Title
PROTEIN DYNAMICS - COMPARATIVE INVESTIGATION ON HEME-PROTEINS WITH DIFFERENT PHYSIOLOGICAL ROLES

Permalink
https://escholarship.org/uc/item/7c71x3bn

Journal
BIOPHYSICAL JOURNAL, 59(3)

ISSN
0006-3495

Authors
DILORIO, EE
HILTPOLD, UR
FILIPOVIC, D
et al.

Publication Date
1991-03-01

License
CC BY 4.0

Peer reviewed
Protein dynamics
Comparative investigation on heme-proteins with different physiological roles

Ernesto E. Di Iorio,* Urs R. Hiltpold,* Dorde Filipovic,* Kaspar H. Winterhalter,* Enrico Gratton,‡ Eugenio Vitrano,§ Antonio Cupane,‖ Maurizio Leone,‖ and Lorenzo Cordone‡
*Laboratorium für Biochemie I, Eidgenössische Technische Hochschule Zürich, Switzerland; ‡Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA; and ‖Istituto di Fisica and GNSM-CISM, 90123, Palermo, Italy

ABSTRACT We report the low temperature carbon monoxide recombination kinetics after photolysis and the temperature dependence of the visible absorption spectra of the isolated α5-4-CO and β5-4-CO subunits from human hemoglobin A in ethylene glycol/water and in glycerol/water mixtures. Kinetic measurements on sperm whale (Physeter catodon) myoglobin and previously published optical spectroscopy data on the latter protein and on human hemoglobin A, in both solvents, (Cordone, L., A. Cupane, M. Leone, E. Vitrano, and D. Bulone. 1988. J. Mol. Biol. 199:312–218) are taken as reference.

Low temperature flash photolysis data are analyzed within the multiple substates model proposed by Frauenfelder and co-workers (Austin, R. H., K. W. Beeson, L. Eisenstein, H. Frauenfelder, and I. C. Gunsalus. 1975. Biochemistry. 14:5355–5373). Within this model a distribution of activation enthalpies for ligand binding accounts for the structural heterogeneity of the protein, while the preexponential factor, containing also the entropic contribution to the free energy of the process, is considered to be constant for all conformational substates. Optical spectra are deconvoluted in gaussian components and the temperature dependence of the moments of the resulting bands is analyzed, within the harmonic Frank–Condon approximation, to obtain information on the stereodynamic properties of the heme pocket. The kinetic and spectral parameters thus obtained are found to be protein dependent also with respect to their sensitivity to changes in the composition of the external medium. A close correlation between the kinetic and spectral features is observed for the proteins examined under all experimental conditions studied. The results reported are discussed in terms of differences in the heme pocket structure and in the conformational heterogeneity among the various proteins, as related to their different capability to accommodate constraints imposed by the external medium.

INTRODUCTION

It is generally accepted that structural fluctuations are necessary for the penetration of ligands or substrates from the solvent to the active site, through the protein matrix. However, a regulatory role of protein dynamics at the functional level is still often questioned. To gain insights into this matter, we started a comparative study on the dynamic properties of proteins with different physiological roles, i.e., myoglobins on one side and hemoglobin or its isolated subunits on the other, using optical spectroscopy and flash photolysis as experimental approaches.

The temperature dependence of optical absorption spectra of heme proteins can be related to the interactions of the optical electrons with nuclear vibrations (Cordone et al., 1986, 1988; Cupane et al., 1988; Leone et al., 1987; Schomacker and Champion, 1986; Srajer et al., 1986). Based on this correlation, the optical spectra thermal behavior of SW-Mb1 and Hb-A has been investigated (Cordone et al., 1986, 1988; Cupane et al., 1988; Leone et al., 1987). The temperature dependence (between 20 and 300 K) of the first (MI) and second (M2) moment of all observed optical absorption bands of human deoxy, oxy-, and carbonyl-HbA, can be rationalized in terms of a harmonic model for the coupling between the optical electrons and the nearby nuclei (Eq. 2 in Theoretical Background) and is not influenced by the replacement of ethylene glycol with glycerol in the external medium. In contrast, in deoxy, oxy-, and carbonyl-SW-Mb a considerable solvent dependence of MI is observed, but not of M2, and the model fails in predicting the thermal evolution of the first moment while being successful with the second. The different behavior of SW-Mb as compared with Hb was suggested to arise from the different aggregation state of the two

1 Abbreviations used in this paper: Hb = hemoglobin; HbA = major human adult hemoglobin; SW-Mb = sperm whale (Physeter catodon) myoglobin; PMB = p-mercuribenzoate; α5-4 and β5-4 = isolated α and β subunits from HbA with free SH groups; α5-4SH and β5-4SH = isolated α and β subunits from HbA with the SH groups reacted with PMB; Mn, M1, and M2 = zeroth, first and second moments of deconvoluted optical absorption bands related, respectively, to their area, peak position and width.

This work is dedicated, with immense admiration and gratitude, to Prof. Jeffries Wyman in occasion of his 90th birthday.
Dr. Dorde Filipovic's present address in Department of Biochemistry, University of Illinois at Urbana Champaign, 1209 West California Street, Urbana, IL 61801 USA.
proteins and/or from intrinsic structural and dynamic properties of their heme pocket (Cordone et al., 1988).

Flash photolysis as a function of temperature provides information on the effect of dynamics on the functional behavior of proteins (see e.g., Ansari et al., 1986; Austin et al., 1975). This approach has been used in a comparative study on several myoglobins and Hb subunits using glycerol/water as solvent (Winterhalter and Di Iorio, 1987). Systematic differences were observed between the two classes of proteins. The activation enthalpies for CO rebinding from inside the heme pocket, as obtained from low temperature kinetics, are higher in the myoglobins than in the Hb subunits and this situation is reflected in a higher degree of geminate ligand recombination at room temperature in the hemoglobin chains than in the myoglobins. Furthermore, the distribution of activation enthalpies derived from the flash photolysis measurements at cryogenic temperatures (see Eq. 3 in Theoretical Background) is considerably broader for the myoglobins and the β subunits than for the α chains (Alberding et al., 1978; Winterhalter and Di Iorio, 1987). The same behavior is observed when the chains are inserted in iron-cobalt hybrids (Winterhalter and Di Iorio, 1987), therefore excluding effects of the higher aggregation state of the “free” β subunits in determining their larger distribution of enthalpies. These findings were explained in terms of a different deformability of the heme pocket in the various proteins (Winterhalter and Di Iorio, 1987).

Here we combine the efforts of the Palermo and Zurich groups and compare the thermal behavior of both optical spectra and CO recombination kinetics after photolysis of the α and β human Hb subunits and of SW-Mb in ethylene glycol/water and glycerol/water mixtures.

According to this theory, which has been successfully applied to study the optical absorption spectra of hemoproteins (Cordone et al., 1986, 1988; Cupane et al., 1988; Leone et al., 1987; Schomacker and Champion, 1986; Srajer et al., 1986), the temperature dependence of the first and second moments of an absorption band is given by:

$$M_1 = \frac{\Delta E}{h} + \frac{2\pi^2}{h} \sum_j S_j R_j \nu_j(g)$$

$$+ \frac{1}{4} \sum_j (R_j - 1) \nu_j(g) \coth \frac{h \nu_j(g)}{2kT} \quad (1a)$$

$$M_2 = \frac{2\pi^2}{h} \sum_j S_j R_j^2 \nu_j^2(g) \coth \frac{h \nu_j(g)}{2kT} + 1 \quad (1b)$$

where k and h are the Boltzmann’s and Planck’s constants, ΔE is the energy difference between the excited and ground electronic states when the nuclei are at rest in their equilibrium positions, S_j and R_j are the Franck-Condon linear and quadratic coupling constants of the jth normal mode with the electronic transition, and $\nu_j(g)$ is the frequency of the jth normal mode when the electron is in the ground state. It is common practice to neglect the terms containing $(R_j - 1)^2$ in the equation of M_2 (Markham, 1959; Schomacker and Champion, 1986). The sums are extended over the entire set $\{j\}$ of normal modes to which the electronic transition under consideration is coupled. In Eq. 1b the term I^2 takes into account the temperature independent homogeneous broadening due to the finite lifetime of the excited state (Schomacker and Champion, 1986). If conformational heterogeneity (structural disorder) is present, the sums in Eqs. 1 must be extended also over all spectrally different species; in this case ΔE is an average value and I^2 takes into account also inhomogeneous broadening due to the presence of spectroscopically different conformational substrates. A direct use of Eqs. 1 to evaluate experimental data does not easily yield meaningful information on the various fitting parameters due to their large number. Therefore, the following simplified forms of Eqs. 1, obtained by averaging over all normal modes and conformational species, are widely used (Baldini et al., 1965: Markham, 1959):

$$M_1 = D + F \cdot \coth(h \bar{\nu}/2kT) \quad (2a)$$

$$M_2 = A \cdot \coth(h \bar{\nu}/2kT) + C^2 \quad (2b)$$

where the parameter $\bar{\nu}$ is a “mean effective” frequency of the nuclear motions coupled to the electronic transition. The term C^2 includes I^2 of Eq. 1a together with other constant contributions arising from the coupling of the optical electrons with zero-point vibrations of high frequency modes, not populated in the temperature.
range investigated. Analogous contributions to M, are included in the parameter D. As can be clearly seen from a comparison of Eqs. 1a and 2a and Eqs. 1b and 2b, parameters A and F are related respectively to the "mean effective" linear and quadratic terms of the electron-lattice coupling.

The various parameters appearing in Eqs. 2 are considered to be temperature independent. This assumption is tenable only if no relevant structural changes occur when the temperature is lowered. It is worth mentioning that assuming C^2 temperature independent does not mean that the rate of interconversion between substates is not influenced by the temperature, but simply that it is, at all temperatures, much slower than the electronic transitions.

Flash photolysis

At physiological temperatures, the ligand recombination kinetics to monomeric heme proteins is characterized by at least three processes, only one of which has an exponential time dependence and is influenced by the free ligand concentration in the solvent (Austin et al., 1975). The three processes are interpreted in terms of a sequential-barriers model (Ansari et al., 1986; Austin et al., 1975) in which the exponential component is related to the penetration of the ligand from the solvent into the protein (solvent process), the slower of the two nonexponential components is assigned to the migration of the ligand through the protein matrix (matrix process), and the other to its combination to the iron directly from inside the heme pocket (pocket process). Below ~120 K only ligand binding from within the heme pocket is observed; the protein is frozen in many conformational substates whose distribution reflects the dynamic properties of the system at physiological temperatures (Ansari et al., 1986; Dlott et al., 1983; Doster et al., 1982). Within this substates-model the time course for ligand binding at cryogenic temperatures is given by

$$N(t) = \int_0^\infty g(H) \cdot \exp(-k(H, T) \cdot t) \cdot dH,$$

where $N(t)$ is the fraction of heme sites which, at time t after photolysis, has not yet rebound a ligand and $g(H)$ is the probability distribution function of finding a protein molecule in a substate characterized by a ligand binding activation enthalpy between H and $H + dH$. The temperature dependence of k in Eq. 3 is assumed to follow Arrhenius’ law, i.e.

$$k(H, T) = k_0 \cdot \exp(-H/RT),$$

where k_0 is the preexponential factor, also containing the entropic contributions to the reaction, and R is the gas constant.

It is difficult to obtain $g(H)$ by numeric inversion of the integral in Eq. 3, being this an ill-conditioned procedure. Instead, it is common practice to use an analytical function to describe the enthalpy distribution and fit the parameters of the function to the experimental data. Several more or less empirical approaches have been used for this purpose (see e.g., Young and Bowne, 1984; Srajer et al., 1988).

MATERIALS AND METHODS

Sperm whale myoglobin

SW-Mb was purchased from Sigma Chemical Co. (St. Louis, MO) and used without further purification.

Hemoglobin chains

Human αth and βth hemoglobin subunits were prepared in the CO form after a modification of previously published procedures (Bucci, 1981; Geraci et al., 1969; Ikeda-Saito et al., 1981). For this purpose 25 ml of a freshly prepared Hb solution (~ 1 mM on heme basis) are mixed with 4.25 ml of 0.2 M KH$_2$PO$_4$ and 4.25 ml of 2 M KCl. Separately, 50 mg of p-chloro-mercuribenzoic acid (Sigma Chemical Co., St. Louis, MO) are dissolved in a minimal volume of 0.1 M KOH and diluted to 10 ml with 20 mM KH$_2$PO$_4$. 9 ml of the resulting PMB solution are added to the Hb (PMB/heme ratio ~ 5:1) and, after adjusting the pH to 6 with 2 M KH$_2$PO$_4$, the mixture is saturated with CO and incubated at 0°C for 24 h. The small precipitate possibly present is removed by centrifugation at 35,000 x g for 10 min and the clear solution is applied on a Sephadex G-25 column (φ 3.5 x 60 cm) equilibrated with 7 mM phosphate (obtained by dilution of 1 M phosphate buffer pH 6.8) and eluted with the same buffer. The protein solution is then applied on a Whatman CM-52 column (φ 2.5 x 8 cm) also equilibrated with 7 mM phosphate and the βth chains are eluted with the same buffer. The column is then washed with 20 mM phosphate (again obtained by dilution of 1 M phosphate buffer pH 6.8) to remove the unsplit HbA and subsequently the αth subunits are eluted as a sharp concentrated band with 0.1 M phosphate buffer pH 7. Immediately after the elution from the CM-52 column the PMB chains are concentrated at 0°C to 15 ml with an ultrafiltration chamber under 300-400 kpa of pure CO. For SH groups regeneration a Sephadex G-25 column (φ 3.5 x 60 cm) is equilibrated with 0.1 M Tris-HCl buffer pH 7.4 containing 0.1 M KCl and 0.5 mM EDTA. 15 ml of the equilibration buffer containing 10 mM 2-mercaptoethanol are applied on the G-25 column immediately followed by the 15 ml of PMB chains. The subunits with regenerated SH groups are eluted with 2-mercaptoethanol free buffer. After a solvent exchange to 10 mM phosphate pH 7 and a concentration, by ultrafiltration under CO, to ~10 mM the subunits are checked for purity and complete SH groups regeneration by isoelectric focusing and UV absorption spectroscopy (Winterhalter and Colosimo, 1971). The concentrated stock solutions of αth-CO and βth-CO chains are stored in liquid nitrogen in small aliquots to be thawed only immediately before use.
Sample preparation

All samples were prepared by diluting concentrated protein stocks solutions into water-cosolvent-buffer mixtures previously equilibrated with CO and containing 65% (vol/vol) glycerol or ethylene glycol in water and 0.1 M phosphate buffer (pH 7 in water at room temperature); ~3 · 10⁻⁴ M sodium dithionite was also added anaerobically. Final protein concentrations were of the order of 10⁻⁴ M. 65% cosolvent concentration was chosen to allow the comparison of the spectroscopic data on the isolated Hb subunits with those on SW-Mb and Hb published previously (Cordone et al., 1988). For the spectrophotometric measurements the samples were transferred anaerobically to a 1-cm metacrylate cell (UV grade; Kartell, Italy) as previously described (Cordone et al., 1986). Samples for flash photolysis were anaerobically transferred to a gold-plated copper cell with a 1.2-mm optical path and equipped with metacrylate windows. The use of metacrylate is a necessary prerequisite to obtain perfectly transparent samples over the entire temperature range investigated; as already reported by Cordone et al. (1986), no effect of temperature on the baseline could be detected in the 400-800-nm region when the solvent-cosolvent mixture was measured. Glycerol (Carlo Erba, Milan, Italy, or Fluka, Buchs, Switzerland) and ethylene glycol (Fluka) were analytical grade and used without further purification.

Instrumentation

For the flash photolysis measurements a Nd:YAG pulsed laser (YG471 A/P; Quantel, Orsay, France) was used as photolyzing source. This laser is capable of delivering 12-nS light pulses with an energy of up to 400 mJ at 532 nm. Typically, 70-mJ pulses were used. The sample was kept at the desired temperature using a continuous flow CF 100 cryostat equipped with a temperature controller (Oxford, Osney Mead, Oxford, UK). Monitoring of the CO recombination after photolysis was done at 436 nm and data were simultaneously collected on a 100-MHz 8 bit linear waveform recording system (TR8018 and MM8103A; Le Croy, Chestnut Ridge, NY) and a 1-MHz 12 bit transient recorder with logarithmic data averaging (Wondertoy II, Department of Physics of the University of Illinois at Urbana-Champaign). Measurements were performed from 40 to 110 K every 10 K and after each flash the sample was heated up to 140 K to allow complete relaxation. For each temperature three to five measurements were mediated and the resulting trace was logarithmically time averaged to give a total of 15-40 data-points (transmittance with standard deviation vs. time).

The experimental setup and methods for the optical measurements have been described previously (Cordone et al., 1986; Leone et al., 1987). The spectra were taken on a Jasco Uvidec 650 spectrophotometer; the spectral bandwidth was fixed to 0.4 nm and the time constant to 1 s. Data were recorded at 0.4-nm intervals on magnetic tape for later analysis. To allow comparison of the presently reported spectra with those of HbA-CO and Mb-CO, previously obtained on a Cary 118C spectrophotometer (Cordone et al., 1988), the wavelength calibration of the two instruments was carefully checked by scanning the 586 nm emission line of a deuterium lamp.

Data analysis

Flash photolysis traces were analyzed by global least squares fitting to Eqs. 3 and 4 or, when needed, to a sum of two distributed processes of the type

\[N(t) = \int_{0}^{\infty} g_i(H) \cdot \exp[-k_i(H, T) \cdot t] dH \\
+ (1 - f) \int_{0}^{\infty} g_0(H) \cdot \exp[-k_0(H, T) \cdot t] dH. \] (5)

For the enthalpy distributions the modified \(\Gamma \) function

\[g(H) = H^{\tau+1} \exp(-\Psi \cdot H) \] (6)

was used, where the enthalpy peak position is given by

\[H_{\text{peak}} = (3 \mu - 1)/\Psi. \] (7)

A large value of \(\Psi \) corresponds to a narrow distribution width. The integral in Eq. 5 was computed numerically by the Romberg method to an accuracy of 10⁻³ \(\Delta \text{OD} \) units per each value of time and the total area of the enthalpy distribution was normalized to unity. The global reduced \(\chi^2 \) was minimized according to Marquardt (Marquardt, 1963) in the \(\Delta \text{OD} \) space, weighting each experimental point on the basis of its reciprocal variance computed from the standard deviation in transmittance (Bevington, 1969). After convergence was reached the \(\chi^2 \) surface around the minimum was analyzed with respect to each fitting parameter and the 67% confidence limits were thus estimated (resulting in nonsymmetric errors) along with the correlations between parameters (Beechem and Gratton, 1988). Both fitting procedures and error analysis of the fitted parameters were done on IBM compatible personal computers.

The spectral deconvolution in terms of gaussian components \(G(v) = A \cdot \exp[-(v - v_0)^2/2\sigma^2] \) was performed on a HP-1000 computer. The mean square deviation was minimized using a nonlinear least-squares algorithm. The zeroth, first, and second moment of each band were calculated according to

\[M_0 = \int_{0}^{\infty} \epsilon(v) \, dv \] (8a)

\[M_1 = \int_{0}^{\infty} v \cdot \epsilon(v) \, dv / M_0 \] (8b)

\[M_2 = \int_{0}^{\infty} v^2 \cdot \epsilon(v) \, dv / M_0 - M_1^2 \] (8c)

where \(\epsilon(v) \) is the absorbance at the optical frequency \(v \) of the relevant gaussian component. Within the so called narrow band approximation (Dexter, 1958), \(M_0 \) is proportional to the oscillator strength and Eqs. 8b, c are the first and second spectral moments which satisfy Eqs. 2a, b, respectively. To fit the Qb band, assigned to a \(\pi \rightarrow \pi^* \) transition (Eaton et al., 1978; Eaton and Hofrichter 1981), two gaussians are needed over the entire temperature range (see also Cordone et al., 1986). Therefore, the moments relative to Qb are calculated from the distributions resulting from the sum of \(G_1 \) and \(G_2 \). The Qb band, interpreted as a vibronic of Qa (Eaton et al., 1978; Eaton and Hofrichter, 1981), is well approximated by a single gaussian. We analyze the moments of Qa and Qc, rather than those of the individual gaussians, because \(G_1 \) and \(G_2 \) are not assigned to particular electronic transitions.

RESULTS

As an example of our kinetic data and of the results of our fitting procedures we report in Fig. 1 the time
rebinding kinetics of the investigated proteins at 60 and 100 K are depicted in Fig. 2. Sizable differences between the time courses in the two solvents are seen for the β^{SH} while for the α^{SH} chains and SW-Mb small changes in the kinetic behavior in the two solvents are observed (note the logarithmic scale). It should also be noted that, while the CO recombination to SW-Mb after photolysis is faster in glycerol than in ethylene glycol, the opposite is true for the Hb chains.

Fig. 3 shows the distributions of activation enthalpies for CO binding from inside the heme pocket relative to the α^{SH} and β^{SH} subunits and to SW-Mb, both in 65% ethylene glycol and glycerol. The relative values of the fitting parameters are given in Table 1. It should be noted that for the α^{SH} and β^{SH} chains, in both solvents, the sum of two Γ functions (Eqs. 4 and 5), with temperature-dependent amplitudes (Table 2), is needed to fit the data while a single distribution (Eqs. 3 and 4) satisfactorily fits the SW-Mb kinetics. The second distribution needed to fit the CO recombination to the Hb chains has, at all temperatures, a small amplitude compared with the total (Table 2). Furthermore, the χ^2 values obtained when the parameters relative to the two enthalpy distributions are left independently free during

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Fitting parameters relative to CO binding kinetics between 40 and 110 K to the α^{SH} and β^{SH} Hb subunits and to SW-Mb in 65% glycerol and 65% ethylene glycol. 67% confidence limits are given in square brackets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α chains</td>
</tr>
<tr>
<td>Comp. 1</td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>5.93</td>
</tr>
<tr>
<td></td>
<td>5.21</td>
</tr>
<tr>
<td>Ψ (mol/kJ)</td>
<td>3.05</td>
</tr>
<tr>
<td></td>
<td>2.75</td>
</tr>
<tr>
<td>H_{peak} (kJ/mol)</td>
<td>5.51</td>
</tr>
<tr>
<td></td>
<td>9.07</td>
</tr>
<tr>
<td>Comp. 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.76</td>
</tr>
<tr>
<td>Sperm whale Myoglobin</td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>3.51</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ψ (mol/kJ)</td>
<td>0.90</td>
</tr>
<tr>
<td>H_{peak} (kJ/mol)</td>
<td>10.59</td>
</tr>
<tr>
<td>Log k_p/s^{-1}</td>
<td>9.01</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H_{peak} is not a fitting parameter and is computed from μ and Ψ according to Eq. 7. All samples contain 0.1 M phosphate pH 7 in water at 293 K. More details are given under Materials and Methods.
the fitting procedures, compared with those obtained when they are forced to assume the same values, are not significantly different. The two kinetic components are therefore distinguishable solely by their preexponential factors both in the SH and 8SH subunits.

For the SH chains and SW-Mb the solvent effects on the center and width of the enthalpy distribution are barely above the experimental error. In contrast, in the case of the 8SH subunits the distribution in glycerol has a somewhat larger H_{peak} and is definitely broader compared with that in ethylene glycol. Fig. 3 also shows that the $g(H)$ profiles are narrowest for the SH, broader for the 8SH chains, and even more so for SW-Mb, in agreement with previously published data (Alberding et al., 1978; Winterhalter and Di Iorio, 1987). Concerning the preexponential factors we note that they are solvent independent only for the SH chains and that in the other cases are larger for the measurements in glycerol than in ethylene glycol (Table 1).

Fig. 4 shows the visible spectra at various temperatures of the carbonyl derivative of SH and 8SH chains in both solvents used. All spectra consist of two main bands assigned to a single $\pi \rightarrow \pi^*$ transition (Eaton et al., 1978; Eaton and Hofrichter, 1981), the high frequency one (Q_4) being considered the vibronic of that at lower frequency (Q_0). The thermal behavior of the band profiles for the SH chains is very similar to that reported for human Hb (Cordone et al., 1986) and is practically identical in ethylene glycol/water and in glycerol/water. Instead, sizable differences are found for 8SH chains in the two solvents. To obtain the moments of these bands, we have carried out a deconvolution of the spectra in

![FIGURE 2](image1.png)

FIGURE 2 Time courses for CO recombination to isolated SH (a) and 8SH (b) Hb subunits and to SW-Mb (c) after photolysis at 60 K (□) and 100 K (○). Open symbols refer to 65% glycerol, solid symbols to 65% ethylene glycol. More details on solvent composition are given in Table 1.

![FIGURE 3](image2.png)

FIGURE 3 Enthalpy distributions for carbon monoxide binding to the isolated SH (left) and 8SH (center) subunits from HbA and to SW-Mb (right) as obtained from flash photolysis measurements between 40 and 110 K in 65% ethylene glycol (solid lines) and 65% glycerol (dashed lines). The distributions are normalized to unit area. More details on solvent composition are given in Table 1.

TABLE 2 The kinetics of CO recombination to the isolated Hb subunits have been fitted using a sum of two processes (Eqs. 4–7) differing only in their pre-exponential k_c (see also Table 1)

<table>
<thead>
<tr>
<th>K</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GL</td>
<td>1.00</td>
<td>0.859</td>
<td>0.861</td>
<td>0.872</td>
<td>0.927</td>
<td>0.946</td>
<td>0.966</td>
<td>0.976</td>
</tr>
<tr>
<td>EG</td>
<td>0.972</td>
<td>0.844</td>
<td>0.848</td>
<td>0.861</td>
<td>0.908</td>
<td>0.944</td>
<td>0.950</td>
<td>0.977</td>
</tr>
<tr>
<td>8SH</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GL</td>
<td>1.00</td>
<td>0.926</td>
<td>0.922</td>
<td>0.939</td>
<td>0.953</td>
<td>0.960</td>
<td>0.966</td>
<td>0.973</td>
</tr>
<tr>
<td>EG</td>
<td>0.799</td>
<td>0.802</td>
<td>0.882</td>
<td>0.914</td>
<td>0.940</td>
<td>0.962</td>
<td>0.978</td>
<td>0.983</td>
</tr>
</tbody>
</table>

Here we report the fraction of the faster component (f in Eq. 5) obtained from the global fittings of the kinetic traces between 40 and 110 K. More details are given in the data analysis and results sections as well as in part d of the discussion. EG = Ethylene glycol; GL = Glycerol.
gaussian components as previously reported for Hb-CO and Mb-CO (Cordone et al., 1988; Leone et al., 1987); two typical deconvolutions are depicted in Fig. 5.

For all proteins lowering the temperature produces an increase of \(M_0 \) by \(\sim 15\% \) over the temperature range investigated (data not shown) consistent with the thermal contraction of the sample and with a small temperature dependent mixing of the porphyrin \(\pi \) with the iron \(d \) orbitals (Cordone et al., 1986; Leone et al., 1987).

In Figs. 6 and 7 the \(M_1 \) and \(M_2 \) values, relative to the \(\alpha^{\text{SH}} \)-CO and \(\beta^{\text{SH}} \)-CO visible bands \(Q_0 \) and \(Q_e \), are reported as a function of temperature along with analogous data on HbA-CO and SW-Mb-CO from the literature (Cordone et al., 1988). The behavior of the \(\alpha^{\text{SH}} \)-CO chains compares very well with that of Hb-CO; for both proteins \(M_1 \) and \(M_2 \) are virtually solvent independent at all temperatures and the experimental data can be well fitted by Eqs. 2, giving the results reported in Table 3. For the \(\beta^{\text{SH}} \)-CO chains, however, both \(M_1 \) and \(M_2 \) depend on the solvent composition and the temperature dependence of \(M_1 \) displays a barely detectable sigmoidal shape, qualitatively analogous to that reported for SW-Mb. Among all proteins investigated, only for the \(\beta^{\text{SH}} \)-CO chains is the second moment of the visible bands influenced by the external medium. The parameters obtained by fitting the thermal behavior of \(M_1 \) and \(M_2 \) relative to the \(\beta^{\text{SH}} \) chains are also given in Table 3.

DISCUSSION

The data shown in Figs. 2, 3, 6, and 7, in Tables 1 and 3 reveal unique optical and kinetic properties for each of the proteins investigated, also in terms of their susceptibility to changes in the solvent composition. Whenever an influence of the external medium on a given protein is seen, this applies to both flash photolysis and absorption spectroscopy data. The most relevant aspects of these results demand a detailed discussion.

a) Differences between proteins

Even without considering solvent effects, the low temperature flash photolysis data reveal characteristic features for each of the proteins investigated, in terms of activation enthalpy distributions \(g(H) \) and of preexponential factors \(k_0 \) (Fig. 3 and Table 1). Also, the optical spectroscopy data reveal sizable differences among the various proteins in the thermal behavior of \(M_1 \) and \(M_2 \) of both \(Q_0 \) and \(Q_e \) (Figs. 6 and 7), resulting in different values of the parameters \(A, C, \) and \(D \) (Table 3).
b) Solvent effects

Changes in the solvent composition influence differently the kinetic and optical spectroscopy properties of each of the proteins investigated. For the sake of clarity we analyze them individually.

i) α^{SN} chains

The $g(H)$ distributions and the preexponential factors for low temperature CO recombination to the α chains (Fig. 3 a and Table 1), as well as the thermal evolution of the optical spectra (Figs. 6 and 7 and Table 3), can be regarded as solvent independent. Very tiny differences between the M_1 and M_2 values of both Q_o and Q_v bands in the two solvents are detected only in the low temperature range and parallel the minimal differences between the $g(H)$ distributions in ethylene glycol/water and in glycerol/water.

ii) β^{SN} chains

The low temperature CO rebinding kinetics to the β hemoglobin subunits are faster in ethylene glycol/water than in glycerol/water (Fig. 2 b). Opposite enthalpic and entropic effects (Fig. 3 b and Table 1) contribute to the determination of the reaction velocity and partially compensate each other. In fact, the $g(H)$ distribution in glycerol/water is broader and slightly displaced toward higher enthalpies with respect to that in ethylene glycol/water whereas the log (k_o) values are larger in glycerol than in ethylene glycol. The spectroscopic data display solvent-dependent thermal evolutions of M_1 and M_2 for both Q_o and Q_v (Figs. 6 and 7) and the results of the fittings to Eqs. 2 yield larger C and smaller D values in glycerol/water than in ethylene glycol/water.

iii) Sperm whale myoglobin

Also in this case the solvent composition influences the time course for CO rebinding, but, compared with the β chains, produces opposite effects being CO rebinding faster in glycerol than in ethylene glycol (Fig. 2 c). This result is in agreement with a previous report by Cordone et al. (1990) and reflects large differences in the preexponential factor and minor ones in the $g(H)$ distributions (Fig. 3 c and Table 1). The different kinetic behavior of SW-Mb in the two solvents can thus be ascribed mainly to an entropic effect.

Concerning the spectroscopic data, the results depicted in Figs. 6 and 7 and in Table 3 show that the M_2 thermal behavior for both visible bands is, in SW-Mb, unaffected by the solvent composition. In contrast, the temperature dependence of M_1 is influenced by the solvent and exhibits a marked sigmoidal shape. Furthermore, at low temperatures the values of M_1 are higher in ethylene glycol than in glycerol (Fig. 6).

c) Correlation between kinetic and spectroscopic behavior

A relevant point, emerging from this investigation, is the correlation between the solvent effects in the CO binding kinetics and on the thermal evolution of the optical absorption spectra.

The first correlation is between the width of the $g(H)$ distributions (Fig. 3) and the values of the parameter C in Table 3. Broad enthalpy distributions correspond to large C values and, as the $g(H)$ becomes narrower, the parameter C drops down to nearly zero, as for the Q_o band of the α chains (Table 3). This correlation holds for
The solid (A) obtained using broadening bands (bottom) of the heme

solvent composition, influenced by proteins all account i) also lines 2a. As pointed out in the theoretical section, C takes into account i) the homogeneous broadening of the spectral bands, ii) the coupling of the electronic transition with high frequency modes, and iii) inhomogeneous line broadening due to the presence of substrates. The high frequency modes-coupling² and/or the homogeneous line broadening of the spectral bands are likely to be fairly insensitive to changes in the external medium and therefore we ascribe the solvent effect on parameter C, observed for the \(\beta \) chains (Table 3), to differences in the distribution of conformational substates. Taking into account the effect of the external medium on the \(g(H) \) distributions relative to the \(\beta \) chains (Fig. 3b), this interpretation of the solvent dependence of C implies a nonrandom mapping between the frequency of the optical transitions and the enthalpy barrier for CO rebinding from inside the heme pocket. The difference between the C values obtained for the \(Q_b \) band of the \(\beta \) chains in the two solvents (\(\sim 70 \) cm\(^{-1}\)) gives an estimate of the contribution of the inhomogeneous broadening to the width of the optical bands. More quantitative conclusions cannot be drawn from our data due to the high standard deviations in the estimated values of the fitting parameters (Table 3). The presence of inhomogeneous broadening in the spectral bands of SW-Mb and the correlation between spectral and functional heterogeneity has been already proposed to explain the blue shift of the Mb-CO Soret, Mb near IR (\(\sim 760 \) nm), and IR CO stretching bands occurring during carbon monoxide rebinding after photolysis (Ansari et al., 1987; Ansari, 1988; Ormos et al., 1990).

A further correlation, between the values of the preexponential factor and those of \(M_i \) at low temperatures, emerges from the data reported in Table 1 and in Fig. 6. Whenever the solvent composition influences \(\log (k_0) \) (\(\beta \) chains and SW-Mb), a change of \(M_i \) is also observed in the opposite direction. Some considerations can be made on the possible physical origin of this correlation. The preexponential factor \(k_0 \) contains the entropic contribution to the free energy of ligand binding and has been related to the effective volume of the heme pocket (Braunstein et al., 1988; Frauenfelder and Wolynes, 1985). One would therefore expect an increase in \(k_0 \) if the constraints imposed by the external medium on the protein produce a decrease in the volume of the heme pocket. The distal residues E7 and E11 have already been proposed as responsible, to a large extent, for the changes in the heme-pocket free volume (Braunstein et al., 1988) and the “packing” of the heme cavity is likely to influence the geometry assumed by the bound CO. Thus, in SW-Mb the most populated of the three different geometries of bound CO (A states), detected both by IR spectroscopy (Ormos et al., 1988) and x-ray

²We note that these high frequency modes occur most likely within the heme plane (heme macrocyclic vibrations) and their frequency and coupling to the \(\pi \rightarrow \pi^* \) transitions should be fairly insensitive to the average protein structure.
crystallography (Kuriyan et al., 1986), is “off-axis” by ~28° (Braunstein et al., 1988) while in the synthetic SW-Mb mutant, in which the distal histidine is replaced by a glycine with a considerable increase of heme-pocket volume, only one IR CO stretching band is seen, corresponding to a geometry of binding which deviates by 20° from the heme normal (Braunstein et al., 1988). The log (k_o) values for low temperature CO binding in glycerol/water to native SW-Mb and to its mutant with the distal glycine are, respectively, 9 and 8.4 (Table 1; Braunstein et al., 1988). On the basis of these observations it could be proposed that to a displacement of the distal residues away from the heme should correspond an increase in the heme pocket free volume and, as a consequence, a more axial geometry of CO binding and a decrease in k_o. If the dipolar nature of the CO molecule is taken into account one can predict a reduction of the component of the dipole moment perpendicular to the heme plane upon tilting of the bound CO away from the axial configuration. This in turn, on the basis of simple electrostatic considerations, is expected to lower the ΔE relative to the in plane-polarized $\pi \rightarrow \pi^*$ transition and therefore the low temperature M_1 values of the visible bands. An increase in the off-axis geometry of CO binding should thus result in a red shift of the visible bands and, conversely, a blue shift would be indicative of a more axial binding geometry. The above arguments rationalize, to a first approximation, the inverse relationship between the solvent effects on the low temperature M_1 values and on k_o found for the β chains and SW-Mb (Fig. 6, Tables 1 and 3) and the absence of solvent effects on M_1 and k_o in the α chains (Fig. 6 and Table 1). Nevertheless, the absolute values of M_1 and k_o relative to this protein indicate a more complex situation. In fact, at low temperatures M_1 for the α chains is higher than for any other of the proteins investigated in this work, thus implying a more axial geometry of CO binding. This agrees with (i) the position of the single IR CO stretching band, centered at ~1,955 cm$^{-1}$ (D. Braunstein and S. Luck, personal communication), compared with 1,945 cm$^{-1}$ measured for the major “A state” in SW-Mb (Braunstein et al., 1988), (ii) with x-ray crystallography results showing a reduced steric hindrance at the distal side of the α subunit within the Hb tetramer (Perutz et al., 1987), and (iii) with XANES data indicating a more linear geometry for the Fe-CO bond in the α chains than in the β or in SW-Mb (Congiu Castellano et al., 1989). But the values of k_o for CO binding to the α chains, if compared with those relative to SW-Mb, are apparently inconsistent with a larger effective volume of the heme pocket in the former protein. This inconsistency implies the existence of other factors, which can vary considerably in different proteins, in determining k_o, e.g. the ratio between the number of unbound and activated states that the ligand can populate or the contribution from the whole protein to the entropy of ligation.

d) Heterogeneity of the low T kinetics time courses

The low temperature kinetics for CO recombination to the isolated Hb subunits cannot be well approximated by a single $g(H)$ distribution (Eqs. 3 and 4). Instead, good fittings (e.g. Fig. 1) are obtained using the double distribution model described in Data Analysis (Eq. 5). Although this is not a major aspect of the investigation

FIGURE 7 M_1 values as function of temperature for Q_{α} (top) and Q_{β} (bottom) bands of α^{Hb}-CO (□) and β^{Hb}-CO chains (Δ) (left), and of Hb-CO (Δ) and SW-Mb-CO (□) (right). Open symbols refer to 65% glycerol, solid symbols to 65% ethylene glycol. The continuous lines represent the fit to the experimental values obtained using Eq. 2b.
Thus, in compressibility terms and is solvent here given the for the carbonyl α^{em} and β^{em} subunits from human Hb.

![Table 3](image)

Analogous data obtained for Hb and SW-Mb (Cordone et al., 1988) are also given for comparison. No values for the parameters D and F are reported for SW-Mb in view of the sigmoidal behavior of its M_t temperature dependence. See Table 1 for details on solvent composition. EG = Ethylene glycol; GL = Glycerol.

reported in this paper, it deserves some comments. We propose, to tentatively interpret the phenomenon, a correlation between the kinetic heterogeneity and the multiplicity of states which the bound and the photolyzed CO molecule can populate, that is the A and B states according to the terminology adopted by the Frauenfelder group (Alben et al., 1982). The low-temperature FTIR spectra of the isolated α chains display a single CO stretching band when the ligand is bound to the heme-iron and two when it is photolyzed (D. Braunstein, unpublished results), a situation which could lead to biphasic flash photolysis time courses. For SW-Mb the number of A and B states is too high (Ansari et al., 1987) to be detected in our kinetic measurements and therefore the experimental traces can be fitted with a single enthalpy distribution. Unfortunately, the data presently available are not sufficient to provide a solid explanation of the observed kinetic behavior.

e) M_t, temperature dependence

Finally, we would like to comment on the interpretation given in a previous investigation (Cordone et al., 1988) for the sigmoidal behavior of the M_t temperature dependence in SW-Mb, as compared with the smooth thermal evolution of M_t in Hb. This finding had been attributed to the different state of aggregation or to a different compressibility of the two proteins. The data reported here rule out the first interpretation, but are consistent with the second. The fact that the M_t thermal evolution in Hb is not the average of those of the isolated subunits and is solvent independent (Fig. 6) can also be explained in terms of differences in compressibility between the subunits. Thus, in keeping with their narrow and solvent independent g(H) distributions, as compared with those of β chains (Fig. 3 and Table 1), the α chains are capable to buffer the constraints imposed by the external medium on the Hb tetramer.

CONCLUSIONS

The picture that we propose on the basis of our results is the following: I) The α chains, with their solvent-independent narrow g(H) distributions (Fig. 3a) and low C values (Table 3) display the lowest functional and spectroscopic heterogeneity and have a low level of steric hindrance at the distal side of the heme. This situation is consistent with a small distal contribution to the enthalpy of ligand binding.

II) The β chains have a larger heterogeneity than the α subunits, both in kinetic (Fig. 3b and Table 1) and spectroscopic (Table 3 and Fig. 7) terms. Furthermore the solvent composition influences the shape and position of the g(H) distributions as well as M_t. The low temperature M_t values and the log (k_o) are indicative of a higher packing of the heme pocket and a CO geometry of binding slightly more tilted as compared with the α chains. The difference with the α chains is larger in glycerol than in ethylene glycol. The postulated increase of distal side hindrance, combined with the fairly small H_{peak} values shown in Fig. 3b, renders the overall enthalpy of CO binding to the β chains sensitive to changes in the solvent composition.

III) Sperm whale Mb exhibits, among the proteins investigated, the largest structural and functional heterogeneity. The peak enthalpy for CO rebinding from inside the heme-pocket is considerably larger than in the Hb subunits (∼10 kJ · M⁻¹ vs. 4–5.5 kJ · M⁻¹) and the packing of the heme-pocket is higher. Under these conditions, the structural perturbations induced by
changes in the solvent composition (mainly of distal nature) cannot significantly contribute to the overall enthalpy of ligand binding. This explains why in SW-Mb the $g(H)$ distribution is practically unaffected by the solvent, even though some alteration at the distal side of the heme are likely to occur, as shown by the changes in the low temperature M_t (Fig. 6) and in the preexponential values (Table 1).

The authors wish to thank H. Frauenfelder and his group for helpful discussions and for providing us, prior to publication, the work by Ormos et al. (1990). The technical help by J. Forrer, V. Greco, W. Jäggi, G. Lapis, A. Lehman, P. Nyffeler, and M. Quartararo is highly appreciated. We would particularly like to thank Joel Berendzen and Todd B. Sause for having built for us the logarithmic data averaging transient recorder (Wondertoy II).

This work has been supported by the Swiss National Science Foundation grants 3.123-0.85 and 31.9423.88, by the ETH special credit 03586/1-1080.5 (Dr. Di Iorio, Dr. Hiltiendorf, Dr. Filipovic, and Dr. Winterhalter), by the National Institutes of Health grant RR03155 (Dr. Gratton), and by the "Ministero della Pubblica Istruzione" (Dr. Vitrano, Dr. Cupane, Dr. Leone, Dr. Cordone). General indirect support from CRRNSM to Dr. Vitrano, Dr. Cupane, Dr. Leone, and Dr. Cordone is also acknowledged.

Received for publication 9 May 1990 and in final form 13 September 1990.

REFERENCES

