Title
A Longitudinal HbA1c Model Elucidates Genes Linked to Disease Progression on Metformin

Permalink
https://escholarship.org/uc/item/79z8d23d

Authors
Goswami, S
Yee, SW
Xu, F
et al.

Publication Date
2016-11-01

DOI
10.1002/cpt.428

Peer reviewed
One-third of type-2 diabetic patients respond poorly to metformin. Despite extensive research, the impact of genetic and nongenetic factors on long-term outcome is unknown. In this study we combine nonlinear mixed effect modeling with computational genetic methodologies to identify predictors of long-term response. In all, 1,056 patients contributed their genetic, demographic, and long-term HbA1c data. The top nine variants (of 12,000 variants in 267 candidate genes) accounted for approximately one-third of the variability in the disease progression parameter. Average serum creatinine level, age, and weight were determinants of symptomatic response; however, explaining negligible variability. Two single nucleotide polymorphisms (SNPs) in CSMD1 gene (rs2617102, rs2954625) and one SNP in a pharmacologically relevant SLC22A2 gene (rs316009) influenced disease progression, with minor alleles leading to less and more favorable outcomes, respectively. Overall, our study highlights the influence of genetic factors on long-term HbA1c response and provides a computational model, which when validated, may be used to individualize treatment.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Previous studies have focused on the effect of genetic polymorphisms in candidate genes on short-term changes in metformin response. Additionally, studies have developed computational models to capture short-term pharmacodynamic changes without consideration of long-term disease progression.

WHAT QUESTION DID THIS STUDY ADDRESS?
In this study we combined quantitative pharmacology with computational genetic analysis techniques to investigate the effect of genetic variants in biologically and pharmacologically meaningful genes on long-term disease progression of patients with type 2 diabetes on metformin therapy.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
This study provides evidence that genetic polymorphisms in CSMD1 and membrane transporter gene SLC22A2 are significant influencers of disease progression, affecting the long-term trajectory of HbA1c levels. This study also adds a robust quantitative pharmacology model that predicts long-term changes in HbA1c levels, which if validated, may be used as a valuable tool to predict long-term outcomes for patients.

HOW THIS MIGHT CHANGE CLINICAL PHARMACOLOGY OR TRANSLATIONAL SCIENCE
To date, this is the first study to explore the effect of biologically and pharmacologically relevant genes on long-term disease progression of patients taking metformin. This is also the first study to investigate long-term HbA1c disease trajectories. In the future, combining genotyping of biologically and pharmacologically relevant genes with proper consideration of demographic and clinical predictors may be used to inform metformin therapy in T2D patients.
phenotypes of metformin and fail to address the variable nature of metformin response.2,10–14 One of the largest studies to date, a genome-wide association study on metformin response in individuals from the United Kingdom, identified variants near the Ataxia Telangiectasia Mutated locus associated with the ability to achieve HbA1c below 7% (53 mmol/mol) in the first 18 months of metformin treatment.15 Finally, despite many studies having demonstrated associations between single nucleotide polymorphisms (SNPs) in biologically relevant genes with metformin PK and pharmacodynamics (PD), each variant accounts for only a small fraction of the variation in HbA1c levels.

To date, there have been no studies on the effect of genetic and demographic variables on long-term changes of HbA1c in patients on metformin. These factors may influence the drug’s efficacy or the patient’s underlying disease progression and, once accounted for, may make it easier to detect responders and nonresponders to metformin.16 The traditional approach considers a glycemic HbA1c change from baseline to evaluate the effectiveness of the drug. This approach, however, effectively collapses the time dimension in the data by disregarding the actual trajectory of the biomarker and disease status over time. As a result, this method not only ignores crucial information on disease progression, but also lumps together the short-term effects of a treatment with the long-term effects on the disease.

Longitudinal disease progression analysis allows for a quantitative assessment of drug treatment effect on the time-course of the disease/biomarker. Computational methods use mathematical models to describe or predict changes in the disease status as a function of time.16 These methods allow researchers to understand the role of genes as well as any relevant demographic predictors on specific response curve characteristics (such as disease progression and the long-term dynamics of therapeutic effects). Nonlinear mixed effect analysis (NLME) is a powerful statistical approach used for this longitudinal analysis that effectively enhances the signal-to-noise ratio and enables the utilization of all data points, irrespective of study design.17–19

To date, current mathematical models that capture the time-course of HbA1c in relation to metformin therapy have been limited by small sample sizes and sparse measurements.16,20,21 Furthermore, a comprehensive genetic analysis linking genetic variants to long-term HbA1c trajectories has not yet been performed and, consequently, there is no current knowledge regarding the influence of genetics on long-term HbA1c dynamics.

The aim of this research was to explain the variance in long-term response, linking genes, demographics, and clinical factors to the upward trajectory of HbA1c levels (a marker of disease progression) using a rich, long-term HbA1c dataset from patients on metformin (Figure 1).

RESULTS
Summary of data
Baseline characteristics of patients with T2D are summarized in Table 1. A total of 7,822 HbA1c measurements from 1,056 patients were used to develop a mathematical model of longitudinal HbA1c levels.
reversible (symptomatic) metformin effect was implemented because it was assumed that the drug does not directly impact the disease progression and this structure was supported by the data. The upward trajectory (disease progression) of HbA1c over time was modeled by implementing a separate compartment that represented the HbA1c synthesis rate: $K_{IN}(t)$. Model mechanics and the interplay of disease progression, HbA1c synthesis rate, and $\%HbA1c$ level over time can be viewed in Supplementary Figure 1. In the model structure, K_{IN} was increasing due to disease progression, which is quantified by the disease progression parameter. The disease progression parameter generates a nonlinear increase of K_{IN} over time, especially when the estimate of disease progression is high. A time-dependent increase in the HbA1c synthesis rate captured well the upward HbA1c trajectory observed in the data. In the model, between-subject variability (BSV) was estimated for baseline HbA1c, the magnitude of metformin’s effect (an individual’s specific HbA1c relative change from baseline), and disease progression. The inclusion of a full covariance block for all BSV parameters resulted in a significant improvement in the likelihood ratio. Final selection of the model was based on improvements in the objective function value and visual predictive checks of the longitudinal HbA1c data. Through simulations, the “onset” of disease progression, which is defined by the timepoint at which HbA1c levels start to increase (i.e., an upward slope in HbA1c levels), was investigated. The model predicted that the onset of disease progression for a typical patient on metformin is ~321 days; at which point HbA1c levels increased at a rate of 0.1% (1.1 mmol/mol) (0.07%–0.13%) per year through the first 3 years (Table 2). For patients not on metformin, the model predicts that HbA1c levels would increase at a steady state rate of ~0.16% (1.7 mmol/mol) (0.08%–0.22%) per year. Mathematical model parameters along with clinically derived parameters are summarized in Table 2.

Final demographic/clinical covariate model

As determined by model diagnostics, the demographic-corrected mathematical model adequately described the data (Figure 2). As expected, average serum creatinine level (a likely surrogate for metformin drug exposure) was a significant predictor on MetFEFFECT, with higher levels leading to improved HbA1c response. Through simulations, a typical patient with a 0.6 mg/dL creatinine level is expected to result in a 0.77% (8.4 mmol/mol) HbA1c improvement from baseline (at 2 years), whereas a patient with a 1.3 mg/dL creatinine level is expected to result in a 0.96% improvement in HbA1c (10.5 mmol/mol) from baseline. This response characteristic is anticipated as, pharmacologically, average exposure of metformin is expected to increase by ~20% with a 0.7 mg/dL increase (from 0.6 to 1.3) in serum creatinine level for males and females of age 50.

Additionally, body weight and clinical site were significant covariates on the MetFEFFECT model parameter. Body weight was inversely related to metformin effect, estimated to result in a 6% decrease in metformin’s effect parameter per 10-kg increase in body weight. Clinically, this would result in a 0.99% and 0.80% change in HbA1c (equivalent of 10.8 and 8.7 mmol/mol) from baseline (at 2 years) for patients with body weights of 66 kg and 80 kg.

Table 1 Baseline characteristics of patients with type 2 diabetes

<table>
<thead>
<tr>
<th>Clinical Site</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaiser South East</td>
<td>154 (15%)</td>
</tr>
<tr>
<td>Marshfield Clinic</td>
<td>150 (14%)</td>
</tr>
<tr>
<td>Vanderbilt</td>
<td>251 (24%)</td>
</tr>
<tr>
<td>Kaiser Northern California</td>
<td>501 (47%)</td>
</tr>
<tr>
<td>European Americansa</td>
<td>376 (36%)</td>
</tr>
<tr>
<td>African Americans</td>
<td>665 (63%)</td>
</tr>
<tr>
<td>Asian Americans and Others</td>
<td>15 (1%)</td>
</tr>
<tr>
<td>Continuous Variable</td>
<td>Median (range)</td>
</tr>
<tr>
<td>Age (years)</td>
<td>55 (23–90)</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>96 (34–212)</td>
</tr>
<tr>
<td>Average serum creatinine (mg/dL)</td>
<td>0.91 (0.5–2.0)</td>
</tr>
<tr>
<td>Baseline HbA1c (%)</td>
<td>7.6 (5.6–17.9) (60 mmol/mol</td>
</tr>
<tr>
<td>Metformin daily doseb (mg)</td>
<td>1,000 (200–2,500)</td>
</tr>
<tr>
<td># HbA1c samples/patient</td>
<td>5 (1–45)</td>
</tr>
<tr>
<td>Years on study</td>
<td>1.43 (0.28–13.5)</td>
</tr>
</tbody>
</table>

aEthnicities reported are all self-reported. bThis is the average daily dose of metformin calculated from metformin start day up to the day, where minimum HbA1c levels were achieved between 3–18 months (and before other antidiabetic drug or insulin was added). There was one patient, as noted in the electronic medical record, who had <250 mg average metformin dose due to an early stop of metformin, the model predicts that HbA1c levels would increase at a rate of 0.1% (1.1 mmol/mol) (0.07%–0.13%) per year through the first 3 years (Table 2). For patients not on metformin, the model predicts that HbA1c levels would increase at a steady state rate of ~0.16% (1.7 mmol/mol) (0.08%–0.22%) per year. Mathematical model parameters along with clinically derived parameters are summarized in Table 2.

Of the 7,822 total HbA1c measurements, 2,928 HbA1c samples (37%) were collected after 2 years following metformin initiation across 344 patients (33%). In all, 1,220 HbA1c measurements (15.6%) were collected after 5 years following metformin initiation across 202 patients (19%). A total of 555 HbA1c samples (7%) were collected after 7 years following metformin initiation across 123 patients (12%).

The dataset has a stronger representation of African Americans (63%) compared to European Americans (36%). The average length of time that each patient was under study was 2.78 years (median of 1.43 years, range of 0.28–13.5 years). Mean HbA1c samples provided per patient available for analysis was 7.5 (58 mmol/mol) (median of 5, range of 1–45). Of the 1,056 patients, 1,220 HbA1c measurements (15.6%) were available for 202 patients (19%) 5 years following metformin initiation; 123 patients (12%) 7 years after metformin initiation, and 28 patients (3%) 10 years after. Mathematical model development

A turnover HbA1c model with a reversible metformin effect on the synthesis rate of HbA1c best characterized the data. A
Table 2 Population pharmacodynamic model derived estimates and bootstrap results for model parameters

<table>
<thead>
<tr>
<th>Final model parameter</th>
<th>Median (% RSE)a</th>
<th>Median (90% CI)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline HbA1c Level (%)</td>
<td>7.74 (1)</td>
<td>7.73 (7.6–7.8)</td>
</tr>
<tr>
<td>Half Life of Effect (days)</td>
<td>40.9 (6)</td>
<td>41.2 (36.8–45.7)</td>
</tr>
<tr>
<td>Metformin Effect Magnitude EFF</td>
<td>13.1% (5)</td>
<td>13.0 (12.1–14.4)</td>
</tr>
<tr>
<td>Disease Progression Estimate DISPRc (all patients)</td>
<td>82.2 (67)</td>
<td>75.3 (32.6–249)</td>
</tr>
<tr>
<td>Boxcox transformation parameter on Baseline</td>
<td>2.38 (9)</td>
<td>2.41 (1.99–2.78)</td>
</tr>
<tr>
<td>Boxcox transformation parameter on DISPR</td>
<td>−0.246 (15)</td>
<td>−0.26 (−0.31 to −0.20)</td>
</tr>
<tr>
<td>KLOSS</td>
<td>0.205 (86%)</td>
<td>0.266 (0.05–0.657)</td>
</tr>
<tr>
<td>Between-subject variability (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Between-subject variability (Baseline)</td>
<td>16.9 (3)</td>
<td>16.6 (15.9–17.8)</td>
</tr>
<tr>
<td>Between-subject variability (Metformin Effect Magnitude METFEFF)</td>
<td>76.4 (4)</td>
<td>75.9 (71.7–81.6)</td>
</tr>
<tr>
<td>Between-subject variability (Disease Progression DISPR)</td>
<td>324 (17)</td>
<td>390 (164–418)</td>
</tr>
<tr>
<td>Covariance of parameters (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlation Baseline–METFEFF</td>
<td>0.114 (1)</td>
<td>0.11 (0.101–0.136)</td>
</tr>
<tr>
<td>Correlation Baseline–DISPR</td>
<td>0.033 (3.6)</td>
<td>0.03 (–0.07–0.14)</td>
</tr>
<tr>
<td>Correlation DISPR–METFEFF</td>
<td>0.204 (21)</td>
<td>0.31 (–0.42–0.95)</td>
</tr>
<tr>
<td>Residual error model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportional error (%)</td>
<td>0.098 (3)</td>
<td>0.098 (0.092–0.101)</td>
</tr>
<tr>
<td>Additive error</td>
<td>0.1 (FIXED)</td>
<td>0.1 (NA)</td>
</tr>
<tr>
<td>Derived Clinical Parameters</td>
<td>Simulated Median (90% CI)</td>
<td></td>
</tr>
<tr>
<td>Estimated onset of disease progressiond</td>
<td>321 (309–332)</td>
<td></td>
</tr>
<tr>
<td>Estimated yearly rate of HbA1c increase on Metformind</td>
<td>0.1 %HbA1c (0.07–0.13)</td>
<td></td>
</tr>
<tr>
<td>Estimated yearly rate of HbA1c increase not on Metformind</td>
<td>0.16 %HbA1c (0.08–0.22)</td>
<td></td>
</tr>
</tbody>
</table>

aTypical value of parameter in final model. RSE, relative standard error (%), also known as the precision of the parameter estimate. bConfidence interval for the population pharmacodynamic parameter following bootstrap results. Covariance of parameters are shown in untransformed format. cDISPR is the disease progression model parameter that affects the synthesis rate of HbA1c and longitudinal HbA1c levels through the following equations. (1) DADT(A1) = KSYN(1–DISPR) – KLOSS*A(1) and (2) DADT(A2) = A(1)*[1– METFEFF] – KOUT*A(2). Where A(1) represents the synthesis rate of HbA1c (KSYN), and A(2) represents HbA1c levels. dYearly rate of HbA1c increase was based on simulated median yearly increase over the first 3 years following the onset of disease progression (i.e., 321 days). The median and 90% CI of the onset and yearly rate of HbA1c increase was calculated across simulations. For example, each simulation provided a median, which was then summarized across 1,000 simulations.

Figure 2 Longitudinal HbA1c levels over time and model-based visual predictive check. The plot to the left shows raw HbA1c observations over time. On the right plot, a visual predictive check is shown, where the solid black line highlights the median observed profiles. The shaded regions indicate the 95th and 5th percentiles (ends) and the range of median simulated profiles (center) of simulated predictions from the visual predictive check.
140 kg (5th and 95th percentile), respectively. For clinical site variable, Vanderbilt and Kaiser Georgia had a 16% and 30% lower estimate on the metformin effect parameter when compared to Kaiser Northern California, respectively.

Age was also a significant covariate on the disease progression model parameter, with a negative correlation observed between age and disease progression. Clinically, this would result in a relative change in HbA1c (at 2 years) to fall between 0.76% and 0.84% improvement for patients between the ages of 49 and 64 years.

Genetic analysis: HyperLasso (Cambridge, UK) methodology on model parameters

A total of 267 genes were selected and ~12,000 variants within a 50-kb region around each gene were extracted for analysis. Of the variants investigated, a total of 16 SNPs were linked to the disease progression parameter by HyperLasso analysis (with a minor allele frequency (MAF) ≥5%). Of the remaining 16 variants, 11 were intronic (CSMD1(4), ADCY5(1), PRKAG(1), SLC22A2(1), EMILIN2(1), SULF1(1), FTO(1), WWOX(1)), one was missense (SREBF1), and four were located within 50 kb upstream or downstream of each gene (VPIS13C(1), KNCN16(1), PPARG(1), FOXN3(1)).

Genetic analysis: model-based approach for variant selection

Of the prioritized 16 variants from HyperLasso, a model-based methodology was implemented to verify statistical significance and determine effect sizes on the disease progression parameter. SNPs that passed this test were included in the final mathematical model for simulation purposes. From this step, seven SNPs were removed due to the defined criteria (see Methods). The nine remaining variants were statistically significant in the model structure and collectively accounted for approximately one-third of the variability in the predicted disease progression model parameter (reduced the BSV of the disease progression model parameter from 32.4% to 22.5%). Of the nine variants, rs12907856 (VPIS13C), rs2954625 (CSMD1), and rs3160009 (SLC22A2) individually accounted for ~6%, 5%, and 8% of the variability, respectively. The characteristics of each SNP are shown in Table 3.

In the final model, several simulations were performed to illustrate the potential clinical impact of each SNP on long-term HbA1c levels. Figure 3 quantitatively summarizes the predicted effects of final model genetic and nongenetic factors on HbA1c levels at the 1-year and 5-year mark. Hypothetical gene/gene interactions were also explored and the combinatorial effects of high-risk SNPs in the GSMD1, WWOX, and SLC22A2 genes are also explored in Figure 4.

In the exploratory studies, patients carrying one or more minor alleles of the identified variants in the CSMD1 gene (rs2617102 (C), rs2954625 (T)) were predicted to have significantly higher long-term HbA1c levels compared to patients not carrying any CSMD1 minor alleles or patients with homozygous rs3160009 TT (SLC22A2) and/or homozygous rs7500549 CC (WWOX) genotypes.

Functional annotation of top variants

Three out of the nine variants (rs12907856, rs316009, and rs7159552) are located in linkage disequilibrium (LD) to a regulatory region, determined by an algorithmic prediction by Regu- lomeDB. In particular, rs316009 and rs7159552 are located in a transcription factor binding motif as identified by the ENCODE project. The rs316009 variant is in LD to the non-synonymous variant of SLC22A2, rs316019, which is known to play a role in metformin PKs. Another variant, rs6982250, is in an intronic region of SULF1. Several SNPs in SULF1 have been associated with many phenotypes, with one such variant associated with fasting insulin-related traits.29

DISCUSSION

Previous pharmacogenetic studies of metformin response have focused on the effect of selected variants in relevant pharmacogenes on single-timepoint outcomes of metformin (i.e., HbA1c levels after 90 days, FPG levels, etc.). Long-term, time-dependent changes of HbA1c have been previously overlooked, resulting in a collapse of valuable biomarker information that may inform disease progression as well as temporal response patterns.

Here we developed a longitudinal HbA1c model by leveraging a large T2D dataset and subsequently investigated the role of genetic and nongenetic factors on long-term dynamics of HbA1c following metformin initiation. Special focus was given to identifying factors that are responsible for the long-term variance in HbA1c levels.

Three important findings emerged from this analysis: 1) a mathematical model incorporating disease progression and a reversible metformin effect best characterized the long-term HbA1c data in T2D patients. 2) The model presented herein predicted that the onset of disease progression for patients on metformin is ~321 days, at which point levels increase, on average, at a rate of 0.1% (1.1 mmol/mol) (0.04%–0.16%) HbA1c per year; HbA1c levels are expected to increase at a steady state rate of ~0.16% (1.76 mmol/mol) (0.08%–0.22%) per year in patients not treated with metformin. 3) Nine variants in eight genes (of 267 genes interrogated) accounted for approximately one-third of the total estimated variability in the disease progression model parameter. Variants in three of these genes (CSMD1, WWOX, and SLC22A2) were identified as significant influencers of disease progression on metformin therapy.

The development of the final mathematical model resulted from the exploration of various approaches with various empirical and semimechanistic considerations. The structural parameters from the model were estimated with high precision. The between-subject variability estimates of baseline, metformin effect, and disease progression were also estimated with relatively high precision (3%, 4%, and 17% relative standard error (RSE), respectively). The high degree of parameter confidence was due to the abundance of available HbA1c data, allowing for the reliable assessment of clinical, demographic, and genetic covariates on disease progression. Disease progression (upward trajectory of HbA1c levels) is a function of both the patient’s underlying disease as well as the buildup of metformin resistance. In order to differentiate...
<table>
<thead>
<tr>
<th>SNP</th>
<th>Chr</th>
<th>Gene</th>
<th>Minor allele</th>
<th>Major allele</th>
<th>Feature</th>
<th>Model-based P-value</th>
<th>Effect size of minor allele on DP parameter</th>
<th>MAF CEU</th>
<th>MAF YRI</th>
<th>Gene functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs12907856</td>
<td>15</td>
<td>VPS13C - vacuolar protein sorting-associated 13 gene family</td>
<td>G</td>
<td>A</td>
<td>Proximal</td>
<td>0.0003</td>
<td>-0.147 (GA)</td>
<td>0.30</td>
<td>0.30</td>
<td>This gene encodes a member of a vacuolar protein. SNP in this gene was associated with glucose-stimulated insulin response.41,43</td>
</tr>
<tr>
<td>rs2815022</td>
<td>6</td>
<td>KCNK16 - Potassium Channel, Two Pore Domain Subfamily K, Member 16</td>
<td>G</td>
<td>A</td>
<td>Proximal</td>
<td>0.009</td>
<td>0.39 (GA)</td>
<td>0.48</td>
<td>0.26</td>
<td>This gene encodes the TALK-1 channel, the most abundant potassium channel in human beta-cells and it modulates beta-cells electrical excitability, second-phase insulin secretion and glucose homeostasis.44,45</td>
</tr>
<tr>
<td>rs2617102</td>
<td>8</td>
<td>CSMD1 - CUB And Sushi Multiple Domains 1</td>
<td>C</td>
<td>A</td>
<td>Intron</td>
<td>0.02</td>
<td>0.717 (CA)</td>
<td>0.19</td>
<td>0.20</td>
<td>This gene encodes an integral membrane protein with unknown molecular function. SNP in this gene was associated with congenital hyperinsulinism of infancy.46</td>
</tr>
<tr>
<td>rs2954625</td>
<td>8</td>
<td>SLC22A2 - Solute Carrier Family 22 (Organic Cation Transporter), Member 2</td>
<td>T</td>
<td>C</td>
<td>Intron</td>
<td>0.029</td>
<td>0.23 (TC)</td>
<td>0.21</td>
<td>0.46</td>
<td>This is a transporter in the kidney that secretes metformin into the urine. This SNP is in linkage disequilibrium to a non-synonymous variant, A270S (rs316019), which was associated with metformin disposition.47,48</td>
</tr>
<tr>
<td>rs316009</td>
<td>6</td>
<td>SLC22A2 - Solute Carrier Family 22 (Organic Cation Transporter), Member 2</td>
<td>T</td>
<td>C</td>
<td>Intron</td>
<td>0.04</td>
<td>-0.44 (TC)</td>
<td>0.10</td>
<td>0.08</td>
<td>This is a transporter in the kidney that secretes metformin into the urine. This SNP is in linkage disequilibrium to a non-synonymous variant, A270S (rs316019), which was associated with metformin disposition.47,48</td>
</tr>
<tr>
<td>rs642887</td>
<td>18</td>
<td>EMILIN2 - Elastin Microfibril Interfactor 2</td>
<td>A</td>
<td>G</td>
<td>Intron</td>
<td>0.05</td>
<td>-0.42 (AG)</td>
<td>0.14</td>
<td>0.21</td>
<td>An extracellular matrix glycoprotein associated with thrombosis. EMILIN2 is involved in regulating platelet activation important for cardiovascular development,59,50 whereas EMILIN1 may be involved in regeneration of islets, which could play a role in blood glucose lowering.51</td>
</tr>
<tr>
<td>rs6982250</td>
<td>8</td>
<td>SULF1 - Sulfatase 1</td>
<td>T</td>
<td>C</td>
<td>Intron</td>
<td>0.0023</td>
<td>-0.37 (TC)</td>
<td>0.17</td>
<td>0.28</td>
<td>This gene encodes an enzyme, which is involved in modulating growth factor signaling. Data from sulfatase knockout mice showed that it plays a role in diabetic nephropathy.52</td>
</tr>
</tbody>
</table>

Table 3 Continued on next page
between the effects of a patient’s biology and a reduction of metformin’s reversible effect, it is necessary to model longitudinal HbA1c data prior to the administration of treatment; unfortunately, this was not possible in our analysis, as this would require patients to be off treatment during the duration of the disease. The HbA1c model, however, was able to adequately predict the dynamics of HbA1c levels, capturing the long-term upward trend observed in this population. The ability to predict long-term HbA1c changes is especially valuable: the onset of disease progression and the rate of HbA1c increase were quantified for patients on metformin therapy (\(0.1\%\) increase per year for the first 3 years after 321 days, which is the estimated onset of disease progression) leveraging the richness of HbA1c data available. This finding was particularly interesting in relation to the study by Winter et al., where the authors noted a slight rise in patients’ HbA1c levels between 200 and 400 days after metformin initiation; however, they were unable to quantify this upward trend through their simulations—a limitation that resulted from the lack of longitudinal data points available after 400 days.16 In our analysis, the average length of time in the study was 1,014 days and up to 10 years worth of HbA1c measurements were available to inform disease progression—allowing the characterization and quantification of this upward trend with high precision. The robustness in the model enabled the simulation of patient-specific disease progression with an underlying assumption of no metformin administration (approximate increase of 0.16% (1.7 mmol/mol) in HbA1c per year). The ability to separate disease progression and metformin effect is based on early HbA1c data (up to 1 year following metformin initiation). Simulations of disease progression assuming no metformin administration were explored by removing metformin’s estimated effect on the HbA1c synthesis rate within the model structure. The simulations demonstrate that, on average, disease progression in patients who are metformin-naive will occur faster than in patients taking metformin for several months. Comparing this estimate to existing literature is problematic, since T2D progression is a gradual process that typically takes place over several years and thus allows only a small trajectory of change within the limited time frame available for most studies. In the few studies reported, the rate of HbA1c increase was estimated to be \(~0.2\%\) (2.2 mmol/mol) per year, a value consistent with our observations.33

A stepwise multivariate analysis was performed to identify statistically significant demographic and clinical covariates on model parameters. Average serum creatinine level surfaced as a significant factor that influenced the magnitude of metformin’s effect. This finding was expected since serum creatinine is considered a likely surrogate for metformin exposure. Serum creatinine directly influences a patient’s creatinine clearance, which ultimately influences a patient’s systemic exposure to metformin by affecting the apparent clearance PK parameter. The effect of age was also noted—an inverse relationship was observed between age and the magnitude of disease progression. It is important to note that although age was statistically significant through a stepwise analysis, the effect size was quite small and a reproduction of these results is required to inspire greater conviction of this correlation. Previously, in a study by Williams et al., lower HbA1c levels were
reported in African Americans compared to European American individuals. In our analysis, however, there was no significant effect of self-reported ethnicity on any of the model parameters, including disease progression.

We used multiple genetic methods to prioritize influential variants on disease progression. HyperLasso methodology was selected over a stepwise procedure, as well as several other algorithms. This is because the HyperLasso approach has been shown to be robust when investigated covariates are correlated, which is the case here with strong LD patterns in the genotype data. The final selection of variants was based on the performance of individual variants within the demographic-corrected model so that the correlation across various model parameters may also be taken into consideration.

Nine variants emerged were linked to the progression of HbA1c levels on metformin. Collectively, the variants accounted for the effect of covariates on the simulated median (bands show 5th and 95th CI of simulated median) of HbA1c levels at the 1-year mark. A normal individual here represents a hypothetical patient with no minor alleles of any of the identified variants with median age, body weight, and serum creatinine values. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 3 Top genetic and demographic covariates on long term HbA1c levels. (a) The effect of covariates on the simulated median (bands show 5th and 95th CI of simulated median) of HbA1c levels at the 1-year mark. (b) The effect of covariates on the simulated median (5th and 95th CI of simulated median) of HbA1c levels at the 5-year mark. A normal individual here represents a hypothetical patient with no minor alleles of any of the identified variants with median age, body weight, and serum creatinine values. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 4 Effect of SNP combinations in CSMD1, SLC22A2, and WWOX on the dynamics of HbA1c levels. (a) Simulated median HbA1c levels (with 95% CI bands) over 5 years comparing carriers and noncarriers of CSMD1 minor (risk) alleles. (b) Simulated median HbA1c levels over 5 years comparing carriers and noncarriers of SLC22A2/WWOX genes minor alleles. Blue shaded region with solid line: simulated median for patients carrying no minor alleles with 5th and 95th confidence interval. Red/green shade with dashed line: simulated median for patients carrying minor alleles of labeled gene(s) with 5th and 95th confidence interval of median. [Color figure can be viewed at wileyonlinelibrary.com]
for approximately one-third of the variance in the disease progression model parameter. It was also observed that these genetic variants had larger effects on HbA1c levels than the demographic and clinical covariates identified from the stepwise analysis.

Of the top genes, minor alleles of two SNPs (rs2617102, rs2954625) in the CSMD1 (CUB and Sushi multiple domains 1) gene had the strongest impact on disease progression. Although the pharmacological and biological mechanism remains unclear, CSMD1 has been previously linked to insulin sensitivity and lipid levels. The CSMD1 variants may have a significant impact on longitudinal HbA1c levels, especially at the 5-year mark when the simulated HbA1c improvement from baseline becomes nominal—especially for homozygous carriers (TT) of rs2617102. The simulated 5-year HbA1c level was very similar to baseline levels (Figure 4)—which means that HbA1c levels rebounded back to its baseline state. Furthermore, the effect on HbA1c levels at the 5-year mark was higher for hypothetical homozygous carriers of both CSMD1 SNPs (rs2617102, rs2954625)—where HbA1c levels were predicted to be significantly higher than baseline levels.

Minor alleles of SNPs in genes SLC22A2, WWOX, EMILIN2, and FOXN3 were associated with more favorable trajectories (lower disease progression) of HbA1c levels compared to major allele carriers. Of these genes, SLC22A2 (rs316009 (T)) and WWOX (rs7500549 (C)) showed the strongest effect. In contrast to homozygous carriers of CSMD1 risk alleles, homozygous carriers of both SLC22A2 and WWOX SNPs were predicted to have a favorable clinical outcome—maintaining their peak HbA1c level improvement from baseline through 5 years of metformin therapy. The rs316009 variant is in LD to a nonsynonymous variant of SLC22A2 (rs316019), an SNP that has been previously shown to alter transporter function as well as modulate metformin PKs. Therefore, the clinical expectation that the reduced function rs316009 (T) allele would lead to a more favorable outcome is pharmacologically sound. OCT2 (SLC22A2) is predominantly expressed at the basolateral membrane in distal renal tubules and is responsible for the uptake of metformin from circulation into renal epithelial cells, working in concert with other renal transporters to excrete metformin. Although functional studies have been controversial, loss of transporter function is expected to increase plasma levels of metformin, potentially leading to a more favorable PD outcome with relatively low HbA1c levels.

Also of clinical interest, the gene WWOX has been previously associated with several T2D traits including body weight, C-reactive protein, insulin, obesity, and lipid levels. WWOX encodes for an enzyme that is found in all eukaryotes and has been biologically shown to play an important role in the regulation of a wide variety of cellular functions such as protein degradation, transcription, and RNA splicing. Unlike SLC22A2, a pharmacological mechanism for WWOX is not clear. However, the clinical impact (if replicated) would mean that carriers of the rs7500549 (C) allele would respond favorably to metformin therapy. Future studies should focus on elucidating the biology of WWOX and replicating the genetic findings on disease progression.

Although this computational approach represents a novel way to uncover factors that influence long-term drug response, several important limitations must be highlighted. First, the demographic distribution used for this analysis does not appropriately reflect the national population distribution due to the disproportionate representation of African Americans in this cohort. As a result, it will be critical to replicate both genetic and nongenetic findings in separate cohorts for validation purposes. Furthermore, the retrospective dataset lacks a control group and is reflecting multiple studies across multiple sites. As such, validation of the model-based simulations, which quantify metformin’s effect on long-term HbA1c dynamics with consideration of impactful covariates, is required.

Overall, our study successfully integrated robust model-based approaches with genetic analyses methods to uncover genes linked to the progression of HbA1c on metformin therapy in a large T2D cohort. If replicated, these genetic findings may have a significant influence on T2D treatment strategy. Ultimately, the long-term goal of this research is to translate this computational model into clinical practice and enable clinicians to provide data-driven, personalized treatment advice to T2D patients based on individual patient characteristics.

METHODS

Patients with type 2 diabetes

Diabetic patients of European American, African American, and Asian American ancestry were recruited into a multicenter retrospective study, as described previously. All patients were metformin-naive, had HbA1c levels measured before and after initiation of metformin therapy (between 3 and 18 months), and had a medication possession ratio greater than 80%. The Institutional Review Boards (IRBs) of Marshfield Clinic Research Foundation, Kaiser Permanente Northern California, Kaiser Permanente South East, Georgia, approved this study and informed consent was obtained. At Vanderbilt, an opt-out consent model was used. In diabetic patients, metformin was administered for at least 3 months, so steady-state drug concentration levels were achieved, since the half-life of metformin is roughly 5 hours. Patients were in the study for an average of 2.8 years (median = 1.43 years) with on average 7.4 (median = 5) HbA1c measurements. HbA1c results were reported in the NGSP format (National Glycohemoglobin Standardization Program). The median metformin dose across the patient population was 1.000 mg (Table 1). Patients were genotyped using an Illumina OmniExpress genotype array (see Supplementary Methods for further details).

Development of mathematical model

Patient data were analyzed using nonlinear mixed-effect modeling (NONMEM 7) with first-order conditional estimation method with interaction (FOCE-I). Several semimechanistic approaches were explored to best describe the longitudinal HbA1c vs. time profiles. Model selection was determined using the objective function value (OFV, –2 times the log of the likelihood) and visual inspection of diagnostic plots. The selected longitudinal HbA1c profiles were described by the following equations:

$$\frac{d(K_{IN})}{dt} = K_{SYN} * (1 + Disp_{EFFECT}) - K_{LOSS} * K_{IN}$$ \hspace{1cm} (1)

$$\frac{d(HbA1c)}{dt} = K_{IN} * (1 - Metf_{EFFECT}) - K_{OUT} * HbA1c$$ \hspace{1cm} (2)
Eq. 1 defines the synthesis rate of HbA1c, which includes a nonlinear time-sensitive parameter dependent on the baseline synthesis rate and the extent of patient-specific disease progression. In Eq. 1, $\text{Disp}_{\text{EFFECT}}^\text{KOUT}$, KLOSS, and K SYN represent the disease progression effect parameter, loss rate of KIN, and synthesis rate of the KIN parameter, respectively. Eq. 2 defines the dynamics of HbA1c, parameterized by the synthesis rate of HbA1c ($\text{K SYN}(t)$), metformin’s effect from baseline ($\text{Metf}_{\text{EFFECT}}$), and the loss rate of HbA1c (KOUT). A more detailed explanation and the model source code can be found in the Supplementary Methods. A simulated demonstration of the dynamics of this model can be viewed in Supplementary Figure 1. A patient’s individual administered doses were taken into consideration by examining the effect of the average daily dose. The average daily dose of metformin was calculated from metformin start day up to the day where minimum HbA1c levels were achieved between 3–18 months (and before other antidiabetic drug or insulin was added). Although no drug concentration was directly used for this analysis, surrogate PK information was taken into account in the model structure by investigating the effect of average serum creatinine level (a major predictor on metformin individual clearance) or imputed exposure (based on estimated individual clearance of metformin and average daily dose). Individual clearance was estimated based on the clearance equation previously described. Both average dose and metformin exposure were tested on the $\text{Metf}_{\text{EFFECT}}$ parameter.

Demographic analysis

Using the mathematical model described above, agnostic stepwise forward selection ($P < 0.05$) and backward elimination ($P < 0.01$) were applied to identify statistically significant demographic and clinical covariates on model parameter estimates, which helped guide the selection of the demographic-corrected final model. The effect of concomitant medications was taken into account by investigating the effect of added drug on model parameters. The subsequent demographic-corrected mathematical model served as a basis to investigate the effect of genetic variants on the variance of long-term response.

Genetic analyses of model parameters

A comprehensive list of candidate genes was selected using the GWAS Integrator tool on the HuGE Navigator (details found in Supplementary Methods). A penalized regression-based approach called HyperLasso was implemented to statistically prioritize the variants associated with phenotypes outputted from the mathematical model (e.g., disease progression, metformin effect, and baseline). This methodology was originally proposed by Hoggart et al., and is a generalization of Lasso. Further information about the HyperLasso method can be found in Supplementary Methods.

Model-based genetic analysis of identified variants

The top SNPs from HyperLasso were subsequently investigated in the developed demographic-corrected mathematical model described above. Model-based analyses are advantageous because they account for correlations across various model parameters as well as potential SNP/SNP interactions. Two key steps were taken to select the final mathematical model: 1) removal of nonsignificant SNPs, which resulted from a univariate analysis of each variant in the demographic-adjusted mathematical model, and 2) removal of variants from the full genetic model that had very low, clinically irrelevant effect sizes. Details of this step may be found in the Supplemental Material.

Additional Supporting information may be found in the online version of this article.

ACKNOWLEDGMENTS

This research was supported by grants from the National Institutes of Health (NIH) National Institute of General Medical Sciences (GM61390 and GM117163), NIH P30 DK063720, and the NIH Pharmacogenomics Research Network (PGRN)-RIKEN Strategic Alliance.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS

© 2016 American Society for Clinical Pharmacology and Therapeutics

51. Lavoie, J.R. et al. EMLIN1 and ILK are Novel markers of islet regenerative function in human multipotent mesenchymal stromal cells. Stem Cells (2016). doi: 10.1002/stem.2385
