MODE SOFTENING AND HIGH SUPERCONDUCTING TRANSITION-TEMPERATURE IN SOME A-15 COMPOUNDS

https://escholarship.org/uc/item/79c02921

FERROELECTRICS, 16(1-4)

0015-0193

KNAPP, GS
BADER, SD
FISK, Z

1977

10.1080/00150197708237174

CC BY 4.0

Peer reviewed
MODE SOFTENING AND HIGH SUPERCONDUCTING TRANSITION TEMPERATURE IN SOME A-15 COMPOUNDS†

G. S. KNAPP and S. D. BADER

Argonne National Laboratory, Argonne, Illinois 60439

and

Z. FISK‡

University of California, San Diego, California

(Received December 3, 1975)

The electronic density of states at the Fermi level, $N(E_F)$, and the geometric mean phonon frequencies, ω_p, were determined from heat-capacity data for a number of A-15 superconductors. Although ω_p is an appropriate average phonon parameter for evaluating McMillan's expression for λ, we found that the T_c values cannot be reliably estimated using ω_p. There are, however, strong correlations between λ, $N(E_F)$ and the temperature dependence of ω_p, $d\ln \omega_p/dT$. The high-T_c, high-$N(E_F)$ materials V_3Si and V_3Ga show the largest phonon-mode softening on cooling. We propose that, for the higher-$N(E_F)$ materials, particular phonon-modes strongly couple to the electronic system and enhance T_c to a greater extent than average phonon properties would indicate.

The high-T_c A-15 superconductors have anomalous electronic and phonon properties. In earlier papers, we analyzed heat-capacity data on A-15 compounds, to determine certain average electronic and phonon properties relevant to superconductivity. In this paper, we present data on an additional compound, Nb$_3$Sn$_{0.7}$Sb$_{0.3}$. With the new data we show that there are correlations between the electron-phonon mass enhancement, λ, and the electronic density of states at the Fermi level, $N(E_F)$. There is also a correlation between the temperature dependence of the geometric mean phonon-mode frequency and $N(E_F)$. We explain these correlations by suggesting that a relatively small number of phonon-modes strongly couple to the electronic system and selectively soften because of electronic screening effects, which in turn depend strongly on $N(E_F)$.

The sample of Nb$_3$Sn$_{0.7}$Sb$_{0.3}$ was prepared in the same manner as Nb$_3$Sn. Its T_c value was 14.9 K and metallurgical analysis showed that it was 85-90% single phase. The heat capacity was measured over temperature range of 2-400 K. The electronic density of states at the Fermi level can be determined from the low-temperature heat-capacity data. The higher-temperature entropy can be analyzed to determine the geometric mean frequency,

$$\omega_p = \left[\frac{3N}{\sum \omega_p^3} \right]^{1/3}$$

and its temperature dependence. In Figure 1 we display the ω_p values for all samples, as effective Debye temperatures $\theta \equiv e^{1/3}h\omega_p/k_B$. Note that the high-$T_c$ vanadium compounds show large temperature dependencies of θ, indicating that there is considerable phonon-mode softening with decreasing temperature.

To test whether the differences in ω_p (at $T = T_c$) can account for the different T_c values, we obtained λ-values from McMillan's expression for T_c and related ω_p to λ by the usual expression $\lambda = N\langle t^2 \rangle/M\omega_p^2$, where $\langle t^2 \rangle$ is the average electron-phonon coupling parameter and M is the gram atomic weight. This is clearly not the case for these A-15 compounds, as can be seen in Table I, and the differences in T_c must be caused by differences in $N\langle t^2 \rangle$. In Figure 2(a), we plot λ vs. $N(E_F)$ for all compounds. Note that for the V_3X compounds, λ is approximately linearly related to $N(E_F)$ when $N(E_F)$

† Work supported by the US Energy Research and Development Administration.
‡ Work supported by the Air Force Office of Scientific Research Contract AFOSR/F44620-C/0017.
is greater than 2 states/eV-atom, whereas it is not clear whether this is true for the Nb$_3$X compounds. In Figure 2(b), the normalized slope of \(\omega_g \), \((A/3R) \equiv -(1/\omega_g)(\partial \omega_g/\partial T)\), is plotted vs. \(N(E_F)\), where \(R\) is gas constant. Within experimental error, there is a linear relationship between \(A\) and \(N(E_F)\) for all compounds.

The relationship between \(\lambda\), \((NE_F)\), and \((1/\omega_g)\) \((\partial \omega_g/\partial T)\) and the lack of correlation between \(Mg^2\) and \(\lambda\) can be explained if we postulate that a relatively small number of modes are strongly coupled to the electronic system. Then, these modes can dominate the magnitude of \(\lambda\), while the softening will affect

![Graph showing temperature dependence of effective Debye temperature associated with geometric mean phonon-mode frequencies for indicated compounds.](image)

FIGURE 1 The temperature dependence of the effective Debye temperature associated with the geometric mean phonon-mode frequencies for the indicated compounds.

![Graph showing electron-phonon mass enhancement and phonon frequency shift parameter as functions of \(N(E_F)\).](image)

FIGURE 2 The electron-phonon mass enhancement [Figure 2(a)] and the phonon frequency shift parameter [Figure 2(b)] as functions of \(N(E_F)\).

\(Mg^2\) much less dramatically. Therefore, \(N(I^2) \equiv \lambda Mg^2\) is not expected to be constant. For the Nb$_3$X compounds, since \(N(E_F)\) is lower than for the V$_3$X compounds, the contribution to \(\lambda\) from particular modes will not dominate \(\lambda\). Therefore, we would expect that \(N(I^2)\), as obtained from \(\lambda Mg^2\), would be more constant for these materials. From Table I it is clear that for the Nb$_3$X compounds, the \(N(I^2)\) values are quite constant, except for Nb$_3$Sb, which,

<table>
<thead>
<tr>
<th>Compounds</th>
<th>(T_c)(K)</th>
<th>(N(E_F)) (^a)</th>
<th>(\lambda)</th>
<th>(Mg^2) (\frac{\text{eV}}{\AA^2})</th>
<th>(N(I^2)) (\frac{\text{eV}}{\AA^2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb$_3$Al</td>
<td>18.5</td>
<td>1.6</td>
<td>1.07</td>
<td>7.82</td>
<td>8.4</td>
</tr>
<tr>
<td>Nb$_3$Sn</td>
<td>17.9</td>
<td>2.4</td>
<td>1.17</td>
<td>7.18</td>
<td>8.4</td>
</tr>
<tr>
<td>Nb3Sn${0.7}$Sb$_{0.3}$</td>
<td>14.9</td>
<td>1.5</td>
<td>1.0</td>
<td>8.17</td>
<td>8.2</td>
</tr>
<tr>
<td>Nb$_3$Sb</td>
<td>0.2</td>
<td>0.4</td>
<td>0.3</td>
<td>10.85</td>
<td>3.3</td>
</tr>
<tr>
<td>V$_3$Si</td>
<td>16.5</td>
<td>3.8</td>
<td>0.86</td>
<td>8.61</td>
<td>7.4</td>
</tr>
<tr>
<td>V$_3$Ga</td>
<td>14.3</td>
<td>4.8</td>
<td>0.91</td>
<td>6.43</td>
<td>5.9</td>
</tr>
<tr>
<td>V3Ga${0.5}$Sn$_{0.5}$</td>
<td>5.6</td>
<td>2.7</td>
<td>0.62</td>
<td>7.30</td>
<td>4.5</td>
</tr>
<tr>
<td>V$_3$Sn</td>
<td>3.8</td>
<td>2.7</td>
<td>0.56</td>
<td>8.14</td>
<td>4.6</td>
</tr>
</tbody>
</table>

\(^a\) In units of states/eV-atom.
because of its low $N(E_F)$, can hardly be classified a transition-metal superconductor.5

The correlation of $(1/\omega_p)(d\omega_p/dT)$ with $N(E_F)$ is another manifestation of strong selective electronic screening. The high $N(E_F)$ can cause the frequencies of certain phonon modes to decrease significantly. These frequencies can be temperature dependent for two reasons. First, electronic screening could cause the effective second-order term in the phonon potential energy to be reduced relative to the third- and fourth-order terms. This reduction enhances the anharmonicity as measured by A. Second, electronic screening, by near-Fermi-energy electronic states, will be quite temperature dependent because of sharp structure in $N(E)$ near E_F. If the same percentage of the modes shows this anomalous screening, for all of the compounds, then the correlation between A and $N(E_F)$ is explained.

REFERENCES