Title
PRESSURE-DEPENDENCE OF THE CU MAGNETIC ORDER IN RBA2CU3O6+X

Permalink
https://escholarship.org/uc/item/7914755g

Journal
PHYSICAL REVIEW B, 40(7)

ISSN
0163-1829

Authors
LYNN, JW
LI, WH
TREVINO, SF
et al.

Publication Date
1989-09-01

DOI
10.1103/PhysRevB.40.5172

License
CC BY 4.0

Peer reviewed
Pressure dependence of the Cu magnetic order in R\(\text{Ba}_2\text{Cu}_3\text{O}_{6+x}\)

J. W. Lynn and W-H. Li

Center for Superconductivity Research, Department of Physics, University of Maryland, College Park, Maryland 20742
and National Institute of Standards and Technology, Gaithersburg, Maryland 20899

S. F. Trevino

Energetics and Warheads Division, Army Research Development and Engineering Center, Picatinny, New Jersey 07806
and Reactor Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

Z. Fisk

MS-K764, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
(Received 22 May 1989)

Neutron-diffraction measurements have been carried out as a function of hydrostatic pressure to study the magnetic order of the Cu spins in \(\text{NdBa}_2\text{Cu}_3\text{O}_{6.35}\) and \(\text{NdBa}_2\text{Cu}_3\text{O}_{6.5}\). In the high-temperature phase, where the Cu planes order antiferromagnetically, we find that the \(T_N\) temperature is very strongly dependent on pressure, increasing at the rate of \(\sim 23\) \(\text{K/kbar}\). We attribute this phenomenon to the two-dimensional-like behavior of this magnetic system.

In the low-temperature phase, which is associated with magnetic ordering of the chains, only a small change in the ordering temperature \(T_{N2}\) is observed.

The magnetic properties of the superconducting oxides have been of particular interest since it was discovered that there is an antiferromagnetic phase at small \(x\) for both the \(L_2-x\text{Sr}_{x}\text{CuO}_4\) (Ref. 1) and \(R\text{Ba}_2\text{Cu}_3\text{O}_{6+x}\) (Refs. 2 and 3) systems, which is in close proximity to the superconducting regime of the phase diagram at larger \(x\).

The energy scale for magnetic fluctuations is an order of magnitude larger than for the phonons, and these fluctuations persist into the superconducting phase.

We have been studying the magnetic ordering of the Cu spins in the semiconducting phase of \(\text{NdBa}_2\text{Cu}_3\text{O}_{6+x}\), and have found that the paramagnetic-antiferromagnetic ordering temperature is extraordinarily sensitive to pressure.

The crystals which we have studied have the compositions \(\text{NdBa}_2\text{Cu}_3\text{O}_{6.1}\) and \(\text{NdBa}_2\text{Cu}_3\text{O}_{6.35}\), and weighed 50 and 9 mg, respectively. These samples have been investigated thoroughly in the absence of applied pressure, and we summarize the magnetic behavior as follows. There are three Cu layers per chemical unit cell as indicated in Fig. 1. Two layers are fully oxygenated (the Cu-O_2 plane layers), while in the third layer (the chain layer) the oxygen content \(x\) can be varied from zero to one, which affects the magnetic and superconducting properties as shown in Fig. 1. On cooling from the high-temperature paramagnetic state, the Cu moments in the Cu-O_2 plane layers order antiferromagnetically \((TN)\) at small \(x\), with a simple spin configuration (inset to Fig. 1). Nearest-neighbor spins within a Cu layer are aligned antiparallel, and the spin direction is that of the \(a-b\) plane. This structure gives rise to magnetic Bragg peaks of the type \((h/2, k/2, l/2)\), and a sketch of the temperature dependence of the intensity of these peaks is also indicated in the figure (solid curve). At lower temperatures the intensity is seen to decrease rapidly toward zero. This decrease is associated with ordering of the Cu chain-layer spins, and gives rise to new magnetic Bragg peaks of the type \((h/2, k/2, l/2)\) below \(T_{N2}\) (dotted curve). We remark that the antiferromagnetic plane ordering \((T_N)\) and the superconducting phase boundaries as a function of \(x\) are well established.

The region where the chain ordering has been observed is also shown, although it should be noted that this ordering is not controlled simply by the oxygen content \(x\). For the present samples we have \(T_{N1} = 430\) K and \(T_{N2} = 80\) K for the \(\text{NdBa}_2\text{Cu}_3\text{O}_{6.1}\) crystal, and \(T_{N1} = 230\) K and \(T_{N2} = 10\) K for the \(\text{NdBa}_2\text{Cu}_3\text{O}_{6.35}\) crystal.

The neutron scattering measurements were carried out at the National Institute of Standards and Technology (formerly National Bureau of Standards) research reac-

![FIG. 1. Shown on the left side is a schematic of the phase diagram as a function of oxygen concentration for \(R\text{Ba}_2\text{Cu}_3\text{O}_{6+x}\), with the superconducting (S) and antiferromagnetic (AF) phases indicated. A sketch of the magnetic Bragg intensity for the \((h/2, k/2, l)\)-type antiferromagnetic peaks (solid curve) and the \((h/2, k/2, l/2)\)-type peaks (dotted curve) is shown on the right-hand side. The inset shows the spin configuration in the high-temperature phase. The large circles represent Cu ions in the plane layers, and the small circles represent Cu ions in the chain layer. The spin direction is in the \(a-b\) tetragonal plane.](image-url)
The familiar instrumental setup of pyrolytic graphite monochromator and filter, and a neutron wavelength of 2.346 Å, was employed. The single-crystal samples were placed into an aluminum pressure cell, which was mounted in either a flow-type cryostat, or a furnace. Pressure was applied hydrostatically using helium gas as a medium.

The temperature dependence of the magnetic intensity of the $(\frac{1}{2} \frac{1}{2} 0)$ Bragg peak for the NdBa$_2$Cu$_3$O$_{6.35}$ crystal is shown in Fig. 2 at a series of pressures. At zero pressure the ordering temperature is 230 K, as already noted. With increasing pressure the curves are seen to shift rapidly to higher temperatures, indicating that the ordering temperature T_{N1} is increasing. In this temperature regime the intensity is approximately linearly dependent on temperature as indicated in Fig. 1, and to obtain an estimate of T_{N1} we have simply done a least-squares fit of a straight line to the data (solid curves).

The transition temperatures which have been obtained from these fits are shown in Fig. 3 as a function of pressure. Up to 4 kbar T_{N1} increases approximately linearly with pressure at the rate of (23 ± 3) K/kbar. This rate of increase is more than 2 orders of magnitude higher than the rate of 0.05 K/kbar observed for the superconducting transition temperature T_C for YBa$_2$Cu$_3$O$_7$. The behavior for the La$_2$CuO$_4$ system, on the other hand, is just the opposite of RBa$_2$Cu$_3$O$_{6+x}$. The Néel temperature has been found to be approximately independent of pressure up to ~ 5 kbar, and then to decrease slowly with a further increase of P, while the superconducting transition temperature shows a relatively strong increase with pressure.

Figure 4 shows some of the results obtained on the NdBa$_2$Cu$_3$O$_{6.1}$ sample. The top portion gives the pressure dependence of the intensity of the $(\frac{1}{2} \frac{1}{2} 0)$ peak at a fixed temperature of 260 K. The strength of the scattering rapidly increases at low pressure, and then saturates at ~ 2.5 kbar. We believe that this saturation effect only signifies that the order parameter has achieved its full value, and not that T_{N1} is no longer shifting with pressure. Unfortunately, this cannot be checked directly, as the pressure cell failed at higher temperatures, and the sample
was lost. We can, however, make an estimate of the initial
\(dT_{N1}/dP \) by assuming that the initial increase in intensity
corresponds to a shift in the order-parameter curve analogous
to the shift shown in Fig. 2. This yields a value
\(dT_{N1}/dP \approx 78 \text{ K/kbar} \), a value which is consistent with
the isobaric data we obtained below 300 K. Even though
this is a crude estimate, it serves to demonstrate that there
is a large effect of pressure on \(T_{N1} \) in both samples.

The pressure dependence of the Bragg scattering associated
with the lower transition \(T_{N2} \), which is where the Cu
chain spins order, is shown in the bottom portion of Fig. 4.
There is a small increase in the maximum value of the
temperature, but there is very little shift in \(T_{N2} \). We believe
that this weak pressure dependence is representative of the
fact that when the chain ions order, then the spacing
between the Cu ions in the \(a, b, \) and \(c \) directions is about
equal and we have a fully three-dimensional (3D) magnetic
structure with simple antiferromagnetic nearest-neighbor
interactions, in contrast to the situation at \(T_{N1} \) as discussed below. At \(T_{N2} \) the magnitude of the pressure
effect is typical of 3D phase transitions.\(^{15}\)

The Néel temperature \(T_{N1} \) is known to be quite sensitive
to the oxygen concentration as shown in Fig. 1, so that the
pressure effect we see might be explained by the removal
of oxygen from the sample. However, below room
temperature the oxygen will not reenter the sample, and we
find no evidence for any irreversible effects in our data.
Therefore, we discard this as a possibility. We have also
measured the pressure dependence of the lattice parameters,
and find a smooth decrease of \(\approx 0.03\%/\text{kbar} \), which
translates into a compressibility of \(7.5 \times 10^{-13} \text{ Pa}^{-1} \). We
don't detect any anomalies or abrupt changes in the lattice over
the pressure range explored.

The most likely explanation for the strong pressure sensitivity
of \(T_{N1} \) is in terms of the large magnetic anisotropy and
competing exchange interactions which are present when the
Cu chain spins are disordered in the \(\text{RBa}_2\text{Cu}_3\text{O}_6+x \) system. The magnetic exchange interaction
\(J \) within the \(\text{Cu}_2\text{O}_2 \) layers is very large, and thus in
the vicinity of \(T_{N1} \) there are very strong magnetic correlations
within the \(\text{Cu}_2\text{O}_2 \) planes. Hence, we have 2D-like magnetic behavior, with the preferred spin direction in the
tetragonal plane, and since there is no 2D long-range order\(^{5}\) above \(T_{N1} \), an \(x-y \) model (with algebraic decay of the
correlations) should be appropriate (recall that an Ising
model orders in 2D). The 3D phase transition is then
driven by the weak effective interaction \(J' \) between layers.\(^{16}\)
Since the in-plane exchange \(J \) is already very large,
it is likely that \(J' \) is near a maximum versus ionic separation
and thus will not be particularly sensitive to pressure.
On the other hand, the effective interaction \(J' \), which is
mediated through the spin-disordered Cu chain layer, results
from an overlap of wave functions on ions which are
well separated. The overlap integral should then depend
exponentially on separation, and a substantial increase in
\(J' \) with pressure can be expected. If this is indeed the
case, then \(T_{N1} \) should have a much stronger dependence
on stress applied along the tetragonal \(c \) axis than for stress
applied in the \(a-b \) direction, and measurements of this
type are planned. In addition, there is a calculation\(^{17}\) that
the spin-wave fluctuations gives \(T_{N1} \approx Jn^{-1}(J/J') \) for large
\(J/J' \). which would yield a linear dependence of \(T_{N1} \) on \(P \)
as observed. However, \(T_{N1} \) would be a weak function of
\(J/J' \) and hence this scenario would then require a large
change in \(J' \) to explain the data. Such a large change
could be the result of a significant pressure-induced
change in the electronic structure, similar to the change in
\(T_{N1} \) caused by oxygen variation, or it could be due to some
competing interactions caused by the disordered spins on
the chain layers.\(^{3}\)

Note that the effective interaction between the plane layers which is mediated through the chain layer is quite different depending on whether or not the chain layer is ordered. Below \(T_{N2} \) the plane layers adjacent to the chains (next nearest neighbors) are aligned ferromagnetically, while above \(T_{N2} \) they are aligned antiferromagnetically. It would be interesting in this regard to determine if such a strong pressure sensitivity is observed in \(\text{RBa}_2\text{Cu}_3\text{O}_6+x \) samples which do not exhibit chain ordering at low temperatures.

A second possibility is that the anisotropy within the
plane increases with pressure, which would increase the
in-plane correlations and eventually produce a phase transition
with long-range order in two dimensions.\(^{18}\) Indeed,
if there were a tendency for pressure to cause an orthorhombic distortion, for example, then the magnetic behavior
of the layers would cross over to a 2D Ising system (with long-range order), and \(T_{N1} \) could increase dramatically. However, so far we have found no indication experimentally of an orthorhombic distortion.

Finally, we note that in the case of \(\text{La}_2\text{Cu}_4\text{O}_7 \)-type systems
the magnetic structure is such that there is an approximate
cancellation of nearest-neighbor interactions between planes, and therefore the effective interplanar interaction is controlled more by the magnitude of the orthorhombic distortion, rather than \(J' \) itself. In the \(\text{RBa}_2\text{Cu}_3\text{O}_6+x \) system, no such cancellation is present.

We would like to thank T. L. Einstein, R. A. Ferrell, M. E. Fisher, V. Korenman, and R. E. Prange for helpful discussions, and W. B. Daniels for his advice and assistance with the pressure cell. The research at the University of Maryland was supported by the National Science Foundation, Grant No. DMR 86-20269, and at Los Alamos National Laboratory by the U.S. Department of Energy.

4A review of both theory and experiment which pertain to the oxide superconductors is given in *High Temperature Superconductivity*, edited by J. W. Lynn (Springer-Verlag, New York, 1989).

10Over this limited temperature range, and with the statistical accuracy available, we felt that trying to fit a power law to the data in order to extract the critical exponent β was unjustified. We do not expect β to change significantly with pressure.

11See, for example, T. Kaneko, H. Yoshida, S. Abe, H. Morita, K. Noto, and H. Fujimori, Jpn. J. Appl. Phys. 26, L1374 (1987). According to the theory of M. Cyrot [Solid State Commun. 62, 821 (1987)], we should expect \(dT_N/dP = (\frac{3}{2})CT_N^{1.1} \sim 0.1 \text{ K/kbar}. \)

12R. A. Ferrell (private communication).

13For results and discussion on 2D systems, see, for example, R. J. Birgeneau, H. J. Guggenheim, and G. Shirane, Phys. Rev. B 1, 2211 (1970).