Lawrence Berkeley National Laboratory
Recent Work

Title
SYNTHETIC ENTEROBACTIN ANALOGS. CAR-BOXAMIDO-2,3-DIHYDROXYTEREPHTHALATE CONJUGATES OF SPERMINE AND SPERMIDINE

Permalink
https://escholarship.org/uc/item/7bn9b3sb

Authors
Weitl, F.L.
Raymond, K.N.
Durbin, P.W.

Publication Date
1980-04-01
SYNTHETIC ENTEROBACTIN ANALOGS. CARBOXAMIDO-2,3-
DIHYDROXYTEREPHTHALATE CONJUGATES OF SPERMINE AND
SPERMIDINE

Frederick L. Weitl, Kenneth N. Raymond, and
Patricia W. Durbin

April 1980
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Synthetic Enterobactin Analogs. 1 Carboxamido-2,3-Dihydroxyterephthalate Conjugates of Spermine and Spermidine

By

Frederick L. Weitl,2a Kenneth N. Raymond2b and Patricia W. Durbin2c

Contribution from Divisions of Materials and Molecular Research and Biology and Medicine, Lawrence Berkeley Laboratory; and Department of Chemistry; University of California, Berkeley, California 94720

This manuscript was printed from originals provided by the author.
Abstract

Two examples of a new class of synthetic polycatecholate ligands, the carboxamido-2,3-dihydroxyterephthalate conjugates of spermine (8) and of spermidine (10) have been synthesized via the generally useful synthon, methyl-2,3-dimethoxyterephthaloyl chloride (6). Initial biological evaluation reveals tetrameric terephthalate (8) to be an extremely effective agent for sequestering and removing plutonium from mice; a single 25 μmol per kg. (i.p.) dose of (8) removed 73% of the plutonium citrate previously injected (iv., 1 hr earlier). Under the same conditions, trimeric terephthalate (10) excreted only 49% of injected plutonium. In vitro kinetic experiments have shown (10) rapidly and quantitatively removed Fe from human transferrin. These results are discussed in relation to the design of metal-ion specific sequestering agents.
Introduction

We have previously described two related research programs for the design and synthesis of specific sequestering agents for iron(III) and actinide(IV) metal ions. In the case of iron, since the body lacks any mechanism for removing excess amounts of this essential element, it can be an acute or chronic poison. A major program is underway for the development of iron chelating agents to be used in treating Cooley's anemia, a genetic disease which results in chronic iron overload. Our ferric-ion chelating agents are modeled after the siderophores, a class of low-molecular-weight iron sequestering and transport agents that are produced by microbes. The most powerful natural iron chelator known is enterobactin. Since this siderophore incorporates catechol chelating agents (in the form of 2,3-dihydroxybenzoyl groups, DHB), our initial approach has been the incorporation of several substituted DHB groups into multidentate chelate molecules.

Of the radioactive isotopes produced as by-products of the nuclear fuel cycle, the major long-term radiation hazard is posed by the transuranium actinides. Of the actinides, plutonium is a particularly dangerous biological hazard because of the chemical and biological similarities of Pu(IV) and Fe(III). Incorporated plutonium is bound by transferrin, the mammalian iron transport protein, at the same site that normally binds Fe(III) and is then concentrated in iron storage sites, where most of it remains indefinitely. In order to prepare specific sequestering agents for Pu(IV) and other actinide ions, we have explicitly recognized this similarity of Pu(IV) and Fe(III) in using as chemical models the microbial chelating agents which are so specific for Fe(III).
As direct analogs of the siderophores such as enterobactin and a threonine conjugate of spermidine isolated by Tait, we have prepared tetrameric and trimeric 2,3-dihydroxybenzoyl conjugates incorporating certain linear, cyclic, and platform amines. Direct sulfonation of these compounds produced the 5-sulfonato-2,3-dihydroxybenzamide analogues. These are potent sequestering agents for plutonium in vivo and iron in vitro. The sulfonated derivatives show high water solubility at any pH, improved resistance toward oxidation and increased phenolic acidity; these properties make them better ligands under physiological conditions.

A most important property of any sequestering agent to be used in chelation therapy over long time periods is that it be orally active. Of the compounds tested to date, none of the effective sequestering agents for iron or the actinides have achieved this goal. Some promise was shown by the simple monomeric catechol derivative 2,3-dihydroxybenzoic acid, and it has undergone clinical tests in man. The oral activity of this compound may be due to its dual acid-anion functionality. In addition, the ortho carboxylate group gives two possible modes of metal binding (catecholate or salicylate type) and these are pH dependent.

Thus the introduction of the 4-carboxylate group might be expected to substantially improve the usefulness of the catechol sequestering agents. We now report the synthesis of the title compounds. These are the first examples of 4-carboxylate-catechoyl amides. As before, the tetrameric catecholate (8) was designed to satisfy the eight-coordinate geometry of a single Pu(IV) ion (the predominant in vivo oxidation state)
through the four pairs of phenolic oxygens. The related trimer (10) is potentially a six-coordinate catecholate ligand for Fe(III).

General Procedure

To achieve good water solubility in the catecholate ligands via the carboxylate moiety, the symmetrical 2,3-dihydroxyterephthalic acid was chosen as monomeric unit. Thus the dry disodium salt of catechol (1) was carboxylated according to a modified procedure of Cason and Dyke. The dry disodium carboxylate derivative (2) provided crystalline dimethyl ester (3) upon refluxing with HCl/CH₃OH. Permethylation to ligand (4) was achieved with K₂CO₃/dimethyl sulfate in refluxing acetone. When a hot CH₃OH solution of (4) was treated with 1 equiv. of 6 N NaOH overnight, a 70% yield of the monosodium salt (5) resulted. Neat SOCl₂ at 50°C converted this compound directly to acid chloride (6), the necessary synthon for preparation of permethyl tetraamide (7) and permethyl triamide (9). Demethylation with excess BBr₃ at room temperature provided the spermine (8) and spermidine (10) derivatives. Both were purified by acid-base precipitation and were dried over P₂O₅ under vacuum.

Experimental

Melting points were taken on a Buchi apparatus in open capillaries and are uncorrected. Infrared spectra were recorded on a Perkin-Elmer 283 instrument. Proton NMR spectra were recorded on a Varian A-60 instrument using Me₄Si or 3-(Me₃Si)-1-propane sulfonic acid, sodium salt, hydrate as internal standard. Evaporations were accomplished under
vacuum (oil pump) with a Buchi Rotovapor-RE at ≤ 55°C. Thin layer chromatography (TLC) was performed on precoated 60F-254 silica gel sheets, developed in tetrahydrofuran C₆H₁₂/H₂O (93:7:5) and visualized with UV, I₂ vapor, or Fe³⁺/H₂O/EtOH spray. Column chromatography was performed using 60-200 mesh silica gel in a 35 x 2.5 cm o.d. column and fractions monitored by TLC. Microanalyses and mass spectra (m/e, 70 eV) were performed by Analytical Services, Chemistry Department, University of California, Berkeley. Both spermine (the amine component of 7 and 8) and spermidine (the amine component of 9 and 10) were purchased from the Ames Laboratories, Inc., Milford, Conn. The BBr₃ used was a product of Alfa Division, Ventron Corporation, Danvers, Mass. All chemical analyses were within 0.4% of calculated values. Those elements analyzed appear after each empirical formula.

Disodium 2,3-dihydroxyterephthalate (2). The procedure of Cason and Dyke has been modified as follows: To catechol, 1 (33 g, 300 mmol) dissolved in 300 ml CH₃OH (under argon atmosphere) was added at once NaOH pellets (24 g, 600 mmol). The resulting solution was allowed to sit overnight then evaporated in vacuo (105°, 48 hr) to a light tan, dry powder which was further treated with excess CO₂ (1100 psi) at 175-200°(48 hr) in a static, stainless steel bomb. The light tan solid product was acidified with hot aq. 6N HCl, filtered, and washed with hot H₂O. The solid product was dissolved in hot aqueous NaOH, (pH 9), treated twice with charcoal, then cooled in an ice bath to obtain nearly white, crystalline (2) (17.6 g, 24%): mp > 300°; ¹HNMR (D₂O) δ 7.45 (s, 2H, Ar-H). The remaining (basic) solution was
acidified with aq. HCl, to obtain nearly white \(2a\) (20.8 g, 35%): mp 289-90°; \(^1\)HNMR (DMSO) \(\delta\) 7.42 (s, 2H ArH).

Anal. (C\(_8\)H\(_4\)O\(_4\)Na\(_2\)) Na.

Dimethyl-2,3-dihydroxyterephthalate (3). To a slurry of \(2a\) (12.1 g, 58 mmol) in 150 ml CH\(_3\)OH was added excess HCl via gas diffusion tube. After 60 hr under reflux, the hot reaction mixture was filtered to remove NaCl. Ice bath cooling provided white needles of \(3\) (10.7 g, 82%): mp 141-3°; \(^1\)HNMR (DMSO) \(\delta\) 4.13 (s, 6H, \(-\text{CO}_2\text{CH}_3\)), 7.36 (s, 2H, ArH).

Dimethyl-2,3-dimethoxyterephthalate (4). The following materials were combined and kept at reflux (under argon) 48 hr: \(3\) (13.6 g, 60 mmol), K\(_2\)CO\(_3\) (16.6 g, 120 mmol), dimethyl sulfate (11.4 ml, 120 mmol), acetone (150 ml). Filtration while hot to remove salts, followed by distillation in vacuo gave \(4\) (10.3 g, 68%): b\(_0\) 130°; \(^1\)H\(_n\)MR (CCl\(_4\)) \(\delta\) 3.8-4.0 (two s, 12H, \(-\text{OCH}_3\) + \(-\text{CO}_2\text{CH}_3\)), 7.49 (s, 2H, ArH).

Sodium Methyl 2,3-dimethoxyterephthalate (5). To \(4\) (10.1 g, 40 mmol) in CH\(_3\)OH (200 ml) solution was added NaOH (1.6 g, 40 mmol) and H\(_2\)O (5 ml). The resulting solution was refluxed overnight, then concentrated in vacuo to about 1/4 volume. Addition of acetone (several volumes) to precipitate a small amount of disodium by-product followed by filtration gave a clear colorless solution. Addition of ethyl ether (1-2 vol) with scratching gave white microcrystalline \(5\) (7.1 g, 68%) which was dried at 75° (< 1 mm): mp 205-7°; \(^1\)HNMR (D\(_2\)O) \(\delta\) 3.9-4.0 (two s, 9H, OCH\(_3\) + CO\(_2\)CH\(_3\)), 7.30 (d, 1H, \(J_{AB} = 9\) Hz, ArH), 7.70 (d, 1H, \(J_{AB} = 9\) Hz, ArH).

Methyl-2,3-dimethoxyterephthaloyl chloride (δ). Compound δ (6.5 g, 25 mmol) was added in portions to SOCl_2 (25 ml) with the evolution of SO_2 and heat. After stirring overnight under a Drierite tube an equal volume of CCl_4 was added and the mixture filtered to remove NaCl. Coevaporation of this solution in vacuo with CCl_4 (3 x 30 ml) gave white, crystalline CCl_4-soluble δ (\sim 100%), which was satisfactory for immediate use in the synthesis of 7 and 9.

N,N',N'',N'''-Tetra(2,3-dimethoxy-4-carbomethoxybenzoyl)-1,5,10,14-tetraazatetradecane (7). To crude, dry δ (25 mmol) was added tetrahydrofuran (THF) (50 ml), spermine (1.2 g, 6.0 mmol), and NEt_3 (3.5 ml, 25 mmol). An immediate white precipitate formed and the evolution of heat was evident. The reaction was allowed to stir overnight at ambient temperature in a stoppered flask. Filtration, THF wash, then oven drying provided $\text{NEt}_3 \cdot \text{HCl}$ (3.2 g, 97%). Evaporation of the THF solution in vacuo gave a viscous oil; this was dissolved in a small amount of CHCl_3, then eluted from a silica gel column (initially with CHCl_3). The product was eluted with 2-4% CH_3OH in CHCl_3 (v/v): TLC, R_f 0.63. Coevaporation (in vacuo) with CCl_4 (3 x 50 ml) gave a glassy solid which when dried at 56°, 5 microns, 20 hr gave $7 \cdot 2/3 \text{CCl}_4$ (6.2 g, 86%): ir (neat, NaCl) 3380 (-CONH-), 2940 (-CH-), 1730 (-CO_2CH_3), 1665-1625 (-CONR-), 1520, 1455, 1400, 1305-135, 1020, 755 cm$^{-1}$; $^1\text{HNMR}$ (CCl_4) δ 1.2-2.2 (broad m, 8H, NCH$_2$CH$_2$), 3.0-4.1 (broad m, 12H, NCH$_2$CH$_2$), 2.8-4.2 (broad s, 36H, -OCH$_3$ + -CO_2CH_3), 6.8-7.9 (broad m, 8H, ArH).

Anal. ($\text{C}_{54}\text{H}_{66}\text{N}_4\text{O}_{20} \cdot 2/3 \text{CCl}_4$) C, H, N.
N,N',N''-Tris(2,3-dimethoxy-4-carbomethoxybenzoyl)-1,5,10-triaza-decane (9). Using the same procedure as for 7, the following ingredients were combined: 6 (25 mmol), THF (50 ml), spermidine (1.2 g, 8 mmol), NEt₃ (3.5 ml, 25 mmol). This resulted, after purification as before, in CC₄-soluble 9: TLC, Rₜ 0.71. Coevaporation (in vacuo) with CC₄ (3x 50 ml) gave a glassy solid which when dried (56°, 5 microns, 20 hr) gave 9·1/2 CC₄ (6.5 g, 92%): ir (neat, NaCl) 3380 (-CO₁⁻), 2950 (-CH⁻), 1730 (-CO₂CH₃), 1665-1630 (-CONR⁻), 1525, 1455, 1400, 1300-1235, 1020, 755 cm⁻¹; ¹HNMR (CC₄) δ 1.2-2.2 (broad m, 6H, N-CH₂CH₂⁻), 3.0-4.1 (broad m, 8H, N-CH₂⁻), 3.8-4.2 (broad s, 27H, -OCH₃ + -CO₂CH₃), 6.8-8.0 (broad m, 6H, ArH).

Anal. (C₄₀H₄₉N₃O₁₅·1/2 CC₄) C, H, N.

N,N',N'',N'''-Tetra(2,3-dihydroxy-4-carboxybenzoyl)-1,5,10,14-tetra-azatetradecane (8). Precursor 7 (6.0 g, 5.5 mmol) dissolved in CC₄ (75 ml) was added dropwise via addition funnel (under argon) to a CH₂Cl₂ (175 ml) solution of BBr₃ (7 mls, ν 70 mmol) which was vigorously stirred (magnetic bar) and immersed in a room temperature water bath. An immediate yellow precipitate formed with each drop. The reaction mixture was allowed to stir overnight. The dropwise addition of H₂O (75 ml) hydrolyzed the boron compounds. After 3-6 hr hydrolysis time, a light tan solid was collected by filtration and washed well with H₂O. The crude product was slurried in H₂O (150 ml), aq. NaOH was added to achieve a pH ν 7 solution, which was clarified by filtration through Celite. The addition of aq. HCl gave a flocculent precipitate. This was collected by filtration, washed well with H₂O and dried over P₂O₅ (in
vacuo, room temperature, 48 hr). Thus was obtained amorphous tan powder $\geq 3 \cdot H_2O$ (3.6 g, 67%): mp 230-40° (glass); ir (KBr) 3600-3300 (-OH), 2600-2400 (COOH), 1675 (-COOH), 1605 (-CONH-), 1450, 1320, 1225, 1175, 740 cm$^{-1}$; 1HNMR (DMSO-D_2O) δ 1.5-2.5 (broad m, 8H, NCH$_2$CH$_2$-), 3.3-4.3 (broad m, 12H, N-CH$_2$-), 7.0-8.0 (broad m, 8H, ArH).

Anal. (C$_{42}$H$_{42}$N$_4$O$_2$ ·3H$_2$O) C, H, N.

N,N',N''-tris(2,3-dihydroxy-4-carboxybenzoyl)-1,5,10-triazadecane (10).

Using the same procedure as for 8, the following ingredients were combined: \geq (6.5 g, 8 mmol) dissolved in CCl$_4$ (75 ml) and BBr$_3$ (8 ml, 80 mmol) dissolved in CH$_2$Cl$_2$ (175 ml). Hydrolysis of the boron compounds, filtration, water wash, acid-base precipitation and drying over P$_2$O$_5$ (as before) gave amorphous tan powder $10 \cdot 2.5 \cdot H_2O$ (4.1 g, 71%): mp 235-45°d; ir (KBr) 3600-3200 (OH), 2600-2400 (COOH), 1680 (COOH), 1610 (-CONR-), 1455, 1325, 1230, 1180, 745 cm$^{-1}$; 1HNMR (DMSO-D_2O) δ 1.2-2.2 (broad m, 6H, N-CH$_2$CH$_2$-), 3.1-4.2 (broad m, 8H, N-CH$_2$-), 7.1-7.7 (broad m, 6H, ArH).

Anal. (C$_{31}$H$_{31}$NO$_{15}$$ \cdot 2^{-1/2}H_2$O) C, H, N.

Biological Results and Discussion

The general procedures used have been described in detail elsewhere. All solutions tested were isotonic in saline at pH 7. Animal experiments were carried out on groups of five adult female mice (35 g), injected first with 238Pu citrate (about 1.5 μCi/kg, i.v.) followed one hour later by a single 20 to 30 μmol/kg bw (i.p.) dose of test compound. Radioactivity measurements (whole body counts) were made at injection and 24 hr later.
One group of mice received compound (8), another, (10), and a control group, isotonic saline. The counts showed 27%, 51%, and 94% retention of plutonium, respectively. Continued administration of ten daily injections of compound (8) for 14 days produced no grossly observable signs of toxicity.

These initial animal experiments indicate that the 4-carboxylate tetramer (8) is even more effective in promoting plutonium excretion than the corresponding 5-sulfonate derivative (35% retention), which was previously tested and reported as the most effective compound to date. There is also a strong correlation of the Pu removal capability and the number of substituted DHB groups in the molecule: the monomeric catechol carboxylate is ineffective as a Pu removal agent; a dimer has not been tested; the trimer removes 49%; the tetramer removes 73%. These single-dose results are consistent with the hypothesis that a chelate able to provide an eight-coordinate metal ion environment will be most effective as a Pu(IV) removal agent.

It is also pertinent that the 4-CO$_2^-$ substituent not only increases the solubility of these compounds but is potentially a ligating group as well, which is not true of the 5-SO$_3^-$ groups of the previous compounds. Finally, a 0.2 mM solution of trimeric (10) removes Fe(III) from iron-saturated human transferrin with an apparent first-order rate constant of 2.1×10^{-3} min$^{-1}$, which is essentially the same rate as enterobactin. This shows that these carboxylate-substituted compounds are both kinetically and thermodynamically capable of removing iron from this iron transport protein.
Acknowledgments

We thank V. Pecoraro and E. S. Jones for their assistance. This research was supported by the Division of Nuclear Sciences, Offices of Basic Energy Sciences and Environment, U.S. Department of Energy under Contract No. W-7405-Eng-48.
References

1. This is paper number 5 in the series "Ferric Ion Sequestering Agents and also number 5 in the series "Specific Sequestering Agents for the Actinides." For previous papers in these series see reference 3 and 6, respectively.

2. a) Materials and Molecular Research Division, Lawrence Berkeley Laboratory.

 b) Please address correspondence and reprint requests to this author, Department of Chemistry, University of California, Berkeley.

 c) Biology and Medicine Division, Lawrence Berkeley Laboratory.

8. Smith, W. L.; Raymond, K. N. Struct. and Bonding, in press.

Appendix to Experimental

Compound 5; Anal. Calcd for C₁₄H₁₀O₆Na: C, 50.39; H, 4.23; Na, 8.77.
Found: C, 50.05; H, 4.37; Na, 8.82.

Compound 7; Anal. Calcd for C₅₄H₆₆N₄O₂₀₂/₃CCl₄: C, 55.01; H, 5.57; N, 4.69. Found: C, 54.93; H, 5.75; N, 4.64.

Compound 9; Anal. Calcd for C₄₀H₴₉N₃₀₁₅·1/₂CCl₄: C, 54.73; H, 5.56; N, 4.72. Found: C, 54.86; H, 5.71; N, 4.69.

Compound 8; Anal. Calcd for C₄₂H₴₂N₄O₂₀·3H₂O: C, 51.64; H, 4.95; N, 5.74. Found: C, 51.44; H, 4.72; N, 5.62.

Compound 10; Anal. Calcd for C₃₁H₃₁N₃O₁₅·2.₅H₂O: C, 50.96; H, 4.97; N, 5.74. Found: C, 50.80; H, 4.87; N, 5.60.

For field desorption mass spectra we acknowledge the Bio-organic, Biomedical Mass Spectrometry Resource, supported by NIH Research Grant No. RR 00719 from Division of Research Resources, A. L. Burlingame, Director, Space Sciences Laboratory, University of California, Berkeley, California 94720.

Compound 7: (C₅₄H₆₆N₄O₂₀); m/e 1091 (molecular ion)

Compound 8: (C₄₂H₴₂N₄O₂₀); m/e 923 (molecular ion)

Compound 9: (C₄₀H₴₉N₃₀₁₅); m/e 812 (molecular ion)

Compound 10: (C₃₁H₃₁N₃O₁₅); m/e 686 (molecular ion)
TABLE I.

Monomeric 2,3-Dihydroxyterephthalic Acid Derivatives

![Chemical Structure](image)

| no. | R | R₁ | R₂ | mp or bp (°C) | % yield | recrystn solvent | emp. formula
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Na</td>
<td>H</td>
<td>Na</td>
<td>>300</td>
<td>24</td>
<td>H₂O</td>
<td>C₈H₆O₆Na₂</td>
</tr>
<tr>
<td>2a</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>289-90d</td>
<td>35</td>
<td></td>
<td>C₈H₆O₆</td>
</tr>
<tr>
<td>3</td>
<td>CH₃</td>
<td>H</td>
<td>CH₃</td>
<td>141-3</td>
<td>82</td>
<td>CH₃OH</td>
<td>C₁₀H₁₀O₆</td>
</tr>
<tr>
<td>4</td>
<td>CH₃</td>
<td>CH₃</td>
<td>CH₃</td>
<td>130(0.4)</td>
<td>68</td>
<td></td>
<td>C₁₂H₁₄O₆</td>
</tr>
<tr>
<td>5</td>
<td>CH₃</td>
<td>CH₃</td>
<td>Na</td>
<td>205-7</td>
<td>68</td>
<td>CH₃OH/acetone/ether</td>
<td>C₁₁H₁₁O₆Na</td>
</tr>
<tr>
<td>6</td>
<td>CH₃</td>
<td>CH₃</td>
<td>Cl</td>
<td>e</td>
<td>100</td>
<td>CCl₄</td>
<td>C₁₁H₁₁O₆Cl</td>
</tr>
</tbody>
</table>

Analyses for C, H, Na are within 0.4% of theoretical values.

Lit. mp 293°; see ref 20.

Lit. mp 145-6°, see ref 21.

Lit. b₅ 165°, see ref 21.

Used as a crude, dry, crystalline solid without further purification, see Experimental Section.
Scheme I.

\[
\begin{align*}
1 \xrightarrow{1. \text{NaOH/C}_2\text{H}_5\text{OH}} & 2 \xrightarrow{2. \text{CO}_2 \text{pross.,}} \\
2 \xrightarrow{\text{HCl/CH}_3\text{OH}} & 3 \\
4 \xrightarrow{1 \text{ equiv. aq. NaOH}} & 5 \xrightarrow{\text{SOCl}_2} \\
5 \xrightarrow{1. \text{NEt}_3, \text{spermine, THF}} & 6 \\
6 \xrightarrow{2. \text{BBr}_3, \text{CH}_2\text{Cl}_2} &
\end{align*}
\]

7 \(R = \text{CH}_3 \)
8 \(R = \text{H} \)
9 \(R = \text{CH}_3 \)
10 \(R = \text{H} \)
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.