Lawrence Berkeley National Laboratory
Recent Work

Title
FLUCTUATIONS OF NUCLEAR CROSS SECTION IN THE "CONTINUUM" REGION

Permalink
https://escholarship.org/uc/item/79b8270c

Author
Ericson, Torleif.

Publication Date
1960-07-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California
Contract No. W-7405-eng-48

FLUCTUATIONS OF NUCLEAR CROSS SECTIONS IN THE "CONTINUUM" REGION

Torleif Ericson

July, 1960
The assumption that the matrix elements of the compound nucleus are randomly distributed with respect to phase and magnitude has in recent years been very successful for the understanding of the fluctuations of the partial widths and the distribution of the level spacings of slow-neutron resonances.¹⁻³

The purpose of this note is to examine the nontrivial consequences of this assumption in the so-called "continuum" region, in which the compound states overlap owing to the short lifetime of the compound nucleus. It is shown that (1) cross sections fluctuate in that region even though a large number of intermediate states are excited, (2) the formation and decay of the compound nucleus are independent only on the average and, (3) the fluctuations can be used to determine the lifetime of the compound nucleus in the "continuum" region.

Consider the compound-nucleus reaction proceeding from the initial state |α⟩ -- i.e., the target nucleus and the incident wave-- to the final state |α'⟩, a particular state of the final nucleus and the corresponding emitted wave. We assume the experiment to be performed with infinitely good energy resolution in the incident beam. The scattering matrix $S_{α'α}$ can be divided into two parts, one, $S_{α}$, leading into the compound nucleus, and one, $S_{α'}$, leading out of the compound nucleus. The intermediate compound states |i⟩

* This work was done under the auspices of the U. S. Atomic Energy Commission.
† Submitted to the Physical Review Letters.
‡ Present address: CERN, Geneva, Switzerland, on leave from the Institute of Theoretical Physics, Lund, Sweden.
of energy E_1 are excited with probability amplitudes $f(E,E_1)$ which are approximately of the Lorentzian type

$$|f(E,E_1)|^2 \propto \frac{1}{(E-E_1)^2 + \Gamma^2/4}. \quad (1)$$

The "width" Γ is related to the lifetime of the compound nucleus by $\Gamma = \lambda /\hbar$ by the uncertainty principle. Equation (1) expresses that the compound states within a region of the order of Γ are excited simultaneously and must be treated coherently; we therefore call Γ the coherence energy. The reaction cross section $\sigma_{\alpha\alpha'}$ can be written

$$\sigma_{\alpha\alpha'} \propto \left| \sum_i \langle \alpha | S_{\alpha'} i \rangle \langle i | S_{\alpha} | \alpha' \rangle \right|^2. \quad (2)$$

The matrix elements $\langle \alpha | S_{\alpha'} i \rangle$ and $\langle i | S_{\alpha} | \alpha' \rangle$, and consequently their product, have random phases. If the coherence energy Γ encompasses a large number of intermediate states $|i\rangle$, the sum in Eq. (2) consists of a large number of terms of random phases and becomes a random number, the real and imaginary part of which have Gaussian distributions. Therefore, if transitions to different final states are compared under otherwise identical conditions, the transition-matrix elements are independently random, because the factors $\langle i | S_{\alpha} | \alpha' \rangle$ are uncorrelated and have uncorrelated phases. The partial cross sections $\sigma_{\alpha\alpha'}$ therefore fluctuate essentially like neutron widths in spite of the large number of compound states excited.

Furthermore, intermediate states $|i\rangle$ are excited essentially only within the coherence energy Γ. If the incident energy is changed by an amount much larger than Γ, the intermediate states are entirely different. The matrix element, thus the cross section, is different from its previous value, in general. On the other hand, if the energy change is small compared with Γ, essentially the same states are excited; the matrix element and cross section
are practically unchanged. Therefore we conclude that a partial reaction cross section will fluctuate as a function of incident energy with a typical period of the order of the coherence energy Γ. Because Γ is directly related to the compound nucleus lifetime, these fluctuations, in principle, provide a means for measuring the extremely short lifetimes of highly excited nuclei.

We point out that the usual statement of independence of formation and decay of the compound nucleus is not valid in this type of experiment: the fluctuations do not occur at the same excitation energy, if the same compound nucleus is formed by different means. In the "continuum" region this independence is a consequence of averaging over many residual states, or over an energy interval much larger than the coherence energy.

A more exact discussion should include angular momentum. The main results remain unchanged. For the partial total cross sections, states of opposite parity contribute independently, slightly reducing the amplitude of the fluctuations. The partial angular distribution and polarization fluctuate as functions of the incident energy over energy regions of the order of Γ.

The total reaction cross section is usually a sum of a large number of fluctuating partial cross sections, $\sigma_{\text{partial}}\cdot\delta\omega$, and it will therefore usually have fluctuations of small amplitude only. When only few exit channels are available, the fluctuations are appreciable and occur also in the total cross section. Fluctuations in the total cross section have been observed by Cranberg with high-resolution neutrons on Ti and Fe. At 2.5-Mev incident neutron energy and 2-kev resolution the total cross section exhibits a fine structure, which, for Fe, has a half-width of 5 kev, corresponding to an approximate lifetime of 10^{-18} sec. The expected spacing of levels of spin $1/2$ is indicated to be of the order of a few kev by slow-neutron resonances; the spacings of all excited states are considerably smaller.
REFERENCES

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.