as high-throughput ChIP-seq data.
The maps provide a foundation for inferring regulatory
networks and can be integrated with a variety of other
heterogeneous and autonomous data sources.

Methods
Normalized Log-Odds score (NLOD)
Binding sites for each transcription factor are identified
by scanning the genome sequence with a position
weight matrix. We transform each original weight
matrix into a log-odds matrix to account for the back-
ground frequency of the nucleotides across the genome.
The log-odds score of a sequence is computed as

LOD(S) =
|S|∑
j=1

f (x)

Where

f (x) =
{

log2(x) if qij > ebi2c

x
e2c log(2) + c if qij ≤ ebi2c

where x = qij

bi
, the value qij from the position weight

matrix is the probability of observing nucleotide i({A, C,
G, T}) at position j in a sequence S of length |S|, and bi
is the probability of observing nucleotide i in the entire
genome. For reasonable values of qij corresponding to x
>e2c, the function is simply equal to log2(x). However,
for small values of qij corresponding to x ≤ e2c, the loga-
rithm function can take large negative values. Tradition-
ally, to avoid this problem, pseudocounts are added to
the frequency matrices, in a heuristic and matrix-depen-
dent fashion. The alternative approach proposed here
lower bounds the values of each scoring matrix directly
by replacing the log function around zero with a contin-
uous linear approximation. In this work, we use c = -3.
The motif matching score is scaled to fall between 0

and 1 to yield the normalized log-odds score:

NLOD(x) =
LOD(x) − ymin

ymax − ymin

where ymax and ymin are the maximum and minimum
LOD scores that the matrix can achieve by using the
most likely or least likely nucleotide at each position. A
z-score is also derived from the NLOD score by estimat-
ing the mean and variance of the score of random
sequences across the genome. For mammalian species,
we use a z-score threshold of 4.27, corresponding to a
p-value of 0.00001, to find a list of initial candidate sites
across the reference genome. For yeast, fly, and worm,
we use a lower threshold corresponding to a z-score
between 2.57 and 3.72, or a p-value between 0.005 and
0.0001. Finally, we restrict the total number of binding
sites by ordering the sites for each motif individually by
their z-score, and keeping sites with a z-score at least as
high as the kth site. For our purposes, k = 100,000, as
was done in the prototype version.

Bayesian Branch Length Score (BBLS)
Many previous methods have shown that evolutionary
conservation can be used to identify transcription factor
binding sites [10-12]. An innovative aspect of the Motif-
Map system is how the degree of evolutionary conserva-
tion is assessed using the Bayesian Branch Length Score
(BBLS) [5], which itself is an improvement over a pre-
vious score, the Branch Length Score (BLS) [13,14].
More precisely, given a multiple alignment of N species
and their evolutionary tree, a transcription factor motif,
and the genome coordinates of a candidate binding site,
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let si = 0 or 1 denote the presence or absence of the
motif at the aligned location in the corresponding spe-
cies i. The BLS is simply the total length of the branches
associated with the most recent common ancestor of all
the species for which si is set to 1. However, in reality
si is not a binary variable but rather comes with a prob-
ability pi measuring the degree of confidence in whether
the corresponding motif is present or not in species i at
the corresponding location. Given a set of N aligned
species, the BBLS takes into account this uncertainty by
computing the expected BLS in the form:

BBLS = E(BLS)

=
∑

σ1,...,σN

P(σ1, . . . , σN)BLS(σ1, . . . σN)

=
∑

σ1,...,σN

r1 . . . rNBLS(σ1, . . . σN)

(1)

Where

ri =
{

pi if σi = 1
1 − pi if σi = 0

The values of pi for the leaves of the tree are derived
using the NLOD score described above. If the corre-
sponding z-score is too low, pi is set to 0. An efficient
dynamic programming approach, avoiding the addition
of an exponential number of terms (Equation 1), has
been derived [5], and a corresponding software imple-
mentation is available (see below).

False Discovery Rate (FDR)
For every motif weight matrix, we generate control
matrices by randomly shuffling the columns of the motif
weight matrix. The shuffling is repeated up to 10,000
times so as to produce up to 10 control matrices. The
shuffled matrices must be sufficiently different from the
original one to be used as control matrices. In practice,
we use a cutoff of 0.35 on the similarity measure com-
puted by first taking the average correlation between
columns over pairs of windows of length 8 in the origi-
nal and permuted motif, then taking the maximum of
these correlations over all pairs of windows, and then
normalizing by the length of the motif. Only binding
matrices are retained that: (1) are at least eight nucleo-
tides long; and (2) can produce at least three sufficiently
different shuffled versions for the Monte Carlo FDR
procedure. In addition, for mammalian species, each
shuffled matrix is restricted to have the same CG-dinu-
cleotide frequency as the original matrix. The same
motif searching procedure is used with each control
matrix. The False Discovery Rate is computed as the
median number of sites found using the shuffled
matrices divided by the number of sites found for the

real matrix at a particular (NLOD, BBLS) score combi-
nation or higher.

Sequence alignments and modular design
The prototype version of MotifMap searched the low-
resolution multiple alignment files obtained from the
UCSC Genome Browser [15] directly. As a result, possi-
ble alignments of a motif could be missed in other spe-
cies, for example in poorly aligned regions with many
gaps. To address this problem, the overall methodology
used to search for aligned transcription factor binding
sites has been considerably improved (Figure 1).
The new approach searches instead the reference gen-

ome directly and uses the low-resolution alignments
only as a seed to identify regions in other species align-
ing to the motif in the reference species. An expanded
sequence including 15 base pairs on each side of each
binding site in the reference species is used to identify
aligned regions in the other genomes. This expanded
sequence helps compensate for the low-resolution nat-
ure of the whole genome alignments [16]. Furthermore,
instead of using the aligned regions directly, which may
be too short or contain many gaps, we find all the align-
ment blocks overlapping the expanded sequence. Due to
the nature of the algorithm used to build the multiple
alignments, the sequences in different aligning blocks
for any single species may be very far apart from each
other on the chromosome, or even on completely sepa-
rate chromosomes. As a result, we only concatenate
blocks that are within 30 base pairs of each other (main-
taining any intervening sequence). This operation yields
a set of blocks of aligning regions; each block contains
sequences from other species aligned to the binding site.
For each species, we find the motif sequence with the
highest normalized log-odds score across all blocks.
Finally, the scores corresponding to the selected
sequence from each species are used for BBLS scoring.
In practice, requiring a minimum number of species to
be aligned to the reference sequence at each binding
site improves performance. The default requirement,
used for instance in the case of the yeast map, is set to
at least one other species (i.e. BBLS >0). For the human
map, in the public version of MotifMap, binding sites
are required to be conserved across at least four non-
primate species. This also enables a fair comparison to
the prototype version that used the same requirement.
Because the new modular design of MotifMap is not

dependent on searching the UCSC coarse multiple
alignment files directly, it enables one to also use other
alignments if necessary, such as high resolution align-
ments of the upstream regions of known homologous or
orthologous genes, even when these are not in the
UCSC format (e.g. the MAF format produced by the
multiz alignment software), or to focus the search on
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any subset of the genome. To avoid bias from binding
sites that occur in regions that are conserved for being
part of a translated portion of a gene and are not neces-
sarily under positive selection because of their impor-
tance for regulatory control, we exclude exonic regions
of the genome from the default public version of Motif-
Map. Likewise, we exclude repetitive regions.

Redundancy filter
A transcription factor is often annotated with multiple
binding matrices in JASPAR and TRANSFAC. For
example, each matrix may represent a specific isoform
of the factor dependent on the biological context (e.g.
cell type or experimental condition). However, in order
to estimate a total number of unique potential binding
sites, a given site can be counted only once for a given
transcription factor, even when this factor has multiple
binding matrices. For this purpose, we first perform
the genome-wide search independently for each
matrix, and then group overlapping binding sites. We
choose a representative for each transcription factor in
that group by picking the site with the highest BBLS

score. The final result is a non-overlapping, non-
redundant, list of binding sites for each transcription
factor.

Results
New MotifMaps
Each MotifMap is generated automatically via a pipeline
running on a parallel computer cluster. Comprehensive
maps for human, mouse, fly, worm, and yeast have been
generated and new maps can be produced automatically.
Details about the genomes, alignments, and matrices
used in each MotifMap can be seen in Table 1. The raw
data for the total number of binding sites across the
genomes ranges from hundreds of thousands for yeast,
worm, and fly to millions for mouse and human. Table
2 summarizes the number of transcription factors,
matrices, and binding sites for each available species
after all filtering steps have been applied. For the human
MotifMap, we predict 519,108 binding sites for 570
matrices, nearly a 5-fold increase over the number of
sites and matrices in the prototype version, while main-
taining a low FDR of 0.1 or less.

Figure 1 Explanation of methods. Diagram of updated methods. The reference genome is searched to find candidate sites and compute
NLOD scores. Using the sequence around each site, overlapping aligned blocks of sequence are extracted from the multiple alignment. Nearby
blocks are merged and then the best motif binding site in each species is found. The scores of the best motif sequences for each species are
used to compute the BBLS score.
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Evaluation of new methods using experimental data
We first compare the updated methodology to the pro-
totype version using data on well-studied transcription
factors and experimentally-determined binding sites
using high-throughput methods, such as ChIP-seq.
While ChIP-seq and related methods are not perfect,
they still provide the best available experimental approx-
imations to genome-wide maps of binding sites. While
the prototype map used 17 species, a larger number of
genomes and genome alignments has become available
since its publication. Thus, for comparison purposes, we
run the new methodology using both the same tree of
17 species used for the first prototype, as well as an
expanded tree containing 32 placental mammals.
Specifically, we consider the same set of highly studied

transcription factors (Table 3), same motifs, same
experimental data [17-22], and same whole genome
alignments as in Xie et al. [5], to compute the area
under the Receiver Operating Characteristic (ROC)
curves (AUC) using the updated methodology. For all
motifs, we see an improvement of the AUC in the range
of 1-5% over the previous version. [Note that when
computing the AUC, we include all ChIP-seq regions
that do not contain a conserved motif binding site in
the class of true negatives, as in [5]. However, we still
robustly observe improvements in the range of 0-5%

when not including these regions in the class of true
negatives.] For P53, CTCF, and NRSE, we observe an
increase in the AUC with a decrease in the number of
sites found. For NFKB and STAT1, we observe a modest
increase in the number of sites along with an increase in
the AUC. We also observe further modest improve-
ments for a few of these transcription factors when the
number of species in the multiple alignments is
increased from 17 to 32 placental mammals (see the
UCSC Genome Browser website for details on the spe-
cies in each alignment).
We also use ChIP-seq data available for 35 mouse

transcription factors obtained from the TRANSFAC
suite to further assess the performance of the MotifMap
pipeline and compare it with other methods. We evalu-
ate the performance of the BBLS scoring scheme to
recover known binding sites identified by ChIP-seq
against four other scores: BLS [13,14], NLOD (as
described in this work), PhastCons [8], and PhyloP [9].
Each score is individually used to rank the binding sites
identified by MotifMap. We calculate the number of
true and false positive sites identified in the ChIP-seq
data to compute the AUC, as in Xie et. al. [5]. Table 4
summarizes the results for the performance of the
MotifMap pipeline in recovering the sites identified by
the ChIP-seq methods by reporting the results for the
20 top transcription factors with the largest AUC values.
For these 20 transcription factors, we see performances
comparable to those seen for the human MotifMap:
MotifMap achieves the best AUC result in 16 of them,
while relatively small differences (3% or less) are seen
for the remaining four, providing further evidence of the
overall quality of the MotifMap system and its ability to
generalize and identify binding sites in other species.

Localization analysis: binding site location properties
To further assess the quality of the maps, we examine
the distribution of the candidate sites relative to the

Table 1 Multiple alignment information

Species Build Alignment # species in
alignment

# of
matrices

Yeast sacCer2 multiz7way 7 507

Worm ce6 multiz6way 6 6

Fly dm3 multiz15way 12 (files only)† 262

Mouse mm9 multiz30way 30 830

Human hg18 multiz28way 17 (placentals only)† 837

Human hg19 multiz46way 32 (placentals only)† 837

Number of species in multiple alignments for each reference species, and the
number of original matrices for each species. Comprehensive maps exist for
yeast, worm, fly, mouse, and human (both for a 17-species and 32-species
alignment). See the UCSC Genome Browser website for more information on
the alignments used and the species they contain. †Trees used are truncated
to remove the most distant species.

Table 2 Non-redundant transcription factor binding sites

Species # Transcription
Factors

#
Matrices

# Sites # Sites FDR ≤
0.1

Yeast 161 147 115,387 1,577

Worm 6 6 88,895 69

Fly 94 66 191,655 36,091

Mouse 473 575 6,617,325 740,685

Human
(hg18)

468 570 2,554,732 519,108

Human
(hg19)

468 530 1,410,309 457,198

Number of non-redundant transcription factors and binding sites across the
genome (see text for definition of “non-redundant”).

Table 3 Performance comparison of the prototype and
updated MotifMap pipelines

NFKB MYC P53 STAT1 CTCF NRSE

AUC

Prototype, 17 species 0.722 0.683 0.861 0.606 0.814 0.941

Update, 17 species 0.797 0.765 0.902 0.780 0.887 0.950

Update, 32 species 0.786 0.812 0.896 0.820 0.903 0.951

Number of sites

Prototype, 17 species 11,636 55,271 28,635 6,134 69,446 13,055

Update, 17 species 13,924 100,311 24,880 9,537 53,794 7,488

Update, 32 species 14,839 100,275 25,563 10,034 77,064 8,127

Area under the ROC curve (AUC) and number of sites found for the prototype
MotifMap pipeline versus the updated MotifMap pipeline (performed with the
original 17-species alignment and a newer 32-species alignment); the best
performing method for each motif is shown in bold.
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locations of genes across the genome. Using the high
confidence data (FDR ≤ 0.1), we find that the majority
of sites are within 1 Kbp of the transcription start sites
(TSS) of known genes across all species. Figure 2 shows
a plot of the distribution of distance to the closest gene
for each binding site for the human genome. This distri-
bution becomes increasingly peaked as one increases the
BBLS threshold filter (Figures 3a, b). However, we note
that we also find high-confidence sites significantly far
from known transcription start sites (further than 100
Kbp away). These sites would be missed in a promoter-
only analysis of transcription factor binding sites. We
see similar distributions for mouse, while for smaller
genomes (such as yeast and fly) the binding sites are
even closer to the transcription start sites. This is
expected, since the genomes of these species are more
condensed, including shorter promoter and intragenic
regions.

MotifMap system, web server, and data integration
The MotifMap “system” consists of three main compo-
nents: (1) a computational pipeline to perform the gen-
ome-wide search; (2) a database to store candidate motif
binding sites, the scores associated with them, and the
relationships to other features; (3) custom code to inter-
face between the database and a web service; and (4) a

Flex web application, to display data to users. All steps
in the pipeline for identifying and scoring binding sites
are performed in parallel using a high performance
computer cluster. Along with the locations and scores
for each binding site, we compile and store relationships
between the binding sites and other genomic features,
such as genes (RefSeq [23] and Ensembl [24]) and Gene
Ontology (GO) annotations [25]. Some species (fly and
yeast) use specific gene annotation resources instead
(FlyBase [26] and SGD [27]). The database is currently
being expanded as other MotifMaps and new relation-
ships become available. The binding site data and rela-
tionships for all available species are publicly available
through the MotifMap web site (http://motifmap.igb.uci.
edu).
While the prototype MotifMap version had a simple

interface to display data, the new web application has
been extensively upgraded with multiple features and
functionalities to allow users to explore these genome-
wide datasets more easily. User can interactively select a
model species and one or more transcription factors,
visualize the logos of the corresponding motifs, filter the
results by various criteria and thresholds (genome loca-
tion, NLOD/z-score, BBLS, FDR), and retrieve a corre-
sponding list of binding sites, with the distances to the
nearest TSS and the corresponding gene annotations.
The results can be downloaded in a variety of standard
formats (GFF, BED, CSV) or exported directly for visua-
lization in the UCSC Genome Browser. Furthermore,
for each motif binding site, users can view the local
multiple alignment and the phylogenetic tree with the
corresponding probability scores for each species, as
shown in simplified form at the bottom of Figure 1. A
Python implementation of an efficient algorithm for
computing the Bayesian Branch Length Score can also
be downloaded from the MotifMap web site. MotifMap
uses an integrative approach combining, for instance,
phylogenetic, genomic, and transcription factor data.
The resulting maps themselves can in turn be integrated
with many other datasets (see Discussion). Two kinds of
data that are fully integrated into the MotifMap data-
base and available to the user are GO annotations and
SNPs. For instance, for a given GO annotation and the
corresponding set of genes, user can retrieve all the
nearby candidate binding sites. Likewise, SNPs falling
within or near a transcription factor binding site have
the potential for influencing the regulation of the corre-
sponding gene [28]. Thus it is useful to be able to list
which SNPs in a GWAS (Genome Wide Association
Study) or other genotyping study fall within or nearby
transcription factor binding sites. Analyses of GWAS
data focused primarily on coding regions run the risk of
missing important SNPs affecting regulatory regions.
The relationship between SNPs and binding sites has

Table 4 Performance of the mouse MotifMap

Name BBLS BLS NLOD PhastCons PhyloP

Ctcf 0.901 0.838 0.893 0.798 0.754

Myc:Max 0.831 0.826 0.731 0.773 0.690

Zfp281 0.827 0.820 0.611 0.691 0.679

Tcfcp211 0.809 0.500 0.754 0.800 0.668

c-Myc 0.778 0.771 0.734 0.758 0.710

Gli3 0.772 0.771 0.619 0.806 0.659

Gli1 0.770 0.728 0.727 0.704 0.689

E2f5 0.760 0.737 0.632 0.737 0.667

Myc 0.760 0.699 0.540 0.703 0.718

Pdx1 0.757 0.765 0.500 0.696 0.689

Trim28 0.753 0.749 0.609 0.640 0.642

Klf4 0.740 0.500 0.500 0.695 0.678

Esrrb 0.739 0.500 0.516 0.667 0.608

Zfa 0.733 0.731 0.660 0.677 0.644

Mycn 0.730 0.728 0.620 0.690 0.664

Cnot3 0.683 0.688 0.568 0.614 0.597

Stat3 0.677 0.634 0.656 0.655 0.614

Ppara 0.673 0.664 0.642 0.636 0.615

Nr0b1 0.668 0.653 0.598 0.612 0.597

Zfp42 0.629 0.627 0.596 0.650 0.661

Area under the ROC curve (AUC) for predicting transcription factor binding
sites identified by ChIP-seq experiments in mouse. Each column is associated
with a different method for scoring and ranking the putative sites identified
by MotifMap, from which ROC curves and AUCs are computed. The best
performing method for each motif is shown in bold.
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Figure 2 Distribution of distance to closest gene for human binding sites. Distribution of the distance to the closest gene (Transcription
Start Site or TSS) for high confidence human motif binding sites.

Figure 3 Distribution of MotifMap regulatory elements as a function of conservation. Empirical distribution of distances of human
transcription factor binding sites to the closest (≤ 10 Kbp and ≤ 50 Kbp) RefSeq gene transcription start site (TSS). The sites are grouped into
quartiles according to the BBLS score; each group has one quarter of the total binding sites. The BBLS range for each quartile is given at the top
of each plot. As the BBLS conservation score increases, we observe a larger proportion of binding sites close to the TSS of the closest gene.

Daily et al. BMC Bioinformatics 2011, 12:495
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been integrated into the MotifMap web application as
an additional analysis tool called SNPer, which allows
the retrieval of motif binding sites that overlap with
SNP sites. The HapMap3 [29] and dbSNP [30] datasets
are currently available for use with the mouse and
human MotifMap. Users can download the MotifMap
results for further integration with specific GWAS or
other studies.

Discussion
The MotifMap approach has allowed us to derive state-
of-the-art genome-wide maps of candidate regulatory
elements for some of the main model organisms, in par-
ticular for mouse and human. For the worm, the map
produced is considerably more primitive because only
six transcription factor binding matrices are available in
TRANSFAC and JASPAR. However, the availability of
the map for this limited set of transcription factors may
still be of some use and all the maps will be updated as
more binding matrices become available.
Each binding site predicted by MotifMap corresponds

in fact to a regulatory hypothesis, thus a single Motif-
Map can generate from thousands to millions of
hypotheses. These hypotheses can be tested and refined
in the laboratory, either individually in the case of very
specific interactions which can be tested with great pre-
cision, or on a larger but less precise scale using high-
throughput methods, such as ChIP-seq. These multiple
hypotheses can also be further refined and analyzed by
computational methods using integrative approaches
where regulatory hypotheses are simultaneously com-
bined: (1) with each other in the form of regulatory net-
works; and (2) with other kinds of data. Regulatory
hypotheses can be integrated with each other to identify
regulatory networks of transcription factors, including
regulatory loops and, for instance, hypothesize that tran-
scription factor A regulates transcription factor B, tran-
scription factor B regulates transcription factor C, and
transcription factor C regulates transcription factor A.
These networks and loops can be thought of as the core
regulatory network of a cell. Regulatory hypotheses can
also be integrated with many other kinds of data to
refine regulatory inferences, as described in the Results
section using GO and SNP data and below with other
kinds of data. In particular, MotifMap and GO annota-
tions can be used to infer the common functions of a
set of genes targeted by a transcription factor or, con-
versely, to infer the transcription factor that may regu-
late a set of genes with common GO annotations. To
illustrate these ideas, here we give a simple demonstra-
tion of the power of integrating MotifMap and other
data to generate regulatory network hypotheses, above
the level of an individual regulatory site. For demonstra-
tion purposes, we choose two examples. We reconstruct

the P53 apoptotic pathway, since it is an important and
well-studied pathway which allows us to assess the qual-
ity of the predictions. We also apply the same general
ideas to the Gli family of transcription factors and the
hedgehog pathway to demonstrate the effectiveness of
these methods on a relatively less-studied transcription
factor family and pathway where important regulatory
effects remain to be discovered.

Mouse P53 apoptotic pathway
We attempt to reconstruct the P53 direct regulatory
interactions in the mouse P53 apoptotic pathway using
data from MotifMap for putative P53 binding sites
across the genome. We first compile a list of over 380
unique gene transcripts from the RefSeq database [23]
annotated with the Gene Ontology term “Apoptosis”
(GO:0006915). We then retrieve predicted P53 binding
sites from MotifMap in the promoter region of these
genes to generate a regulatory network of P53’s role in
apoptosis. The promoter region of a gene is defined as
15 Kbp upstream and 3 Kbp downstream, which
approximately encompasses the region associated with
the first intron, from the transcription start site. To
evaluate the network generated from MotifMap data, we
compare it to the P53 pathway described in the KEGG
database [31], which reports 14 genes directly regulated
by P53 in the apoptotic pathway (Figure 4). Table 5
shows the number of known and potentially novel P53
targets predicted as a function of FDR. At a FDR of
0.05, we predict eight target genes from the list of all
apoptotic genes, six of which are annotated in KEGG.
Searching the literature reveals that the other two target
proteins, DDIT4 and PHLDA3, are also known targets
of P53 [32,33] but not annotated in KEGG. At a FDR of
0.25, we predict a total of 71 targets, including 12 of the
14 targets annotated in KEGG; the only exceptions are
FAS and TSAP6 (also called STEAP3). FAS is a pre-
dicted direct target, but has a slightly higher FDR (0.28).
For TSAP6 we find two P53 sites (1784 bp and 4582 bp
upstream) with a strong motif matching score; however
these sites are not conserved. A novel predicted target is
BID, which is annotated in KEGG as a downstream
indirect target in the P53 apoptotic pathway. If we
reduce the length of the upstream promoter regions
from 15 Kbp down to 5 Kbp, the same KEGG targets
are recovered with the exception of PIDD and SHSA5.
A few targets have P53 binding sites downstream of the
TSS, in the first intron, and these would not have been
recovered with a search focused on promoter regions
only. Thus in short the MotifMap system is capable of
robustly recovering most of the direct targets of P53
described in KEGG, as well as providing a ranked list of
potential new targets, some of which can be confirmed
by a literature search.
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Mouse Gli hedgehog pathway
Next, we examine the Gli family of transcription factors.
Although Gli is a relatively less studied transcription
factor, mutations in Gli genes have been associated with
multiple developmental disorders and cancers [34]. We
first compile a list of Gli targets. The KEGG database
lists only two annotated targets of Gli1 (Hhip and
Ptch1), as well as an autoregulatory loop of Gli1. Gli1 is
annotated as a downstream effector of the Sonic hedge-
hog pathway [34]. In addition, Gli1 is known to regulate
the Wnt signaling pathways [35]. Due to the lack of
many annotated targets in KEGG, we used the Tran-
scriptional Regulatory Element Database (TRED) [36],
which contains an additional four annotated Gli family
targets. We find Gli binding sites predicted by Motif-
Map in the promoter region of the seven annotated tar-
gets and also many of the Wnt proteins. We observe
predicted binding sites in the Shh promoter (14,843 bp
upstream) as well as in the second intron. In addition,
we recover the Gli1 autoregulatory loop [37] and regula-
tion of Gli3 by Gli1 [38] (Figure 5a). All binding sites

for all targets are recovered at an estimated FDR ≤ 0.25,
within 15 Kbp upstream and 3 Kbp downstream of each
gene. Furthermore, we identify a highly conserved bind-
ing site (BBLS >7, perfectly conserved in 27 out of the
30 species in the alignment) near Ptch1. Nkx2-8 and
Nkx2-2, both of which have been reported as targets of
Gli family transcription factors [39,40], have predicted
binding sites within 2 Kbp upstream of the transcription
start site with similar conservation (Figure 5b). We also
identify Rab34 as a true Gli target [39] at a lower con-
servation level (BBLS >2); this threshold includes
approximately 100 novel targets.

Further integration and challenges
Regulatory networks do not consist only of transcription
factors and their direct regulatory interactions, but can
include also protein-protein interactions (PPI). Integrat-
ing PPI (physical or genetic) data [41,42] with protein-
DNA interactions from MotifMap can yield a more
comprehensive view of molecular mechanisms and net-
works. Integration of PPI data can also facilitate the
identification of transcriptional complexes. For example,
evidence for a complex based on adjacency of binding
sites for two transcription factors could be strengthened
by data supporting physical interactions between these
factors. In general, however, factors with proximal bind-
ing sites need not physically interact with each other in
order to influence transcription, and MotifMap data can
be used to identify modules of transcription factors with
co-occurring binding sites near co-regulated genes. To

Figure 4 Known apoptotic targets of P53. Known apoptotic genes from the KEGG pathway database and the literature for P53. Genes in light
green are annotated in KEGG. Orange dots indicate direct targets recovered by MotifMap. DDIT4 and PHLDA3 are examples of additional direct
targets identified by MotifMap with FDR < 0.05 which have been reported in the literature but are not present in KEGG.

Table 5 Mouse P53 apoptotic pathway

FDR 0 0.05 0.1 0.15 0.2 0.25

KEGG known 4 6 6 7 10 12

Potentially novel 1 2 16 29 50 73

Total 5 8 22 36 60 85

Number of known (annotated in KEGG) and potentially novel P53 direct
targets predicted at different FDR thresholds.

Daily et al. BMC Bioinformatics 2011, 12:495
http://www.biomedcentral.com/1471-2105/12/495

Page 9 of 13



derive a more accurate and complete global picture, it is
also important to incorporate information about RNA
elements involved in gene regulation [43]. As so far
described, MotifMap provides a static view of potential
transcription-factor/DNA interactions. Since transcrip-
tion factor regulation of most genes does not occur ubi-
quitously or constantly across all cells in an organism,
DNA microarrays and high-throughput sequencing of
transcripts (RNA-seq) provide another important source
of information about the cell-specific, tissue-specific, or
condition-specific expression of genes. Thus MotifMap
can be integrated with gene expression data, such as the
Gene Expression Omnibus (GEO) data [44]. This inte-
gration provides additional information about, for
instance, the average direction of a particular interaction
(up- or down-regulation) across many experiments, or
about the specific portion of the total potential regula-
tory network that is activated in a given condition. An
important challenge ahead lies in better understanding
the role of epigenetics in the regulation of gene tran-
scription. An interesting source of data for further inte-
gration with MotifMap comes from the ENCODE
project [45] providing the locations of epigenetic

signatures, such as histone tail methylations or acetyla-
tions, across the human genome for a large number of
cell lines. Combinations of these markers can identify
transcription factor binding sites that are specific to a
particular cell line; for example, the presence of
H3K4Me1 and absence of H3K4Me3 denotes enhancer
regions. This integration induces regulatory sub-net-
works, potentially describing important interactions
needed for a particular cell type to function properly.
Another considerable challenge is the role of chromatin

and 3D structure in gene regulation. New high-throughput
techniques like Chromosome Conformation Capture-on-
Chip (4C), Hi-C and Chromatin Interaction Analysis using
Paired-End Tag sequencing (ChIA-PET) allow the detec-
tion of long range or inter-chromosomal interactions of
DNA [46-48]. This provides the ability to detect regulatory
elements that may be distal to the gene they regulate line-
arly, but are brought close together in 3-dimensional
space. For instance, a recent study used 4C to investigate
the properties and dynamics of the genomic loci that are
in contact with glucocorticoid receptor (GR) responsive
loci [49]. Incorporating this kind of data into MotifMap
could provide further evidence of these distant regulatory

Figure 5 Targets of Gli in the hedgehog pathway and motif alignment of a highly conserved Gli1 binding site. Network showing the
known Gli targets in mouse. All direct targets were recovered by MotifMap, including the autoregulatory loop of Gli1. Nkx2-2, Nkx2-8 and Ptch2
are examples of additional direct targets identified by MotifMap with binding site conserved in more than 25 out of the 30 species in the
genome alignment. (5b) Motif alignment for a highly conserved Gli1 binding site Motif alignment for a highly conserved Gli1 binding site
1365 bp upstream of the Nkx2-8 transcription start site is also shown.
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interactions and improve our ability to infer regulatory
mechanisms and networks.
Many other data, such as scientific literature, or infor-

mation about diseases and drugs, are also being inte-
grated in house with MotifMap. Each data comes with
its own noise and limitations and it is the combination
of diverse lines of evidence that has the power to soli-
dify inferences and rank hypotheses in a relevant way.
This integration process is not new, of course, and in
essence is at the root of IBM’s Watson system for the
game of Jeopardy [50]. This integration process is
ongoing and raises computational challenges both in its
execution and in what can be served publicly given a
limited amount of computational resources.
Finally, another potential computational challenge for

systems like MotifMap is the dynamic use of evolution-
ary trees and comparative genomics. The current ver-
sion of MotifMap builds a genome-wide map, assessing
conservation with a single static tree for each species.
But clearly not all regulatory elements are conserved,
and even when they are, the optimal tree for assessing
their degree of conservation may vary with each tran-
scription factor and each biological question. Thus
studying how to dynamically assess conservation, includ-
ing its weaker forms [51,52], and how to discover regu-
latory elements that are poorly conserved remain
important questions for further investigations.

Conclusion
The MotifMap system aims to provide comprehensive
genome-wide map of regulatory elements for each organ-
ism. Since experimental data on gene expression obtained
with DNA microarray or high-throughput sequencing
methods is inherently biased (to a specific condition, cell
type, etc.), a resource that catalogs transcription factor
binding sites across the entire genome in an unbiased
fashion is valuable. We have created the first such compre-
hensive maps of candidate regulatory motifs across the
yeast, fly, worm, mouse, and human genomes. The
updated methodology has improved the detection of
experimentally validated motif binding sites and, together
with integration with other data, the generation of regula-
tory networks and hypotheses. Overlaying and integrating
information from multiple sources, well beyond transcrip-
tion factor binding motifs and genomic DNA sequences, is
key to building better maps and ultimately to understand-
ing gene regulation on a genome-wide scale.

Additional material

Additional file 1: Sources of binding matrices. Table listing the
original source of each transcription factor binding matrix.

Acknowledgements
This work was in part supported by National Institutes of Health grants
LM010235-01A1 and 5T15LM007743 and National Science Foundation grant
MRI EIA-0321390 to PB, and by the UCI Institute for Genomics and
Bioinformatics. We also wish to thank NVIDIA for hardware support.

Author details
1Department of Computer Science, University of California Irvine, Irvine, CA
92697 USA. 2Institute for Genomics and Bioinformatics, University of
California Irvine, Irvine, CA 92697 USA. 3Department of Developmental and
Cell Biology, University of California Irvine, Irvine, CA 92697 USA.

Authors’ contributions
PB conceived the study and the algorithms and coordinated and supervised
all aspects. XX contributed to the algorithms and the coordination. KD, VP,
and PB wrote the manuscript. PR, VP, and KD wrote the software and
implemented the web server. KD, VP, and PB performed the detailed
analyses. All authors proofread and approved the final manuscript.

Received: 29 September 2011 Accepted: 30 December 2011
Published: 30 December 2011

References
1. Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E: AGRIS:

the Arabidopsis Gene Regulatory Information Server, an update. Nucleic
Acids Research 2011, 39(suppl 1):D1118-D1122.

2. Gallo SM, Gerrard DT, Miner D, Simich M, Des Soye B, Bergman CM,
Halfon MS: REDfly v3.0: toward a comprehensive database of
transcriptional regulatory elements in Drosophila. Nucleic Acids Research
2010, 39(suppl 1):D118-D123.

3. Griffith OL, Montgomery SB, Bernier B, Chu B, Kasaian K, Aerts S, Mahony S,
Sleumer MC, Bilenky M, Haeussler M, Griffith M, Gallo SM, Giardine B,
Hooghe B, Van Loo P, Blanco E, Ticoll A, Lithwick S, Portales-Casamar E,
Donaldson IJ, Robertson G, Wadelius C, De Bleser P, Vlieghe D, Halfon MS,
Wasserman W, Hardison R, Bergman CM, Jones SJM, Consortium TORA:
ORegAnno: an open-access community-driven resource for regulatory
annotation. Nucleic Acids Research 2008, 36(suppl 1):D107-D113.

4. Kolchanov NA, Ignatieva EV, Ananko EA, Podkolodnaya OA, Stepanenko IL,
Merkulova TI, Pozdnyakov MA, Podkolodny NL, Naumochkin AN,
Romashchenko AG: Transcription Regulatory Regions Database (TRRD): its
status in 2002. Nucleic acids research 2002, 30:312-317[http://www.ncbi.nlm.
nih.gov/pmc/articles/PMC99088/].

5. Xie X, Rigor P, Baldi P: MotifMap: a human genome-wide map of
candidate regulatory motif sites. Bioinformatics 2009, 25(2):167-174.

6. Portales-Casamar E, Thongjuea S, Kwon AT, Arenillas D, Zhao X, Valen E,
Yusuf D, Lenhard B, Wasserman WW, Sandelin A: JASPAR 2010: the greatly
expanded open-access database of transcription factor binding profiles.
Nucleic acids research 2010, , 38 Database: D105-110[http://dx.doi.org/
10.1093/nar/gkp950].

7. Matys V, Fricke E, Geffers R, Gössling E, Haubrock M, Hehl R, Hornischer K,
Karas D, Kel AE, Kel-Margoulis OV, Kloos DUU, Land S, Lewicki-Potapov B,
Michael H, Münch R, Reuter I, Rotert S, Saxel H, Scheer M, Thiele S,
Wingender E: TRANSFAC: transcriptional regulation, from patterns to
profiles. Nucleic acids research 2003, 31:374-378[http://dx.doi.org/10.1093/
nar/gkg108].

8. Siepel A, Bejerano G, Pedersen J, Hinrichs A, Hou M, Rosenbloom K,
Clawson H, Spieth J, Hillier L, Richards S, et al: Evolutionarily conserved
elements in vertebrate, insect, worm, and yeast genomes. Genome
research 2005, 15(8):1034-1050.

9. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A: Detection of nonneutral
substitution rates on mammalian phylogenies. Genome Research 2010,
20:110-121[http://dx.doi.org/10.1101/gr.097857.109].

10. Ettwiller L, Paten B, Souren M, Loosli F, Wittbrodt J, Birney E: The discovery,
positioning and verification of a set of transcription-associated motifs in
vertebrates. Genome Biology 2005, 6(12):R104.

11. Elemento O, Tavazoie S: Fast and systematic genome-wide discovery of
conserved regulatory elements using a non-alignment based approach.
Genome biology 2005, 6(2):R18.

12. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES,
Kellis M: Systematic discovery of regulatory motifs in human promoters

Daily et al. BMC Bioinformatics 2011, 12:495
http://www.biomedcentral.com/1471-2105/12/495

Page 11 of 13

http://www.biomedcentral.com/content/supplementary/1471-2105-12-495-S1.PDF
http://www.ncbi.nlm.nih.gov/pubmed/21059685?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21059685?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20965965?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20965965?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18006570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18006570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752324?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752324?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC99088/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC99088/
http://www.ncbi.nlm.nih.gov/pubmed/19017655?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19017655?dopt=Abstract
http://dx.doi.org/10.1093/nar/gkp950
http://dx.doi.org/10.1093/nar/gkp950
http://www.ncbi.nlm.nih.gov/pubmed/12520026?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12520026?dopt=Abstract
http://dx.doi.org/10.1093/nar/gkg108
http://dx.doi.org/10.1093/nar/gkg108
http://www.ncbi.nlm.nih.gov/pubmed/16024819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16024819?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19858363?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19858363?dopt=Abstract
http://dx.doi.org/10.1101/gr.097857.109
http://www.ncbi.nlm.nih.gov/pubmed/16356267?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16356267?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16356267?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15693947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15693947?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15735639?dopt=Abstract


and 3’ UTRs by comparison of several mammals. Nature 2005,
434(7031):338-345.

13. Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L, Carlson JW, Crosby MA,
Rasmussen MD, Roy S, Deoras AN, Ruby GG, Brennecke J, Harvard FlyBase
curators, Berkeley Drosophila Genome Project, Hodges E, Hinrichs AS,
Caspi A, Paten B, Park SWW, Han MV, Maeder ML, Polansky BJ, Robson BE,
Aerts S, van Helden J, Hassan B, Gilbert DG, Eastman DA, Rice M, Weir M,
Hahn MW, Park Y, Dewey CN, Pachter L, Kent JJ, Haussler D, Lai EC,
Bartel DP, Hannon GJ, Kaufman TC, Eisen MB, Clark AG, Smith D,
Celniker SE, Gelbart WM, Kellis M: Discovery of functional elements in 12
Drosophila genomes using evolutionary signatures. Nature 2007,
450(7167):219-232.

14. Xie X, Mikkelsen TS, Gnirke A, Lindblad-Toh K, Kellis M, Lander ES:
Systematic discovery of regulatory motifs in conserved regions of the
human genome, including thousands of CTCF insulator sites. Proceedings
of the National Academy of Sciences 2007, 104(17):7145-7150.

15. Rhead B, Karolchik D, Kuhn RM, Hinrichs AS, Zweig AS, Fujita PA,
Diekhans M, Smith KE, Rosenbloom KR, Raney BJ, Pohl A, Pheasant M,
Meyer LR, Learned K, Hsu F, Hillman-Jackson J, Harte RA, Giardine B,
Dreszer TR, Clawson H, Barber GP, Haussler D, Kent WJ: The UCSC Genome
Browser database: update 2010. Nucleic acids research 2010, , 38
Database: D613-619[http://dx.doi.org/10.1093/nar/gkp939].

16. Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AFA, Roskin KM,
Baertsch R, Rosenbloom K, Clawson H, Green ED, Haussler D, Miller W:
Aligning Multiple Genomic Sequences With the Threaded Blockset
Aligner. Genome Research 2004, 14(4):708-715.

17. Johnson D, Mortazavi A, Myers R, Wold B: Genome-wide mapping of in
vivo protein-DNA interactions. Science 2007, 316(5830):1497.

18. Wei C, Wu Q, Vega V, Chiu K, Ng P, Zhang T, Shahab A, Yong H, Fu Y,
Weng Z: A Global Map of p53 Transcription-Factor Binding Sites in the
Human Genome. Cell 2006, 124:207-219[http://dx.doi.org/10.1016/j.
cell.2005.10.043].

19. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T,
Euskirchen G, Bernier B, Varhol R, Delaney A, et al: Genome-wide profiles
of STAT1 DNA association using chromatin immunoprecipitation and
massively parallel sequencing. Nature methods 2007, 4(8):651-658.

20. Zeller KI, Zhao X, Lee CWH, Chiu KP, Yao F, Yustein JT, Ooi HS, Orlov YL,
Shahab A, Yong HC, Fu Y, Weng Z, Kuznetsov VA, Sung WK, Ruan Y,
Dang CV, Wei CL: Global mapping of c-Myc binding sites and target
gene networks in human B cells. Proceedings of the National Academy of
Sciences 2006, 103(47):17834-17839.

21. Lim C, Yao F, Wong J, George J, Xu H, Chiu K, Sung W, Lipovich L, Vega V,
Chen J, et al: Genome-wide mapping of RELA (p65) binding identifies
E2F1 as a transcriptional activator recruited by NF-κB upon TLR4
activation. Molecular cell 2007, 27(4):622-635.

22. Kim T, Abdullaev Z, Smith A, Ching K, Loukinov D, Green R, Zhang M,
Lobanenkov V, Ren B: Analysis of the vertebrate insulator protein CTCF-
binding sites in the human genome. Cell 2007, 128(6):1231-1245.

23. Pruitt KD, Tatusova T, Klimke W, Maglott DR: NCBI Reference Sequences:
current status, policy and new initiatives. Nucleic Acids Research 2009,
37(suppl 1):D32-D36.

24. Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G,
Fairley S, Fitzgerald S, Gordon L, Hendrix M, Hourlier T, Johnson N, Kähäri A,
Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Larsson P, Longden I,
McLaren W, Overduin B, Pritchard B, Riat HS, Rios D, Ritchie GRS, Ruffier M,
Schuster M, Sobral D, Spudich G, Tang YA, Trevanion S, Vandrovcova J,
Vilella AJ, White S, Wilder SP, Zadissa A, Zamora J, Aken BL, Birney E,
Cunningham F, Dunham I, Durbin R, Fernández-Suarez XM, Herrero J,
Hubbard TJP, Parker A, Proctor G, Vogel J, Searle SMJ: Ensembl 2011.
Nucleic Acids Research 2011, 39(suppl 1):D800-D806.

25. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP,
Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A,
Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene
ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nature genetics 2000, 25:25-29[http://dx.doi.org/10.1038/75556].

26. Drysdale R, t FC: FlyBase Drosophila. In Methods in molecular biology
(Clifton, N.J.), Volume 420 of Methods in Molecular Biology. Edited by:
Dahmann C, Walker JM, Walker JM. Totowa, NJ: Humana Press; 2008:45-59
[http://dx.doi.org/10.1007/978-1-59745-583-1\_3].

27. project S: Saccharomyces Genome Database. Saccharomyces Genome
Database 2011 [http://downloads.yeastgenome.org/].

28. D’Souza UM, Craig IW: Functional polymorphisms in dopamine and
serotonin pathway genes. Human Mutation 2006, 27:1-13[http://dx.doi.org/
10.1002/humu.20278].

29. International HapMap Consortium: The International HapMap Project.
Nature 2003, 426(6968):789-796.

30. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K:
dbSNP: the NCBI database of genetic variation. Nucl Acids Res 2001,
29:308-311[http://dx.doi.org/10.1093/nar/29.1.308].

31. Kanehisa M, Goto S: KEGG: Kyoto Encyclopedia of Genes and Genomes.
Nucleic Acids Research 2000, 28:27-30[http://dx.doi.org/10.1093/nar/28.1.27].

32. Ellisen LW, Ramsayer KD, Johannessen CM, Yang A, Beppu H, Minda K,
Oliner JD, McKeon F, Haber DA: REDD1, a Developmentally Regulated
Transcriptional Target of p63 and p53, Links p63 to Regulation of
Reactive Oxygen Species. Molecular Cell 2002, 10(5):995-1005[http://www.
sciencedirect.com/science/article/pii/S1097276502007062].

33. Kawase T, Ohki R, Shibata T, Tsutsumi S, Kamimura N, Inazawa J, Ohta T,
Ichikawa H, Aburatani H, Tashiro F, Taya Y: PH Domain-Only Protein
PHLDA3 Is a p53-Regulated Repressor of Akt. Cell 2009, 136(3):535-550
[http://www.sciencedirect.com/science/article/pii/S0092867408015638].

34. Matise MP, Joyner AL: Gli genes in development and cancer. Oncogene
1999, 18(55):7852-7859.

35. Mullor JL, Dahmane N, Sun T, Ruiz i Altaba A: Wnt signals are targets and
mediators of Gli function. Current biology: CB 2001, 11(10):769-773[http://
view.ncbi.nlm.nih.gov/pubmed/11378387].

36. Jiang C, Xuan Z, Zhao F, Zhang MQ: TRED: a transcriptional regulatory
element database, new entries and other development. Nucleic acids
research 2007, , 35 Database: D137-D140[http://dx.doi.org/10.1093/nar/
gkl1041].

37. Weiner HL, Bakst R, Hurlbert MS, Ruggiero J, Ahn E, Lee WS, Stephen D,
Zagzag D, Joyner AL, Turnbull DH: Induction of Medulloblastomas in Mice
by Sonic Hedgehog, Independent of Gli1. Cancer Research 2002,
62(22):6385-6389[http://cancerres.aacrjournals.org/content/62/22/6385.
abstract].

38. Hu MC, Mo R, Bhella S, Wilson CW, Chuang PT, Hui Cc, Rosenblum ND:
GLI3-dependent transcriptional repression of Gli1, Gli2 and kidney
patterning genes disrupts renal morphogenesis. Development 2006,
133(3):569-578.

39. Vokes SA, Ji H, McCuine S, Tenzen T, Giles S, Zhong S, Longabaugh WJR,
Davidson EH, Wong WH, McMahon AP: Genomic characterization of Gli-
activator targets in sonic hedgehog-mediated neural patterning.
Development 2007, 134(10):1977-1989.

40. Santagati F, Abe K, Schmidt V, Schmitt-John T, Suzuki M, Yamamura Ki,
Imai K: Identification of Cis-regulatory Elements in the Mouse Pax9/Nkx2-
9 Genomic Region: Implication for Evolutionary Conserved Synteny.
Genetics 2003, 165:235-242[http://www.genetics.org/content/165/1/235.
abstract].

41. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S,
Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A,
Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A,
Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK,
Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S,
Ranganathan P, Ramabadran S, Chaerkady R, Pandey A: Human Protein
Reference Database-2009 update. Nucl Acids Res 2009, 37(suppl_1):
D767-772.

42. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M: BioGRID:
a general repository for interaction datasets. Nucl Acids Res 2006,
34(suppl_1):D535-539.

43. He L, Hannon GJ: MicroRNAs: small RNAs with a big role in gene
regulation. Nature Reviews Genetics 2004, 5(7):522-531.

44. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF,
Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM,
Muertter RN, Edgar R: NCBI GEO: archive for high-throughput functional
genomic data. Nucl Acids Res 2009, 37(suppl_1):D885-890.

45. Consortium TEP: A User’s Guide to the Encyclopedia of DNA Elements
(ENCODE). PLoS Biol 2011, 9(4):e1001046+[http://dx.doi.org/10.1371/journal.
pbio.1001046].

46. Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van
Steensel B, de Laat W: Nuclear organization of active and inactive
chromatin domains uncovered by chromosome conformation capture-
on-chip (4C). Nature Genetics 2006, 38(11):1348-1354.

Daily et al. BMC Bioinformatics 2011, 12:495
http://www.biomedcentral.com/1471-2105/12/495

Page 12 of 13

http://www.ncbi.nlm.nih.gov/pubmed/15735639?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17994088?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17994088?dopt=Abstract
http://dx.doi.org/10.1093/nar/gkp939
http://www.ncbi.nlm.nih.gov/pubmed/15060014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15060014?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17540862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17540862?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16413492?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16413492?dopt=Abstract
http://dx.doi.org/10.1016/j.cell.2005.10.043
http://dx.doi.org/10.1016/j.cell.2005.10.043
http://www.ncbi.nlm.nih.gov/pubmed/17558387?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17558387?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17558387?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17707233?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17707233?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17707233?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17382889?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17382889?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18927115?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18927115?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21045057?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10802651?dopt=Abstract
http://dx.doi.org/10.1038/75556
http://dx.doi.org/10.1007/978-1-59745-583-1\_3
http://downloads.yeastgenome.org/
http://www.ncbi.nlm.nih.gov/pubmed/16320307?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16320307?dopt=Abstract
http://dx.doi.org/10.1002/humu.20278
http://dx.doi.org/10.1002/humu.20278
http://www.ncbi.nlm.nih.gov/pubmed/14685227?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11125122?dopt=Abstract
http://dx.doi.org/10.1093/nar/29.1.308
http://www.ncbi.nlm.nih.gov/pubmed/10592173?dopt=Abstract
http://dx.doi.org/10.1093/nar/28.1.27
http://www.ncbi.nlm.nih.gov/pubmed/12453409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12453409?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12453409?dopt=Abstract
http://www.sciencedirect.com/science/article/pii/S1097276502007062
http://www.sciencedirect.com/science/article/pii/S1097276502007062
http://www.ncbi.nlm.nih.gov/pubmed/19203586?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19203586?dopt=Abstract
http://www.sciencedirect.com/science/article/pii/S0092867408015638
http://www.ncbi.nlm.nih.gov/pubmed/10630638?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11378387?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11378387?dopt=Abstract
http://view.ncbi.nlm.nih.gov/pubmed/11378387
http://view.ncbi.nlm.nih.gov/pubmed/11378387
http://dx.doi.org/10.1093/nar/gkl1041
http://dx.doi.org/10.1093/nar/gkl1041
http://www.ncbi.nlm.nih.gov/pubmed/12438220?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12438220?dopt=Abstract
http://cancerres.aacrjournals.org/content/62/22/6385.abstract
http://cancerres.aacrjournals.org/content/62/22/6385.abstract
http://www.ncbi.nlm.nih.gov/pubmed/16396903?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16396903?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17442700?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17442700?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14504231?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14504231?dopt=Abstract
http://www.genetics.org/content/165/1/235.abstract
http://www.genetics.org/content/165/1/235.abstract
http://www.ncbi.nlm.nih.gov/pubmed/18988627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18988627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381927?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15211354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15211354?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18940857?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18940857?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21526222?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21526222?dopt=Abstract
http://dx.doi.org/10.1371/journal.pbio.1001046
http://dx.doi.org/10.1371/journal.pbio.1001046
http://www.ncbi.nlm.nih.gov/pubmed/17033623?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17033623?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17033623?dopt=Abstract


47. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T,
Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R,
Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J,
Mirny LA, Lander ES, Dekker J: Comprehensive Mapping of Long-Range
Interactions Reveals Folding Principles of the Human Genome. Science
2009, 326(5950):289-293.

48. Fullwood MJ, Wei CL, Liu ET, Ruan Y: Next-generation DNA sequencing of
paired-end tags (PET) for transcriptome and genome analyses. Genome
Research 2009, 19(4):521-532.

49. Hakim O, Sung MH, Voss TC, Splinter E, John S, Sabo PJ, Thurman RE,
Stamatoyannopoulos JA, de Laat W, Hager GL: Diverse gene
reprogramming events occur in the same spatial clusters of distal
regulatory elements. Genome Research 2011, 21(5):697-706.

50. Ferrucci D: Build Watson: an overview of DeepQA for the Jeopardy!
challenge. Proceedings of the 19th international conference on Parallel
architectures and compilation techniques PACT ‘10, New York, NY, USA: ACM;
2010, 1-2[http://doi.acm.org/10.1145/1854273.1854275].

51. Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD, Marshall A,
Kutter C, Watt S, Martinez-Jimenez CP, Mackay S, Talianidis I, Flicek P,
Odom DT: Five-vertebrate ChIP-seq reveals the evolutionary dynamics of
transcription factor binding. Science (New York, NY) 2010,
328(5981):1036-1040.

52. King DC, Taylor J, Zhang Y, Cheng Y, Lawson HA, Martin J, groups for
Transcriptional Regulation E, Analysis MS, Chiaromonte F, Miller W,
Hardison RC: Finding cis-regulatory elements using comparative
genomics: Some lessons from ENCODE data. Genome Research 2007,
17(6):775-786.

doi:10.1186/1471-2105-12-495
Cite this article as: Daily et al.: MotifMap: integrative genome-wide
maps of regulatory motif sites for model species. BMC Bioinformatics
2011 12:495.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Daily et al. BMC Bioinformatics 2011, 12:495
http://www.biomedcentral.com/1471-2105/12/495

Page 13 of 13

http://www.ncbi.nlm.nih.gov/pubmed/19815776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19815776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19339662?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19339662?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21471403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21471403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21471403?dopt=Abstract
http://doi.acm.org/10.1145/1854273.1854275
http://www.ncbi.nlm.nih.gov/pubmed/17567996?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17567996?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Normalized Log-Odds score (NLOD)
	Bayesian Branch Length Score (BBLS)
	False Discovery Rate (FDR)
	Sequence alignments and modular design
	Redundancy filter

	Results
	New MotifMaps
	Evaluation of new methods using experimental data
	Localization analysis: binding site location properties
	MotifMap system, web server, and data integration

	Discussion
	Mouse P53 apoptotic pathway
	Mouse Gli hedgehog pathway
	Further integration and challenges

	Conclusion
	Acknowledgements
	Author details
	Authors' contributions
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




