Title
ASYMPTOTIC BEHAVIOR OF PARTIAL-WAVE AMPLITUDES

Permalink
https://escholarship.org/uc/item/78n1848k

Author
Omnes, R.

Publication Date
1963-08-27
ASYMPTOTIC BEHAVIOR OF PARTIAL-WAVE AMPLITUDES

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ASYMPTOTIC BEHAVIOR OF PARTIAL-WAVE AMPLITUDES

R. Omnes

Lawrence Radiation Laboratory
University of California
Berkeley, California

September 26, 1964

ERRATA

TO: All recipients of UCRL-11008.

FROM: Technical Information Division.

Please see attached sheet for errata.
Errat

ASYMPTOTIC BEHAVIOR OF PARTIAL-WAVE AMPLITUDES

R. Omnes

[Phys. Rev. 133, 1543B, (1964)]

Some errors were made in introducing the contributions of the Regge poles in the crossed channels. The correct final results to replaced Eqs. (28) are:

\[\text{Im } \phi_{\lambda}^{(2)}(r) \simeq \int_{-\infty}^{0} P_{\lambda} \left(1 + \frac{2s}{t - 4} \right) A_t(s,t) \frac{ds}{(t - 4)^{\lambda+1}} \]

\[\Delta \phi^{(1)}_\lambda(t) \simeq \frac{1}{2} \sin \pi t \int_{-\infty}^{0} P_{\lambda} \left(1 - \frac{2s}{4 - t} \right) A(s,t - i\epsilon) \frac{ds}{(4 - t)^{\lambda+1}} \]

\[\Delta \phi^{(2)}_\lambda(t) \simeq \frac{1}{2} (e^{-\pi t} - 1) \int_{-\infty}^{0} P_{\lambda} \left(1 - \frac{2s}{4 - t} \right) A_u(s,t) \frac{ds}{(4 - t)^{\lambda+1}} \]

In order to compute the asymptotic behavior of the discontinuities, one should take into account the contribution of the \(s \) channel Regge poles, i.e.

\[A(s,t,u) \simeq \beta(s) \left[P_{\alpha}(s) \left(1 - \frac{2t}{s - 4} \right) + P_{\alpha}(s) \left(1 + \frac{2t}{s - 4} \right) \right] \left[\sin \pi \alpha(s) \right]^{-1} \]

It is to be noted, as was pointed out by E. J. Squires, that the asymptotic behavior of the left-hand cut discontinuity due to the Regge poles vanishes for physical values of \(\lambda \).

The conclusions of the paper must be modified in the fact that the \(s \)-wave dispersion relation needs in fact one substraction. All other conclusions are maintained.

I want to thank Dr. E. J. Squires, who pointed out an inconsistency in the asymptotic behavior of \(\Delta \phi^{(2)}_\lambda(r) \) for an interesting correspondence.

1 E. J. Squires, preprint from Tait Institute for Theoretical Physics, Edinburgh (1964).
ASYMPTOTIC BEHAVIOR OF PARTIAL-WAVE AMPLITUDES

R. Omnes

August 27, 1963
ASYMPTOTIC BEHAVIOR OF PARTIAL-WAVE AMPLITUDES

R. Omnes
Lawrence Radiation Laboratory
University of California
Berkeley, California

August 27, 1963

ABSTRACT

For infinite energies, we determine the asymptotic behavior of partial wave amplitudes when the full scattering amplitude satisfies Mandelstam representation and has itself a Regge asymptotic behavior. Particular attention is paid to the behavior of the partial-wave-amplitude discontinuities on their cuts. They are shown to behave as $|t|^{\alpha(0) - 1}$, where t is the energy squared and $\alpha(0)$ is the leading Regge pole position at zero energy. This result removes an old-standing difficulty in the Chew-Mandelstam calculation of amplitudes and provides a precise justification of the nearest singularity technique. As an application, we show that no subtraction is necessary in partial-wave-amplitude dispersion relations at physical values of the angular momentum, even for the case of S waves.
In their original program, Chew and Mandelstam stressed that a particle or a resonance in a crossed channel contributes to the forces acting between two particles. More precisely, the partial-wave amplitudes for pion-pion scattering have both a left and a right-hand cut as functions of the energy, and the resonances in the crossed channels determine the discontinuity across the left-hand cut or, equivalently, the forces. Unfortunately, it appeared that the discontinuity obtained from that mechanism increased at a rate in conflict with unitarity when the energy became infinite and negative, as soon as the spin of the resonance or of the bound state in the crossed channel was larger than or equal to one. As such is the case for the ρ-meson (and now also for the f^0 meson) the problem of determining the exact high-energy behavior of amplitudes became a necessary preliminary to the dispersion theory of elementary particles.

It was indeed felt that a simple solution of the problem had to exist since, in several cases, the simple trick of introducing a cutoff for the left-hand cut discontinuity leads to sensible results. This idea has been expressed as the nearest singularity hypothesis, by which one meant that a physical process was mostly determined by the effects of the singularities nearest to the physical region and was not affected by any misbehavior of the amplitudes at infinity.
The clue to a solution of the problem was provided by the observation, due to Regge,\(^3\) that the asymptotic behavior of the nonrelativistic-scattering amplitudes, as functions of the angle, are determined by the singularities of the partial-wave amplitudes as functions of a continuous angular momentum.\(^3\) Actually, these singularities are only poles. Chew and Frautschi\(^4\) and Mandelstam\(^5\) pointed out that the high-energy difficulties of the S-matrix theory of strong interactions could be eliminated if one takes as an ansatz that the asymptotic behavior of the total amplitude in relativistic theory is analogous to the one found in nonrelativistic theory.

Although it was clear that the asymptotic difficulties were removed by that hypothesis, one had yet to exhibit a practical way of resuming the Chew-Mandelstam program, now enlarged to be a program for self-consistently computing the leading Regge-pole trajectories. Chew and Jones are currently investigating such an approach in which they work both with the full amplitude and with the partial-wave amplitudes.\(^6,7\) However, it is not clear whether only using the partial-wave amplitudes, which has the advantage of leading to one-dimensional well-known equations, could not lead to simpler or more accurate calculations. Before we enter into such a program, nevertheless, it is necessary to solve explicitly the preliminary problem of high-energy divergences and to find the explicit behavior of partial-wave amplitude discontinuities, once the Regge asymptotic behavior is assumed for the full amplitude.

In the present paper we devote our work to the solution of this problem. Our main result is that the discontinuity at infinity is determined by the position of the leading Regge pole at zero total energy, \(\alpha(0)\), and not by the spin of the physical bound states or resonances. Since, as has been shown by Froissart,\(^8\) the requirement of unitarity implies that \(\alpha(0) \leq 1\),
it may be shown that the difficulty originally encountered by Chew and Mandel-
stam is removed. In fact, the discontinuities on the left-hand cut and the
right-hand cut fit so well that no subtraction is needed in any physical
partial-wave dispersion relation, even for the S wave. Therefore, no sub-
traction parameters have to be introduced when one solves the Chew-Mandelstam
equations.

Apart from this result, which bears on the consistency of the theory,
it will be useful to use the asymptotic form of the discontinuities in such
practical applications as the determination of the Regge pole trajectory
from N/D equations. In fact, it is obvious that in the particular case of
the S wave this procedure will lead to more rapidly convergent calculations
than those which can be obtained by introducing a cutoff.

The simple form of the discontinuity, which is not oscillating as
sometimes assumed, but smoothly damped, is in fact a justification of the
nearest singularity method.

After some preliminaries about partial-wave amplitudes, their proper-
ties, and a precise statement of our hypotheses in Secs. I to III, we com-
pute the asymptotic behavior of the discontinuities in Secs. IV through VII.
Applications to the number of subtractions in partial-wave-dispersion relations,
as well as the possibility of cuts in the angular momentum plane, are made in
Sec. VIII.

II.

Let us consider the amplitude $A(s, t)$ for the scattering of identi-
cal neutral spinless particles with mass unity. We consider t to be the
total c.m. energy squared, and s to be the square of the invariant momentum
transfer. The partial-wave-scattering amplitudes $a_L(t)$ are given by
where \(z = 1 + 2s/(t-4) \), is the cosine of the c.m. scattering angle. When \(A(t, z) \) is an analytic function of \(z \) in a domain that contains the segment \((-1, +1)\), Eq. (1) can be replaced by the Neumann formula

\[
a_{\ell}(t) = \frac{1}{2\pi i} \int_{C} A(z, t) Q_{\ell}(z) \, dz ,
\]

where \(C \) is a contour around \(-1\) and \(+1\). In particular, when \(A(z, t) \) is analytic in the complex \(z \)-plane cut from \(z_0 \) to \(\infty \), as is the case for any nonrelativistic amplitude satisfying the Mandelstam representation, Eq. (2) can be replaced by

\[
a_{\ell}(t) = \frac{1}{\pi} \int_{z_0}^{\infty} Q_{\ell}(z) A_{\ell}(s, t) \, dz ,
\]

where \(2iA_{\ell}(s, t) \) is the discontinuity of \(A(s, t) \) across its \(s \) cut. Equation (3) was first given by Froissart. Its main properties are that it can be extended to complex values of \(\ell \), and that the function obtained in this way is analytic in at least a half plane \(\Re \ell > N \), where \(N \) is the necessary number of subtractions in a dispersion relation at the fixed energy \(t \). Within that half plane, \(a_{\ell}(t) \) is a bounded function. In accordance with a theorem by Carlson, it is therefore the unique analytic function that interpolates the physical amplitudes from \(\ell \) integer to \(\ell \) complex and that does not at most increase as fast as \(\exp \pi|\ell| \). Equation (1) does not verify this boundedness property and coincides with Eq. (2) only for positive integer values of \(\ell \).

For a relativistic amplitude satisfying the Mandelstam representation, there are two cuts, and Eq. (3) has to be replaced by
so that one has to deal with two different analytic functions of \(l \) that coincide respectively with \(a_{\ell}(t) \) for even and odd values of \(\ell \). One distinguishes these two analytic functions by their signature \(\pm 1 \). For simplicity, we shall only consider in this paper the simple model of neutral spinless particles for which the odd amplitude vanishes and only the amplitudes with even signature play a role.

III.

The function \(a_{\ell}(t) \) has a branch point at the two-body threshold \(t = \mu \) and it is convenient to define, with V. N. Gribov,\(^\text{12} \) the new function \(\phi_{\ell}(t) = a_{\ell}(t)/(t - \mu)^\ell \), which has only a second-order branch point at the two-body threshold. The function \(\phi_{\ell}(t) \) satisfies the dispersion relation, for \(\text{Re} \ \ell \) large enough and we have

\[
\phi_{\ell}(t) = \frac{1}{\pi} \int_{4}^{\infty} \frac{\text{Im} \phi_{\ell}(t') \ dt'}{t' - t} + \frac{1}{\pi} \int_{-\infty}^{0} \frac{\Delta \phi_{\ell}(t') \ dt'}{t' - t} ,
\]

where it is understood that the necessary number of subtractions have been made. When \(\text{Re} \ \ell \) becomes small enough, it is necessary to add to Eq. (5) the contribution of the poles of \(\phi_{\ell}(t) \) (which are at the position of bound states when \(\ell \) is a positive integer or zero).

The discontinuities on the cuts are given, for \(t \) positive, by

\[
\text{Im} \ \phi_{\ell}(t) = \frac{4}{\pi} \int_{4}^{\infty} Q_{\ell} \left(1 + \frac{2s}{t - 4} \right) A_{st}(s,t) \frac{ds}{(s - 4)^{\ell+1}} ,
\]

here, \(A_{st} \) is the Mandelstam weight function \(\rho(s,t) \). For negative \(t \), one has
\[\Delta \phi_\ell(t) = \Delta \phi_\ell^{(1)}(t) + \Delta \phi_\ell^{(2)}(t), \quad (7a) \]

\[\Delta \phi_\ell^{(1)}(t) = 2 \int_{s_1(t)}^{s_2(t)} \mathcal{P}_{\ell} \left(\frac{2s}{4-t} - 1 \right) A_s(s, t - i\epsilon) \, \frac{ds}{(4-t)^{\ell+1}}, \quad (7b) \]

and

\[\Delta \phi_\ell^{(2)}(t) = \frac{1}{\pi} \int_{s_1(t)}^{s_2(t)} Q_\ell \left(\frac{2s}{4-t} - 1 \right) A_{su}(s, t) \, \frac{ds}{(4-t)^{\ell+1}}, \quad (7c) \]

where \(s_1(t) \) and \(s_2(t) \) are the boundary of the third spectral region for fixed \(t \) (see Fig. 1). Note that, while \(\Delta \phi_\ell(t) \) is real, this is not true of \(\Delta \phi_\ell^{(1)} \) and \(\Delta \phi_\ell^{(2)} \) separately. It has been shown by Gribov and Pomeranchuk\(^{13} \) that, due to the existence of poles of \(Q_\ell \) as functions of \(\ell \) at \(\ell = -1, -2, \ldots \), Eq. (7c) implies the existence of an essential singularity of \(\phi_\ell(t) \) at \(\ell = 1 \).

Our problem is to investigate the behavior of the three discontinuities given by Eqs. (7) when \(t \) tends towards \(\pm \infty \). To do this, we make the following assumptions:

(a) The amplitude \(A(s, t) \) satisfies the Mandelstam representation.

(b) When one of the variables \(s, t \) or \(u \) tends to infinity, the asymptotic behavior of the amplitude is of the Regge type.\(^{14} \) More precisely, if \(t \) tends to infinity at a fixed value of \(s \), one has

\[A(s, t) \approx \sum_r \gamma_r(s) \frac{\mathcal{P}_{\alpha_r}(s) \left(-1 - \frac{2t}{s - 4} \right) + \mathcal{P}_{\alpha_r}(s) \left(1 + \frac{2t}{s - 4} \right)}{\sin \pi \alpha_r(s)}, \quad (8) \]

where the sum goes over the indices \(r \) of the Regge-poles trajectories. We assume explicitly that there are no cuts in the angular-momentum plane. For simplicity, we make all the subsequent considerations by taking only into account one Regge pole.
(c) We suppose that \(\alpha_r(s) \) is an analytic function of \(s \) in the complex \(s \)-plane cut from \(s = 4 \) to \(+\infty \), and that it has a limit when \(\alpha \) tends to infinity so that by the formal transformation defined by \(\alpha_r(s) \), it transforms the \(s \)-plane into the kidney-shaped region indicated in Fig. 2.

In fact, it would be easy to trace out the modifications of the following arguments if some of these assumptions were to fail. They are just made here for the sake of simplicity.

Again, for more clarity, we do not consider the Regge poles of the \(u \) channel, but only those of the \(s \) channel as they are exhibited in Eq. (8). This is equivalent to putting the residues of the \(u \)-channel Regge poles identically equal to zero and taking into account only the \(s \)-channel Regge poles, and then exchanging the role of \(s \) and \(u \) and adding the results. That simply makes the equations shorter and when we reestablish the \(u \)-channel Regge poles contributions at the end of the argument, we shall only have to multiply in some places by a factor of two.

Lastly, we insist on the reality of \(\Delta\phi_{\ell}(t) \) for \(\ell \) real by writing, in place of Eqs. (7),

\[
\Delta\phi_{\ell}(t) = \Delta\phi_{\ell}^{(1)}(t) + \Delta\phi_{\ell}^{(2)}(t) ,
\]

where

\[
\Delta\phi_{\ell}^{(1)}(t) = \text{Re} \Delta\phi_{\ell}^{(1)}(t) \\
\Delta\phi_{\ell}^{(2)}(t) = \text{Re} \Delta\phi_{\ell}^{(2)}(t) .
\]

Let us first find the asymptotic behavior of the discontinuity on the right-hand cut. This behavior may be found in a variety of ways and the result is already well known since it is the behavior of the phase-shifts when the diffraction peak is determined by a Regge pole. However, we derive it in a way that is a good illustration of the method to be employed for the other discontinuities.
As we do not take into account the \(u\)-channel Regge poles, which when \(t\) tends to infinity, is equivalent to considering the \(A_{tu}\) discontinuity as zero, Eq. (6) reads now:

\[
\operatorname{Im} \phi(t) = \frac{2}{\pi} \int_4^{\infty} Q_{\ell}(1 + \frac{2s}{t - \frac{1}{4}}) A_{st}(s, t) \frac{ds}{(t - 4)^{\ell + 1}}.
\]

Let us write it as a contour integral

\[
\operatorname{Im} \phi(t) = \frac{1}{4\pi} \int_C Q_{\ell}(1 + \frac{2s}{t - \frac{1}{4}}) A_{t}(s, t) \frac{ds}{(t - 4)^{\ell + 1}},
\]

where the contour \(C\) goes around the cut of \(A_{t}(s, t)\) from \(s = 4\) to \(s = \infty\) (See Fig. 3). The integrand in Eq. (12) has this cut and also has the cut of the Legendre function which goes from \(s = -\infty\) to \(s = 0\). If we make the conformal transformation from the \(s\) plane to the \(\alpha\) plane, Eq. (12) remains true as an integral over \(\alpha\) on the contour \(C\) shown in Fig. 4. The contour \(C\) can be reduced to \(C'\), which encloses the \(Q_{\ell}\) cut. It is clear from Fig. 4 that an integral over \(C'\) cannot increase more strongly than \(t^{\alpha(0)}\) when \(t\) tends to infinity.

For the part of \(C'\) that is in the physical region (i.e., for \(4 - t < s < 0\)), one can compute the discontinuity of \(C'\) by using the relation

\[
Q_{\ell}(x - i\epsilon) - Q_{\ell}(x + i\epsilon) = i\pi \mathcal{P}_{\ell}(x),
\]

which is true for \(-1 \leq x \leq 1\). However, it is clear from Fig. 4 that, as \(t\) tends to infinity, the part of the integration over \(C'\) for \(s < 4 - t\) behaves as \(t^{\alpha(\infty)}\). If we neglect such corrections of the order \(t^{\alpha(\infty)}\), we thus get
\[\text{Im } \phi(t) = \int_{-\infty}^{0} P_e(t + \frac{2s}{t - 4}) A_t(s, t) \frac{ds}{(t - 4)^{4+1}} + O[t^{\alpha(\infty) - \ell - 1}] \] (14)

Obviously, this result can be obtained without using the conformal transformation. However, this transformation is extremely useful in the next two cases. It shows immediately what the asymptotic behavior is of any contour integral just by indicating up to what point in the \(\alpha \)-plane the contour can be pushed to the left, as well as indicating the asymptotic behavior of any term to be neglected.

\[\Delta \phi(t) = \int_{4-t}^{4-t+i\epsilon} A(s, t) \frac{ds}{(4-t)^{4+1}} \] (15)

The same argument as for \(\text{Im } \phi(t) \) can now be given. First transform Eq. (15) into

\[\Delta \phi(t) = \frac{1}{2i} \int_{C_1} P_e(t + \frac{2s}{t - 4}) A(s, t) \frac{ds}{(4-t)^{4+1}} \] (16)

where the path \(C_1 \) goes from \(4-t-i\epsilon \) to \(4-t+i\epsilon \) and encloses the branch point at \(s = 4 \). Here again we can push the transformed path \(C_1 \) to the left in the \(\alpha \)-plane (see Fig. 5) and replace \(C_1 \) by the preceding contour \(C' \). The error committed is caused by that part of the integration path in Fig. 5 going from \(\alpha(4-t) \) to \(\alpha(\infty) \), which gives terms of the order of \(t^{\alpha(\infty)} \) for \(t \) large enough. By using now the relation\(^{15}\)

\[P_e(x - i\epsilon) - P_e(x + i\epsilon) = -2i \sin \pi \ell P_e(-x) \] (17)

(which is valid for \(x < -1 \)), to compute the integral on \(C' \), we get
\[\Delta \phi_{\ell}^{(1)}(t) = -\sin \ell \pi \int_{-\infty}^{0} P_{\ell}(1 - \frac{2s}{t}) A(s, t) + O(t^{\alpha(\infty) - 1 - 1}) \quad (18) \]

VI.

The calculation of \(\Delta \phi_{\ell}^{(2)}(t) \) is exactly of the same type as in the preceding section, although more involved. As a first step we define the new function

\[B(s, t) = \frac{1}{\pi} \int_{s_1(t)}^{s_2(t)} \frac{A_{su}(s', t) ds'}{s' - s} \quad (19) \]

It is important to observe that \(B(s, t) \) behaves asymptotically as \(A_u(s, t) \) when \(t \) tends to \(-\infty\), \(s \) being kept fixed and negative. In order to show this, we observe that \(A_{su}(s', t) \) behaves, when \(|t| \to \infty \), as

\[A_{su}(s, t) \sim \text{Im} \gamma(s) |t|^{\alpha(s)} \quad (20) \]

and we write the asymptotic form of \(B(s, t) \) as

\[\frac{1}{\pi} \int_{4}^{\infty} \frac{s_2(t)}{s_1(t)} + \int_{s_1(t)}^{4} \text{Im} \gamma(s') |t|^{\alpha(s')} ds' \quad (21) \]

It is easy to show that the last integral behaves as \(|t|^{\alpha(\infty) - 1} \) when \(t \) tends to \(-\infty\) and that the second integral behaves as \(|t|^{\alpha(4) - 3/2} \) [the integrand behaves as \(|t|^{\alpha(4)} \), the integration interval from 4 to \(s_1(t) \) is proportional to \(t^{-1} \), and a more careful examination of the effect of the branch point of \(\alpha(s) \) at \(s = 4 \) leads to the last \(|t|^{-1/2} \) factor.] Therefore, up to powers of \(t \) smaller than \(\alpha(4) - 3/2 \) or \(\alpha(\infty) - 1 \), \(B(s, t) \) is given asymptotically by the first integral, which can be written as

\[\frac{1}{2\pi i} \int_{C} \frac{\gamma(s') |t|^{\alpha(s')}}{s' - s} ds' \quad , \]
where, again, C is a contour surrounding the cut of $\alpha(s)$ and $\gamma(s)$ from 4 to ∞. By the Cauchy theorem, this is precisely $\gamma(s) \left| t \right|^\alpha(s)$; i.e., we have shown

$$B(s, t) \approx A_u(s, t) + \left| t \right| \max \left[\alpha(\infty) - 1, \alpha(4) - 3/2 \right]$$

when t tends to $-\infty$. We rewrite Eq. (7c) as

$$\Delta \phi_\ell^{(2)}(t) = \frac{4}{2\pi i} \int_{\Gamma_1} Q_\ell \left(\frac{2s}{4 - t - i\varepsilon} - l \right) B(s, t) \frac{ds}{(4 - t)^{\ell+1}}$$

where the contour Γ_1 has to surround the cut of $B(s, t)$ from $s_1(t)$ to $s_2(t)$ and must avoid the cuts of the Legendre functions. The Legendre function has two logarithmic singular points at $s = 0$ and $s = 4 - t - i\varepsilon$, and it is customary to join these two points to $s = -\infty$ by a common cut as shown in Fig. 6. As for the contour Γ_1, we shall choose it as shown in Fig. 6 by making it go from $+\infty$ and back by turning around $s = 4$.

To find the asymptotic behavior of $\Delta \phi_\ell^{(2)}(t)$, we proceed by the following steps:

(a) Make the conformal transformation from s to $\alpha(s)$ (See Fig. 7).

(b) Split the Q_ℓ cut into its two component cuts from $\alpha(\infty)$ to $\alpha(4 - t)$ and from $\alpha(\infty)$ to $\alpha(0)$.

(c) Apply the contour Γ_1 against these cuts.

(d) Deform the cut which goes from $\alpha(\infty)$ to $\alpha(4 - t)$, along with the contour which encloses it, to push the whole pattern as much as possible to the left. One is then led to the situation shown in Fig. 8.

(e) The contour around the cut from $\alpha(\infty)$ to $\alpha(4 - t)$ gives a contribution to $\Delta \phi_\ell^{(2)}$, which behaves asymptotically as $t^{\alpha(\infty)}$; we drop it, keeping only the contour which encloses the cut from $\alpha(\infty)$ to $\alpha(0)$.

(f) Making the conformal transformation from α to s, we see that, asymptotically, $\Delta \phi_{\ell}^{(2)}$ is equal to

$$\Delta \phi_{\ell}^{(2)}(t) = \frac{4}{2\pi i} \int_{\Gamma_2} Q_{\ell}(4 - t - i\epsilon - 1) B(s, t) \frac{ds}{(4 - t)^{\ell+1}}, \quad (24)$$

where Γ_2 encloses the cut of the Legendre function from $s = -\infty$ to $s = 0$, as shown in Fig. 9. Therefore, taking Eqs. (10) and (22) into account, we get

$$\Delta \phi_{\ell}^{(2)}(t) = \Re \frac{4}{2\pi i} \int_{\Gamma_2} Q_{\ell}(4 - t - i\epsilon - 1) B(s, t) \frac{ds}{(4 - t)^{\ell+1}}. \quad (25)$$

To find the discontinuity of the Legendre function along the cut of interest one uses Eq. (13), which gives the discontinuity of Q_{ℓ} across the other cut, one also uses

$$Q_{\ell}(-z) = i e^{\mp 2\pi i} Q_{\ell}(z) \quad (26a)$$

and

$$P_{\ell}(-z) = e^{\mp 2\pi i} P_{\ell}(z) - \frac{2}{\pi} \sin \pi \ell Q_{\ell}(z), \quad (26b)$$

where Eq. (26a) gives the discontinuity across the merged cuts and (26b) serves to evaluate the right-hand member of Eq. (13). Finally, we have

$$\Delta \phi_{\ell}^{(2)}(t) = \cos \ell \pi \int_{-\infty}^{0} P_{\ell}(1 - \frac{2s}{4 - t}) A_u(s, t) \frac{ds}{(4 - t)^{\ell+1}} + \left[t \alpha(\infty) - \ell - 1 \right]. \quad (27)$$

VII.

Let us now summarize the asymptotic values of the discontinuities when due care is taken of both the s and u Regge poles. This leads to

$$\Im \phi_{\ell}(t) = \int_{-\infty}^{0} P_{\ell}(1 + \frac{2s}{t - 4}) A_u(s, t) \frac{ds}{(t - 4)^{\ell+1}} + \left[t \alpha(\infty) - \ell - 1 \right]. \quad (28a)$$
and
\[\Delta \phi_\ell(t) = 2 \cos \ell \pi \int_{-\infty}^{0} P_\ell \left(1 - \frac{2s}{4 - t} \right) A_u(s, t) \frac{ds}{(4 - t)^{\ell+1}} \]

\[-2 \sin \ell \pi \Re \int_{-\infty}^{0} P_\ell \left(1 - \frac{2s}{4 - t} \right) A(s, t) \frac{ds}{(4 - t)^{\ell+1}} + 0 \left[|t|^{\alpha(\infty) - \ell - 1} \right]. \]

Replacing the Legendre function by its limit (equal to 1 when \(t \) tends to infinity), we get the less accurate result

\[\Im \phi_\ell(t) = \int_{0}^{\infty} A_t(s, t) \frac{ds}{(4 - t)^{\ell+1}} + 0 \left[|t|^{\alpha(0) - \ell - 2} \right] \]

(29a)

and

\[\Delta \phi_\ell(t) = 2 \cos \ell \pi \int_{0}^{\infty} A_u(s, t) \frac{ds}{(4 - t)^{\ell+1}} - 2 \sin \ell \pi \]

\[\times \int_{0}^{\infty} \Re A(s, t) \frac{ds}{(4 - t)^{\ell+1}} + 0 \left[|t|^{\alpha(0) - \ell - 2} \right]. \]

(29b)

It is now obvious that both discontinuities behave as \(t^{\alpha(0) - \ell - 1} \), up to logarithmic factors, and that they are both damped without oscillations.

In fact, it is clear that the same method may be applied directly to the Froissart formula [Eq. (3)] and that the whole function \(\phi_\ell(t) \) itself behaves as \(t^{\alpha(0) - \ell - 1} \) when \(|t| \) tends to infinity.

VIII.

An important application of Eqs. (29) is to show that all dispersion relations for physical partial-wave amplitudes can be written without any subtraction. In fact, as can be seen from the Froissart theorem, one has \(\alpha(0) < 1 \), so that it is clear that both integrals in the dispersion relation (5) converge when \(\ell > 0 \).

The case of \(\ell = 0 \) has to be treated more carefully. Actually, an
immediate consequence of Eqs. (29) is

\[\text{Im} \phi_0(t) - \Delta \phi_0(t) = O(|t|^{-1}) \]

(30)

when we have \(t \to \infty \). Therefore, if we write the dispersion relation in the form

\[\phi_0(t) = \frac{1}{\pi} \int_0^\infty \left\{ \frac{\text{Im} \phi_0(t')}{t' - t} - \frac{\Delta \phi_0(-t')}{t' + t} \right\} dt \]

(31)

it is clear that this integral is rapidly convergent.

This result shows that, in fact, calculations involving the exact asymptotic behavior of partial-wave amplitudes will converge more rapidly than calculations where the left-hand cut contribution is cut off.

Another application demonstrates the relevance of partial-wave asymptotic behavior in the discussion of angular-momentum cuts. One can easily show, by introducing the asymptotic behavior

\[A_t(s, t) \sim \beta(s) \, t^{\alpha(s)} \]

(32a)

\[A_u(s, t) \sim \beta(s) \, t^{\alpha(s)} \]

(32b)

and

\[\text{Re} \, A(s, t) \sim \beta(s) \, t^{\alpha(s)} \frac{(1 + \cos \pi \alpha)}{\sin \pi \alpha} \]

(33b)

into Eqs. (28), and then introducing the discontinuities into the dispersion relation Eq. (5), that each of the dispersion integrals in Eq. (5) is an analytic function of \(\ell \) with a cut going from \(\ell = -\infty \) to \(\ell = \alpha(0) - 1 \). However, if we examine the singularity at \(\alpha(0) - 1 \), using Eqs. (32), we find that the singularity is cancelled if both dispersion integrals are considered together. This is another example where a correct account of the left-hand cut discontinuity at infinity gives much better results than a cutoff.
ACKNOWLEDGMENT

I thank Professor G. F. Chew for stimulating discussion during the course of this work. I also thank Dr. D. L. Judd for his hospitality.

This work was performed under the auspices of the U. S. Atomic Energy Commission.
REFERENCES

5. S. Mandelstam, unpublished.
7. See G. F. Chew, Lectures on Strong Interactions Theory, Conferences at the Department of Applied Mathematics and Theoretical Physics, University of Cambridge, England, 1963 (see also reference 9).
FIGURE CAPTIONS

Fig. 1. Bound of the integral for $\Delta \phi^{(2)}_t$.

Fig. 2. Image of the cut s plane by the $\alpha(s)$ conformal transformation.

Fig. 3. Singularities of the integrand in Eq. (11).

Fig. 4. Deformation of a contour leading to the asymptotic behavior of $\text{Im} \phi_t(t)$.

Fig. 5. Deformation of contour for $\Delta \phi^{(1)}_t$.

Fig. 6. Singularities of the integrand for $\Delta \phi^{(2)}_t$, s plane.

Fig. 7. Singularities of the integrand for $\Delta \phi^{(2)}_t$, α plane.

Fig. 8. Deformation of cuts and contours for $\Delta \phi^{(2)}_t$, α plane.

Fig. 9. Deformation of cuts and contours for $\Delta \phi^{(2)}_t$, s plane.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 8

\[\alpha(0) \]

\[\alpha(4-t-i\epsilon) \]
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.