Lawrence Berkeley National Laboratory
Recent Work

Title
Center for Beam Physics 1992

Permalink
https://escholarship.org/uc/item/7c83f4vh

Author
Chew, J.

Publication Date
1993-06-01
Center for Beam Physics

1992

Accelerator and Fusion Research Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

June 1993

This work was supported principally by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Support came from the Director, Office of Energy Research, through the Office of Basic Energy Sciences (Materials Sciences Division) and the Office of High Energy and Nuclear Physics (High Energy Physics Division).
CONTENTS

Foreword .. ii
Facilities ... 1
Organizational Chart .. 3
Roster .. 4
Profiles
 Scientific Staff .. 5
 Technical Support ... 23
 Students .. 24
 Administrative Support .. 27
Affiliates ... 28
Center Publications (1991-93)
 External Notes .. 29
 Internal Notes .. 37
Appendix: 1992 Summary of Activities .. 4-1
 (Reprinted from Chapter 4, Accelerator and Fusion Research Division: 1992 Summary of Activities,
 Lawrence Berkeley Laboratory, University of California, December 1992, LBL-33377, UC-414)
FOREWORD

"Nothing happens unless first a dream"
— Carl Sandburg

The Center for Beam Physics is a multi-disciplinary research and development unit in the Accelerator and Fusion Research Division of the Lawrence Berkeley Laboratory. At the heart of the Center’s mission is the fundamental quest for mechanisms of acceleration, radiation and focussing energy. The Center is dedicated to exploring and investigating the frontiers of the physics of (and with) particle and photon beams. Its primary mission is to promote the science and technology of the production, manipulation, storage and control of systems of charged particles and photons — often in the form of ‘beams’ with directed energy — as applied to studies of the fundamental structure and processes of the natural world as well as for the very sake of understanding the science of focussing and directing energy. The Center serves this mission via conceptual studies, theoretical and experimental research, design and development, institutional project involvement, external collaborations, association with industry and technology transfer. These activities support exploring the next steps in the development of particle accelerators which are important both for probing the fundamental interactions and for the wide range of disciplines now turning to synchrotron radiation sources and free electron lasers. Accordingly, the program of the Center is not limited to specific programmatic categories of the Department of Energy, but rather serves wide areas of research. The research program of the Center is directly linked with advances in high energy and nuclear physics, condensed matter, material and chemical sciences and the life sciences.

Yet another important mission of the Center is education of students and scientific as well as outside community via graduate instruction, research supervision and pedagogical expositions.

Special features of the Center’s program include addressing R&D issues needing long development time and providing a platform for conception, initiation and support of institutional projects based on ‘beams’. The Center brings a significant amount of diverse, complementary and self-sufficient expertise in accelerator physics, synchrotron radiation, advanced microwave techniques, plasma physics, optics and free electron lasers to bear on the forefront R&D issues in particle and photon beam research. In addition to functioning as a clearing house of ideas and concepts and the necessary related R&D (e.g. various theoretical and experimental studies in beam physics, nonlinear dynamics, optics and instrumentation), the Center provides core support to laboratory facilities and initiatives e.g. core accelerator physics and systems support to the Advanced Light Source (ALS), technical support for the PEP-II asymmetric B-factory and the LBL proposed Chemical Dynamics Research Laboratory (CDRL) initiative, etc..

The multi-disciplinary programs of the Center are funded by various divisions within the DOE (largely by High Energy and Nuclear Physics and Basic Energy Sciences), as well as laboratory directed R&D funds. The Center also manages three in-house research facilities: (i) the Lambertson Beam Electrodynamics Laboratory, (ii) the CBP Laser-Optics Laboratory and (iii) the Beam Test Facility at the ALS. Formal external collaborations include: (i) SLAC-LBL-LLNL PEP-II studies, (ii) Stanford-LBL-BNL-TRW on FEL SCRF technology, (iii) LBL-Stanford on FEL diagnostics, (iv) CEBAF-LBL on IRFEL studies and (v) LBL-Peking University on Photocathode/SCRF technology.

This roster provides a glimpse at the scientists, engineers, technical support, students, and administrative staff that make up this outstanding team. The following pages provide a flavor of our multifaceted activities during 1992.

Swapan Chattopadhyay
Head, Center for Beam Physics
Lambertson Beam Electrodynamics Laboratory

Nurtured, promoted and continually updated over the years by Glen Lambertson of LBL, the laboratory houses, in an environment of controlled temperature, various instruments, equipments and apparatus for low-power-level, high-precision RF measurements of beam-handling structures. Inventory includes sophisticated bead pulling apparatus, time domain reflectometry set up, high frequency network and spectrum analyzers, microwave parts and absorbing materials, etc. Also includes a small shop set-up and facilities to perform sophisticated electrodynamic computation of properties of dynamic RF devices.

CBP Laser-Optics Laboratory

The Laboratory houses lasers, optical components, plasma devices and computers for data acquisition and control for experimental study of optical cavities, optical spectrometers, scaled FEL optics configurations, plasmas, etc.

Beam Test Facility

The facility, presently under construction, will provide access to a 50 MeV electron beam from the ALS injector linac, transferred via a magnetic transport line to a specially shielded experimental vault for various beam-plasma, laser-electron beam scattering and beam-RF structure interaction studies.

CBP Dedicated Workstations

Solbourne 502
Hewlett Packard 375
IBM RS/6000 (two)
VAXstation II

CBP Mini-Library

The library contains selected reference and textbooks on beams, plasmas, lasers, accelerator physics, dynamics, etc., as well as a few technical journals, recent preprints and conference proceedings. It is also used as a mini conference room.

APIARY Conference Room and Microwave Link

This is a large conference room for seminars and meetings with the special feature of being connected via a microwave link to SLAC, allowing joint conferences and meetings with the scientists and engineers from SLAC and Stanford University. At present, the room is routinely used for joint LBL-SLAC-LLNL meetings on the PEP-II asymmetric B-factory, elegantly acronymed as APIARY (Asymmetric Particle Interaction Accelerator Research Yard) by LBL physicist A.A. Garren previous to the present project title. It is also used regularly for biweekly Center for Beam Physics seminars.
CENTER for BEAM PHYSICS
Organization

ADMINISTRATION and BUDGET
J. Kono

CBP
S. Chattopadhyay
Deputy: K.-J. Kim

Sensitive Equipment Records
M. Xle

50 MeV BEAM TEST FACILITY
S. Chattopadhyay

EH&S and QA
S. Chattopadhyay
J. Corlett

RADIATION SOURCES
K.-J. Kim

BEAM ELECTRODYNAMICS
J. Corlett

HIGH ENERGY COLLIDER PHYSICS
A.M. Sezler

HIGH LUMINOSITY COLLIDER PHYSICS
M. Zisman

STORAGE RING-BASED LIGHT SOURCES
A. Jackson

CDRL-IRFEL
R. Gough
K.-J. Kim

CBP LASER-OPTICS LAB.
W. Leemans

LAMBERTSON BEAM ELECTRODYNAMICS LAB.
W. Barry

PEP-II ASYMMETRIC B-FACTORY

ALS ACCELERATOR PHYSICS & SYSTEMS
R. Keller
A. Jackson
CENTER FOR BEAM PHYSICS

Roster

Scientists and Engineers
BARLETTA, William
BARRY, Walter
BENGTSSON, Johan
BYRD, John
CHATTOPADHYAY, Swapan
CHIN, Yong Ho
CONDE, Manoel
CORLFTT, John
EDIGHOFFER, John
FOREST, Etienne
FURMAN, Miguel
GARREN, Alper
GOLDBERG, David
GOUGH, Richard
JACKSON, Alan
JOHNSON, Jimmie
KELLER, Roderich
KIM, Charles
KIM, Kwang-Je
KWON, Soo-II
LAMBERTSON, Glen
LEEMANS, Wim
LI, Hai
MEDDAHI, Malika
NISHIMURA, Hiroshi
RIMMER, Robert
ROBIN, David
SCHACHINGER, Lindsay
SELPH, Frank
SESSLER, Andrew
VOELKER, Ferdinand
WANG, Changhiao
XIE, Ming
ZHOLENTS, Alexander
ZISMAN, Michael

Technical Support
HARNDEN, C. Warren
MASSOLETTI, Dexter
SMITHWICK, James
WISE, James

Students
DUNN, Jason
FIORENTINI, Giulia
GOVIL, Richa
LAMON, Ken
LIDIA, Steve
WALLACE, Eric

Administrative Support
CONDON, Martha
KONO, Joy
MARA-ANN, M.
MORETTI, Darlene
Scientific Staff
William A. Barletta
Senior Scientist
Director, Accelerator and
Fusion Research Division
MS 50-149
(510) 486-5501
barletta@lbl.gov
Joined LBL in 1993

Affiliations and honors: Sigma Xi (Yale), Woodrow Wilson Fellow (Univ. of Chicago), member of American Physical Society.

Research interests: colliders at the energy and luminosity frontiers, ultrashort-pulse X-ray sources, radiation processing of chemical and nuclear wastes.

Walter C. Barry
Staff Scientist
MS 71–259
(510) 486–6705
Joined LBL in 1992

M.S., Electrical Engineering, Georgia Institute of Technology, 1982.

Research interests: accelerator instrumentation, theory and applications of electromagnetic and microwave devices in accelerators, coherent transition and diffraction radiation, superconducting RF cavity studies, feedback systems for controlling coupled bunch instabilities in electron storage rings.

Johan A. Bengtsson
Staff Scientist
MS 71–259
(510) 486-6529
jbengtsson@lbl.gov
Joined LBL in 1989

Ph.D., Physics, MAX-lab, University of Lund, Sweden, 1988.

Research interests: circular accelerators, beam dynamics, beam measurements, signal processing, computer science, control theory.

“Non-Linear Transverse Dynamics for Storage Rings with Applications to the Low-Energy Anti-proton Ring (LEAR) at CERN,” CERN 88–05 (1988).

John M. Byrd
Staff Scientist
MS 71–259
(510) 486-6329
jbyrd@lbl.gov
Joined LBL in 1991

Ph.D., Physics, Cornell University, 1992.

Research interests: RF aspects of accelerators, coupled-bunch instabilities and feedback systems.

Swapan Chattopadhyay
Senior Scientist
Head
Center for Beam Physics
MS 71-259
(510) 486-7217
chapon@lbl.gov
csa:chapon
Joined LBL in 1976

Affiliations: Editor-in-chief, *Particle Accelerators* (Western Hemisphere); Member: American Physical Society (APS), American Association for the Advancement of Science (AAAS), International Committee on Future Accelerators (ICFA), Advisory Board to International Linac Conferences, Advisory Committee to PEP-II Project. National Scholar (1967) and National Science Talent Scholar (1967-72), Govt. of India.

Research interests: particle and photon beam physics; synchrotron radiation; free electron lasers; beam-plasma physics; nonlinear dynamics; collider physics; novel accelerators.

Selected publications:

Yong Ho Chin
Staff Scientist
MS B71H
(510) 486-5614
yongho@lbl.gov
Joined LBL in 1988

Ph.D., Physics, The University of Tokyo, 1984.

Major awards: Japan Accelerator Society Annual Award.

Research interests: free electron laser, calculation of wake fields.

Selected publications:
Manoel E. Conde
Staff Scientist
MS B71H
(510) 486-5076
conde@lbl.gov
Joined LBL in 1992

Ph.D., Physics, Massachusetts Institute of Technology, 1992.

Research interests: free-electron lasers, particle accelerators and plasma physics, studies of photocathode RF guns.

John N. Corlett
Staff Scientist
Group Leader (acting)
Beam Electrodynamics Group
MS 71-259
(510) 486-5228
jnc@bc1.lbl.gov
Joined LBL in Dec. 1991

Research interests: monochromatic RF structures, beam coupling impedance, feedback systems, bunched beam instabilities.

Selected publications: “Measurements of the Higher Order Modes of the ALS 500 MHz Accelerating Cavities” (with J. Byrd), to be presented at the Particle Accelerator Conference, Washington, DC (May 1993).

“Impedance Measurements of Components for the ALS” (with R. Rimmer), to be presented at the Particle Accelerator Conference, Washington, DC (May 1993).

“Higher Order Modes in the SRS 500 MHz Accelerating Cavities,” Particle Accelerator Conference, Chicago (March 1989).

“SRS-2 Performance and Achievements” (with V.P. Suller et al.), Particle Accelerator Conference, Chicago (March 1989).

“Beam Instability Characteristics of the Daresbury SRS” (with M.W. Poole, V.P. Suller and J.S. MacKay), European Particle Accelerator Conference, Rome (June 1988).
John A. Edighoffer
Staff Scientist
MS B71H
(510) 486–5107
jedig@lbl.gov
Joined LBL in Aug. 1991

Ph.D., Applied Physics, Stanford University, 1981.
Ten years at TRW doing FEL research.

Research interests: free electron lasers, optical
diagnostics, photocathodes, superconducting RF.
accelerator physics and modeling, accelerator
diagnostics; CDRL FEL Conceptual Design, Stanford/
LBL/BNL superconducting RF collaboration, Stanford/
LBL FEL diagnostics collaboration; LBL/CEBAF FEL/
RF photocathode collaboration; hole out-coupling
scaled FEL bench top experiments.

Selected publications: “First Operation of a Tapered
Wiggler Free Electron Laser Oscillator” (with S.W.
Fornaca, G.R. Neal, C. Hess, H.A. Schwettman and T.I.

“Energy Measurement of the Electron Beam Beyond
the PALADIN Wiggler” (with T.J. Orzechowski, P.
Lee, T.E. Smith, Y.P. Chong, A.C. Paul and J.T. Weir),

“Visible Free-Electron Laser Oscillator (Constant and
Tapered Wiggler)” (with G.R. Neil, S. Fornaca, H.R.
Thompson, Jr., T.I. Smith, H.A. Schwettman, C.E.
Hess, J. Frisch and R. Rohatgi), (with H. Boehmer,
M.Z. Caponi, S. Fornaca, J. Munch, G.R. Neil, B. Saur

“Free Electron Laser Small Signal Gain Measurement

“Observation of Inverse Cerenkov Interaction between
Free Electrons and Laser Light,” (with W.D. Kimura,
R.H. Pantell, M.A. Piestrup, and D.Y. Wang), Phy,

Etienne Forest
Staff Scientist
MS 71–259
(510) 486–7215
etienne@lbl.gov
Joined LBL in 1985

Ph.D., Physics, University of Maryland, 1984.

Research interests: nonlinear dynamics in
accelerators, perturbation theory and other approximate
methods for accelerator maps.

Selected publications: “The UCLA ϕ Factory
Collider” (with A. Amiry, C. Pellegrini and D. Robin),

“Construction of Symplectic Maps for Non-linear
Motion of Particles in Accelerators” (with J.S. Berg,
(1993).

“Symplectic Integration in Complex Wigglers” (with

“A Contemporary Guide to Beam Dynamics” (with K.

“Dynamic Aperture Study for the Duke FEL Storage
Ring” (with Y. Wu, V.N. Litvinenko and J. Madey),
submitted to the Fourteenth Int’l FEL Conference in
Kobe, Japan, August 23–18, 1992, to appear in a
special issue of Nuclear Instruments and Methods,
Section A, Elsevier North Holland Science Publishers
B.V.

“The Absolute Bare Minimum for Tracking in Small
Rings” (with M. Reusch, D. Bruhwiler and A. Amiry),

“Application of the Yoshida-Ruth Techniques to
Implicit Integration and Multi-Map Explicit
Integration” (with M. Reusch and J. Bengtsson), Phys.
Miguel A. Furman
Staff Scientist
MS B71H
(510) 486-6443
miguel@lbl.gov
Joined LBL in 1984

Research interests: beam-beam interaction; longitudinal phase space management and matching in chains of accelerators; space-charge effects.

Ph.D., Physics, Carnegie Institute of Technology, 1955.

Accelerator theorist with contributions to design of many accelerators and their lattices, e.g. Bevatron, FNAL, PEP, BNL/CBA, ALS, PEP-II, SSC, etc.
Author of the lattice program SYNCH. Also contributed to heavy ion fusion, magnetic fusion with mirror machines, spiral-ridge cyclotrons (e.g. 88" Cyclotron at LBL) and to the Electron Ring Accelerator Study.

“Orbit Dynamics in the Spiral-Ridged Cyclotron” (with Lloyd Smith), UCRL-8598 (1959).
David A. Goldberg
Staff Scientist
MS 71–259
(510) 486–7222
dag@lbl.gov
Joined LBL in 1980

Ph.D., Nuclear Physics, Johns Hopkins University, 1967.

Research interests: beam instrumentation and feedback, beam impedance measurements, stochastic cooling.

“Successful Observation of Schottky Signals at the Tevatron Collider” (with G.R. Lambertson), Particle Accelerators, 30 (1990).

“Beam Impedance Measurements on the ALS Curved Sector Tank” (with R.A. Rimmer et al.), contribution to 1990 European Particle Accelerator Conference.

Richard A. Gough
Senior Scientist
MS 50–149
(510) 486–4573
RAGough@LBL
Joined LBL in 1970
Program Head
Special Projects, AFRD

Ph.D., Nuclear Physics, McMaster University, 1970.

Research interests: design, construction, and management of accelerator facilities, conceptualization and development of accelerator facilities with applications to the scientific community.

Alan Jackson
Staff Scientist
Group Leader
ALS Accelerator Group
MS 80–101
(510) 486–6752
ajackson@lbl
lbl:ajackson
Joined LBL in 1984

BA (Hons), Physics, Lancaster University, 1968.
1968–84: Scientific Officer at Daresbury Nuclear
Physics Laboratory, U.K. 1984–present: At LBL,
member of the team that designed and commissioned
the third generation Advanced Light Source.

Affiliations: Member APS and AAAS

Research interests: design, construction and operation
of synchrotron radiation sources; fourth generation
synchrotron radiation source.

Selected publications: “Ideas for Future Synchrotron
Light Sources” (A. Jackson et al.), presented at the
Third European Accelerator Conference, Berlin,
Germany, March 1992, and to be published in the
proceedings.

“The Challenges of Third Generation Synchrotron
Light Sources,” Synchrotron Radiation News, Vol. 3,

“The Effect of Insertion Devices on the Behavior of the
89CH2669–0 (1989).

“A Comparison of the Chasman-Green and Triple Bend

“Feasibility Study of a Storage Ring for a High Power
XUV Free Electron Laser” (with J. Bisognano et al.),
Particle Accelerators, Vol. 18 (1986).

Meth., 129 (1975).

Jimmie K. Johnson
Staff Scientist
MS 71–259
(510) 486–6464
kaz@lbl.gov
Joined LBL in 1981

B.S., Electronics Engineering, University of California,
Davis, 1981.

Affiliations: IEEE, LBL representative to the National
Consortium for Graduate Degrees for Minorities in
Science and Engineering, Inc. (GEM)

Research interests: microwave technology with
accelerator applications, computer-aided engineering,
multi-bunch feedback systems.

Selected publications: “Progress on PEP-II
Multibunch Feedback Kickers” (with J. Byrd, G.
Lambertson, F. Voelker), Proc. SLAC B Factory

“Novel Electrode Design for a 4–8 GHz Stochastic
Cooling System” (with D. Goldberg, G. Lambertson, F.

“Power Combiners/Dividers for Loop Pickup and
Kicker Arrays for FNAL Stochastic Cooling Rings
(with R. Nemetz), 1985 Particle Accelerator
Conference. Vancouver, B.C., Canada, May 13–15,
1985).

“An Array of 1 to 2 GHz Electrodes for Stochastic
Cooling (with F. Voelker and T. Henderson), 1983
Particle Accelerator Conference, Santa Fe, NM, March
Dr. rer. nat., Experimental Physics, University of Kiel, Germany, 1973.

Awards: Three patents on ion sources and components.

Research interests: Particle accelerators, ion sources for accelerators and industrial applications.

Current activities: Commissioning of the ALS (Advanced Light Source) electron accelerators, a 50 MeV linac, a 1.5 GeV booster synchrotron, and a 1–1.9 GeV storage ring. Evaluation of magnetic field data for the accelerators under construction. Definition of survey and alignment procedures, creation of ideal component data, and evaluation of survey data for the ALS accelerators.

Kwang-Je Kim
Senior Scientist
Deputy Head,
Center for Beam Physics
Lecturer, UCB Phys. Dpt
MS 71–259
(510) 486–7224
kwangje@lbl.gov

Soo-Il Kwon
Visiting Researcher
Kyonngi University
Suwon, Korea
MS B71H
(510) 486–5470
sooil@lbl.gov

Research interests: novel x-ray generation, free electron lasers, synchrotron radiation optics, high-brightness electron beams.

Selected publications: “Generation of Sub-Picosecond X-rays by 90° Compton Scattering” (with S. Chattopadhyay and C.V. Shank), LBL-33074.

Ph.D., Nuclear Physics, Sung Kyun Kwan University, Korea, 1988.
Glen R. Lamberton
Senior Scientist
MS 71-259
(510) 486-7205
lamberton@lbl.gov
Joined LBL in 1951

Wim Leemans
Staff Scientist
MS 71-259
(510) 486-7788
leemans@lbl.gov
Joined LBL in 1991

M.S., Physics, University of California, Berkeley, 1951.

Award: U.S. Particle Accel. School 1991 Prize for Achievement in Accelerator Physics and Technology.

Current research: particle beam electrodes, stochastic beam cooling, feedback stabilization of beam instabilities.

“Techniques for Beam Impedance Measurements Above Cutoff” (with Jacob, Rimmer and Voelker), 2nd European Particle Accel. Conf., p. 1049 (June 1990).

Research interests: beam-plasma interaction, generation of light, non-linear optics, non-linear dynamics, study of plasma lens focusing, generation of short pulse X-rays through inverse compton scattering, advanced optical diagnostics and resonators for FEL’s.

Hal Li
Staff Scientist
MS B71H
(510) 486-6572
hal@lbl.gov
Joined LBL in 1993

Ph.D., Physics, University of Maryland at College Park, 1993.

Research interests: analytical and numerical studies of space charge and high frequency electromagnetic problems related to microwave devices such as gyrotrons, relativistic klystrons and FEL.

Malika M. Meddah
Staff Scientist
MS 80–101
(510) 486–5619
meddah@lbl.gov
Joined LBL in 1991

Ph.D., Physics, University of Paris 7, 1991.

Research interests: nonlinear dynamics; accelerator studies; beam-beam effects; ALS transverse damping scheme.

“Experimental Study of a Beam Excitation in the Presence of the Beam-Beam Interaction” (with K. Cornelis, R. Schmidt and D. Vandeplassche), SPS/AMS/Note 89-04
Hiroshi Nishimura
Staff Scientist
MS 80-101
(510) 486-5763
hiroshi@lbl.gov
Joined LBL in 1985

Ph.D., Physics, University of Tokyo, 1982.

Research interests: accelerator physics for ALS; modeling and simulation code construction for real accelerator control using the novel programming methodologies like OOP.

Robert A. Rimmer
Staff Scientist
MS 71-259
(510) 486-6243
rimmer@lbl.gov
Joined LBL in 1988

Research interests: computer simulation of high frequency electromagnetic problems, Higher-Order-Mode suppression in RF cavities and structures, microwave windows, beam impedance of accelerator components.

Ph.D., Physics, University of California at Los Angeles, 1991.

Research interests: studies of the linear and non linear dynamics of lepton storage ring colliders.

Selected publications:

Ph.D., Physics, Rutgers University, 1978.

Research interests: accelerator simulation and modeling both for design and controls, non-linear dynamics, controls and modeling for accelerator physics studies in circular accelerators.

Selected publications:
Frank Selp
Senior Scientist
MS B71H
(510) 486-6902
Fselp@csa2.lbl.gov
Joined LBL in 1962

Current research: ALS linac improvement, design of a storage ring for improved ion stripping.

"Wakefield Effects in the Two-Beam Accelerator" (with A. Sessler), NIM, A244, pp. 323-29 (1986).

"The Next Generation of Relativistic Heavy Ion Accelerators" (with H. Grunder and Ch. Leeman), Proc. of the Symp. on Heavy Ion Research, G.S.I. Darmstadt, Germany (1978).

Andrew M. Sessler
Senior Scientist
Group Leader
Collider Physics Group
MS B71H
(510) 486-4992
amsessler@LBL
Joined LBL 1961
Director 1973–1980

Ph.D., Theoretical Physics, Columbia University, 1953.

Major awards: E.O. Lawrence Award by U.S. Atomic Energy Commission; U.S. Particle Accelerator School Prize; Leland J. Haworth Distinguished Scientist, Brookhaven National Laboratory; member, National Academy of Sciences.

Research interests: beams in plasmas; conventional and novel high energy accelerators; free-electron lasers.

Ferdinand Voelker
Senior Scientist
MS 71-259
(510) 486-7237
ferd@lbl.gov
Joined LBL in 1952

Changbiao Wang
Visiting Researcher
University of Electronic Science and Technology of China
MS B71H
(510) 486-6731
cbwang@lbl.gov
Joined in August 1991

M.S., Electrical Engineering, University of California, Berkeley, 1949.

Research interests: damping of HOM in RF cavities; study of multi-electrode kickers for particle beam; beam impedance measurements.

Ph.D., Electrophysics, University of Electronic Science and Technology of China, Chengdu, China, 1987.

Research interests: electron cyclotron resonance maser; free-electron lasers; electron beam conditioner; relativistic klystron simulation.

Ming Xie
Staff Scientist
MS B71H
(510) 486-5616
mingxie@lbl.gov
Joined LBL in 1988

Ph.D., Physics, Stanford University, 1988.

Research interests: free electron lasers, optics,
synchrotron radiation.

Alexander Zholents
Staff Scientist
MS B71H
(510) 486-7533
zholents@lbl.gov
Joined LBL in 1992

Research interests: accelerators, dynamics of the charged particle beams, B-Factory.

Michael S. Zisman
Senior Scientist
Group Leader
High Luminosity
Collider Physics Group, MS B71H
(510) 486-5765
zisman@lbl.gov
Joined LBL in 1966

Ph.D., University of California, Berkeley, 1972.

Research interests: design of electron storage rings and high-luminosity electron-positron colliders; beam instabilities; collective effects; design of PEP-II asymmetric B factory; study of high-luminosity collider design.

Technical Support Staff
C. Warren Harnden
Mech. Engineering Associate
MS 70A-3363
(510) 486-6151
Joined LBL in 1964

James Smithwick
Mech. Engineering Technologist
MS 71-259
(510) 486-5227
Joined LBL in 1988

Dexter Masoletti
Sr. Scientist Engineering Assoc.
MS 80-101
(510) 486-6857

James Wise
Elect. Engineering Technologist
MS 71-259
(510) 486-5027
Joined LBL in 1962
Students
Jason Dunn
Graduate Student
UC, Davis
MS 71-259 (LBL)
(916) 752-1500 (UCD)
UCDHEP::DUNN
Joined LBL in 1992

Giulia Fiorentini
Graduate Student
MS B71H
(510) 486-6572
giulia@lbl.gov
Joined LBL in 1992

B.S., Physics, University of California at Davis, 1991.

Research interests: accelerator physics, QCD at the HERA machine in Germany.

Graduate student at Università degli Studi di Milano, now at the Lawrence Berkeley Lab. as a Visiting Scholar for one year.

Research interests: study of beam dynamics in relativistic klystrons and free electron lasers, computer modeling of beam transport and field dynamics in relativistic klystrons and SWFEL.

Richa Govil
Graduate Student
UC, Berkeley
MS B71H
(510) 486-4973
R. Govil@L.BI.
Joined L.BI. in 1991

A.B., University of California at Berkeley. Physics.

Major awards: Certificate of Distinction, University Medal. UC, Berkeley.

Research interests: free-electron lasers, high energy beams in accelerators, semi-conductor lasers.

Kenneth LaMon
Graduate Student
UC, Berkeley
MS B71H
(510) 486-5756
Joined L.BI. in 1988

Steve Lidia
Research Associate
MS B711H
(510) 486-5756
Joined LBL in 1991

B.S., Engineering Physics, University of California, Berkeley, 1991.

Research interests: variable-polarization insertion devices; partially-coherent, high intensity radiation sources; modelling and simulation of magnetic fields and synchrotron radiation sources.

Eric Wallace
Student Assistant
MS 71-259
(510) 486-6553
Joined LBL in 1992

Senior, University of California, Berkeley.

Research interests: laser physics and optics.

Administrative Support Staff
Martha Condon
Administrative Staff
Center for Beam Physics
MS 71-259
(510) 486-5792
CBP@lbl.gov

M. Mara-Ann
Administrative Staff
Center for Beam Physics
MS 71-259
(510) 486-5792
CBP@lbl.gov

Joy Kono
Program Administrator
Center for Beam Physics
MS 71-259
(510) 486-6375
joy@lbl.gov

Darlene Moretti
Administrative Staff
Collider Physics Group
Center for Beam Physics
MS B71H
(510) 486-4182
dmoretti@lbl.gov
CENTER FOR BEAM PHYSICS

Affiliates

Femtosecond X-ray Source Collaboration: R. Schoenlein, LBL
S. Dexheimer, LBL
C. Shank, LBL

PEP-II B-Factory Collaboration: D. Hitlin, Caltech
P. Oddone, LBL
J. Dorfan, SLAC
M. Calderon, LLNL

SCRF/FEL Diagnostics Collaboration: A. Schwettman, Stanford
T. Smith, Stanford
I. Ben-Zvi, BNL
S. Fornaca, TRW

FEL/SCRF Collaboration: S. Benson, CEBAF
F. Dylla, CEBAF
C. Leeman, CEBAF
G. Neil, CEBAF
J. Bisognano, CEBAF

Photocathode/SCRF Collaboration: Chia-Ern Chen, Peking University

Two Beam Accelerator Collaboration: G. Westenskow, LLNL
J. Haimson, Haimson Research Associates

Beam Test Facility: J. Krupnik, LBL
C. Matuk, LBL
J. Hinkson, LBL
G. Behrsing, LBL

ALS Studies — B. Kincaid, LBL
CXRO Studies — D. Atwood, LBL
Isospin Laboratory Studies — M. Nitschke, LBL
Migma-Based Accelerators — A. Ghiorso, LBL
Optical Coherence Studies — R. Littlejohn, LBL
Photocathode and Plasma Lens Studies — K. Leung, LBL
Short Wavelength FEL Collaboration — H. Winick, SSRL, Stanford
Publications

(1991-1993)

45

Y H Chiu, "Beam Beam Dynamics During the Injection Process at the PEP II B Factory," LBL-31334, ABB-51, Oct 1991

A Jackson, "Ideas for Future Synchrotron Light Sources," presented at the European Particle Accelerator Conference in Berlin, Germany, March 24-28, 1992, LBL-31172

G Lambertson, "Bunch Motion Feedback for B Factories, B Factories: The State of the Art in Accelerators, Detectors and Physics, Stanford, CA, April 6-10, 1992, LBL-33359

S Krishnapal, Y H Chiu, "Bunch Marking Beam Beam Simulations With Coherent Quadrupole Effects," Workshop on B Factories, Stanford, CA, April 6-10, 1992, LBL-32516, ABC-74

Y H Chiu, "Beam Beam Dynamics during the Injection Process at an Asymmetric Ring Collider," APS, April 20-24, 1992, LBL-31754

M Furman, "Beam Beam Effects in Asymmetric Colliders," APS, April 20-24, 1992, LBL-31752a

M. Zisman (LBL), R.A. Bell, J. Dortan, A. Hutton (SLAC), and W. Barletta (BNL), "The PEP II Asymmetric B Factory Design Update and R&D Results Free Electron Laser Two Beam Accelerator," 15th International High Energy Accelerator Conference, July 20-24, LBL-31934a.

F. Selph, “Magnets, Ring for Stripping Enhancement,” Workshop on the Production and Use of Intense Radioactive Beams at the Isospin Laboratory, Joint Institute for Heavy Ion Research, Oak Ridge, Tennessee, Oct 7-10, 1992, LBL 32940

E. Forest, D. Robun, A. Zholents, M. Donald, R. Helm, J. Iwan, & M. Sullivan, “Local Chromatic Correction Scheme for kER of PEP-II” International Workshop on B Factories, Accelerators and Experiments, KEK, Tsukuba, Japan, Nov 17-20, 1992, LBL 333479

M. Zisman, “PEP-II Design Update and R&D Results,” International Workshop on B Factories, Accelerators and Experiments, KEK, Tsukuba, Japan, Nov 17-20, 1992, LBL 33417

C H Y EN FOR B EAM PHYSICS

hlications - Internal Notes

(ESG is the acronym for the Exploratory Studies Group – the name used by the Group prior to becoming the Center for Beam Physics.)

M. Furman “The Hourglass Reduction Factor for Asymmetric Colliders,” April 1991, ESG TECH NOTE 161

Various Authors, Vugraph Presentations, International Workshop on Accelerators for Asymmetric B-Factories, October 4-6, 1990, ESG TECH NOTE 162

W. Joho, “Some Comments about the Harmonic Number h = 328 for the ALS Storage Ring,” January 30, 1991, ESG TECH NOTE 165

Please send _____ copy(ies) of the Center for Beam Physics Directory 1993 and future updates. My mailing label is attached.

Please change my name/address. My mailing label is attached.

Name
Address

ATTACH MAILING LABEL HERE

Please clip and mail this form to:

Center for Beam Physics
MS 71-259
Lawrence Berkeley Laboratory
1 Cyclotron Road
Berkeley, CA 94720
Contents

4. Center for Beam Physics ... 4-1
 B-Factory Studies .. 4-2
 Conceptual Design Overview .. 4-2
 Lattice Design .. 4-5
 Beam-Beam Interaction Studies .. 4-5
 Chemical Dynamics Research Laboratory 4-7
 CDRL: A Unique Combination of User Facilities 4-8
 IRFEL Design Progress ... 4-8
 Test Beam Facility ... 4-10
 Facility and Operations .. 4-12
 Optics Experiments .. 4-13
 Bench Testing of Hold .. 4-13
 Advanced Optical Diagnostics for FELs 4-14
 Accelerator Physics for the ALS .. 4-16
 RF Measurements and Feedback Systems 4-16
 Injector Commissioning Experience .. 4-17
 Beam Electrodynamics ... 4-17
 B-Factory Contributions ... 4-17
 Fermilab Antiproton Cooling System ... 4-19
 FEL Accelerating Cavities ... 4-19
 High-Energy Collider Physics .. 4-19
 Transversely Modulated RK ... 4-20
 Horizons for the TBA ... 4-21
 Beam Conditioning ... 4-22
 Publications and Presentations .. 4-22

(Reprinted from Accelerator and Fusion Research Division: 1992 Summary of Activities, LBL-33377
(December 1992), Chapter 4)
4.

CENTER FOR
BEAM PHYSICS

TWO MAJOR ACCELERATOR-BASED INITIATIVES are being assisted by the Center for Beam Physics, a divisional center that performs multifaceted exploratory studies of the physics of accelerators and beams. PEP-II, a proposed B-meson "factory" based on the Positron-Electron Project ring at the Stanford Linear Accelerator Center, has been the subject of ongoing research. Meanwhile, a long-standing interest in free-electron lasers and high-brightness electron and photon sources has led to the detailed design of an infrared free-electron laser (IRFEL), which is proposed as part of the Chemical Dynamics Research Laboratory. The IRFEL investigations have led to productive collaborations with Stanford University, Brookhaven National Laboratory, the Continuous Electron Beam Accelerator Facility, and TRW, Inc.

S. Chattopadhyay (Lead)
K. F. Kim (Deputy)

High-Luminosity Collider Physics
M. Zisman (group leader)
Y.-H. Chiu
I. Forest
M. Furman
A. Garrett
R. Rimmer
D. Robin
A. Zhukova

High-Energy Collider Physics
A. Sessler (group leader)
G. Earnshaw
R. Gwill
S. Krishna
W. Everais
G. Kang
D. Whittam
J. Wang

Radiation Sources and FELs
K. F. Kim (group leader)
Y.-H. Chiu
I. Edighoffer
R. Gough
K. LaMon
W. Everais
S. Laha
J. Smithwick
M. Ace

Storage-Ring Synchrotron Light Sources and ALS Accelerator Systems
A. Jacobs (group leader)
I. Bengtsson
R. Keller
C. Ken
D. Masedo
H. Nishimura
E. Shalhoub
J. Selph

Beam Electrodynamics
J. Lattu (group leader)
W. Barts
J. Byrd
D. Goldberg
W. Harnden
J. Johnson
G. Lambert
R. Rimmer
J. Smithwick
J. Weller
J. Wise

International Visitors
C. Earnshaw (Uni of Milano)
M. Meddahat (IRI)
D. Whittam (Kojo)
C. Wang (PSB)

Students
G. Earnshaw
R. Gwill
K. LaMon
S. Laha
J. Wallace

Principal Collaborators
W. Barletta (ILN)

1. Ben Zvi (BNL)
2. Dentan (SLAC)
3. DiVillari (HAR)
4. Furman (BNL)
5. Hamlin (Albion)
6. Freeman (BNL)
7. Ghandi (HAR)
8. Schuetz (Stanford)
9. Shank (BNL)
10. Wiesbrock (ILN)

Technical Support
J. Masselli
J. Smithwick
J. Wise

Administrative Support
J. Kenncott (center administrator)
J. Atkins (Vers)
M. London
M. Mara (Ann)
D. Moretti

* Engineering Division

* The Center was formerly known as the Exploratory Studies Group.
To meet the technical challenges of these initiatives and to generally enhance LBL's capabilities in particle- and photon-beam research, the Center made several additions to its experimental capability in 1992 and early 1993. In addition to upgrading the beam electrodynamics laboratory and setting up an optics lab, the detailed design of the Advanced Test Beam Facility was finished and construction was started. This facility will get "double the money's worth" out of the 50-MeV ALS linac by using it for beam physics experiments during the considerable spans of time between the ALS injection cycles. Many experiments are possible; immediate plans include generation and detection of x-ray pulses as short as tens of femtoseconds (a long-standing interest) and focusing of a beam by using plasma lenses.

Members of the Center have been involved in the ALS project from the outset and make up its technical core, the Accelerator Systems Group. With the design of the accelerators complete, they have continued to play major roles in guiding construction, programming the control system, and commissioning.

Research continues in accelerator theory, nonlinear dynamics, and fundamental FEL physics. The High-Energy Collider Physics group continued its long-range Two-Beam Accelerator research. The Beam Electrodynamics group contributed to and supervised the PEP-II rf and feedback design efforts. It also contributed significantly to rf, impedance, and feedback work at the ALS, and worked on beam-cooling improvements for the Tevatron's antiproton source.

The worldwide high-energy physics community has become increasingly interested in "B factories," which would produce BB pairs for fundamental studies of charge-parity (CP) violation and rare B meson decays. Several schemes for copious BB production in electron-positron collisions have been advanced in the literature. In collaboration with the Stanford Linear Accelerator Center (SLAC), Lawrence Livermore National Laboratory (LNL), and Caltech, the Center is designing a facility based on one of the most promising schemes: PEP-II, a collider with one high-energy ring and one low-energy storage ring. This energy-asymmetric collider, built in the PEP tunnel at SLAC and reusing many PEP components, would be scientifically and economically attractive.

During 1992, the PEP-II collaboration continued refining the design of a B factory in which a 9-GeV electron beam in PEP collides with a 3.1-GeV positron beam circulating in a new storage ring. The new low-energy ring will be of the same circumference as PEP and will be mounted above it in the existing tunnel, as shown in Figure 4-1. The chosen energy combination reaches the T(4S) resonance, at which BB pairs are produced in the abundance required for the study of CP violation (\(\bar{s}d\bar{b}\bar{b}\)). The challenge in the design of a B factory is to reach an initial luminosity of \(3 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}\), which is more than an order of magnitude beyond the luminosities achieved to date in electron-positron colliders.

\(^7\) A B meson and its antimatter equivalent produced together. Pronounced "bee-bee-bar."
Figure 4-1. The proposed asymmetric B factory, PEP-II, would be built in the Positron-Electron Project tunnel and would use a substantial amount of the existing hardware for the PEP collider. Recent LBL work in the multi-institutional PEP-II collaboration has emphasized refinement of the magnetic-lattice designs of the two rings and extensive studies of beam-beam interaction. (Artist's impression courtesy SLAC)

In principle, all the relevant parameters—the ratio of the cross sections of the two beams, the beam currents, the beam-beam tune shifts, the beam energies, and the vertical beta functions at the interaction point—are adjustable. In practice, however, the beam-beam tune shift cannot be increased beyond a certain value, which has been determined experimentally in many colliders to lie in the range of 0.02 to 0.06. Similarly, a collision energy at the $T(4S)$ resonance implies that the product of the beam energies must be 28 GeV2. Thus, only three parameters—the beam-size ratio, the beam current, and the vertical beta function at the interaction point—are fully at the discretion of the accelerator designer.

The chosen luminosity, 3×10^{33} cm$^{-2}$ s$^{-1}$, has been shown to be adequate for the study of the key physics issue, CP violation. Given the limitations caused by the beam-beam interaction, which we take for our design to correspond to a maximum tune shift of 0.03—a substantial increase in luminosity implies that the high-current beam must be divided into a large number of individual bunches (1658 in our design). This approach involves a design in which the single-bunch parameters (emittance, bunch length, current, tune shift, etc.) are well within present practice for colliders. Our choice of 1658 bunches lies in a safe middle ground between the extremes—it does not exacerbate coupled-bunch instabilities, nor does it have problems with single-bunch effects.
For PEP to serve as the high-energy ring, several of its systems must be significantly upgraded to deal with these issues. Foremost among these are the rf and vacuum systems. The high luminosity leads to extreme heat loads caused by synchrotron radiation; a great deal of engineering work has been performed by our collaborators to solve the resultant cooling and vacuum problems. There are also implications for the rf system of the high-energy ring. It will operate at a frequency of 476 MHz to phase-lock the storage ring rf system to that of the 2856-MHz injector (the “two-mile linac” that is also used to inject the Stanford Linear Collider). This choice of frequency minimizes injection phase errors, which contribute significantly to the power demands of the multibunch feedback system. The rf system will consist of 20 single-cell cavities; the cavity design itself is aimed at minimizing the higher-order-mode impedance contribution of the rf system.

The interaction region is designed in such a way that the beams collide head on. During 1992, a great deal of effort has gone into studying the beam-beam interaction and into refining the lattice designs of the two rings and the interaction region. These three subjects are closely related.

B Decays and CPT Symmetry

Judging particle interactions by the standards of the familiar, macroscopic world, one would think that if a process and the participating objects were replaced either by their antimatter equivalents or by versions of themselves as seen in a mirror, the rate of the process would remain the same. It seems equally intuitive that reversing a process would yield the original participants, much as though one were running a movie in reverse and watching the actors run backward in their own footprints.

But on the scale of subatomic particles and the quarks that make them up—a scale where the "weak interaction" becomes the strongest of forces—the first two rules, called "conservation of parity" and "charge conjugation," are not necessarily obeyed. Not even CPT symmetry, which combines both rules, necessarily holds true. The remaining variable is time; we are left with CPT symmetry—a scheme in which C, P, and CP symmetry violations can occur, but only if the arrow of time is allowed to take a different course when reversed, going back to a different beginning.

Thus far, CP violation has been observed through asymmetries in the decay modes of the neutral K meson and its antiparticle. The K^0 and \bar{K}^0 contain an unusual quark, the "strange" quark, which is not found in the group of quarks that make up ordinary matter. The K decays in a wide variety of fashions (it is axiomatic that every decay mode that is not explicitly forbidden must occur eventually). In a few of these modes, the K^0 decays a few tenths of a percent differently than the \bar{K}^0, a sign of CP violation. But studies of the K system have left many questions unanswered about the mechanisms and magnitude of CP violation.

The B meson, which contains a different unusual quark ("bottom" as opposed to "strange"), is predicted by the Standard Model of Particles and Interactions to have asymmetries as great as 30% in some rare decay modes. This makes it a very promising candidate for CP-violation studies. However, the branching fraction—the proportion of pairs that will not only decay through the unusual modes but also violate CP symmetry in doing so—is only about 10^{-4} to 10^{-5}. Therefore, about 10^7 to 10^8 BB pairs will have to be produced to get good CP-violation statistics. This requirement, implying the need for many e^+e^- collisions, brings us to the luminosity frontier of accelerator physics, whose technical challenges are described elsewhere in this chapter.

The ultimate goal of this research is to enhance the Standard Model—today's partial theory of the building blocks of nature and how they interact—or replace it with a new, more-satisfactory theory. In either case, CP violation will have to be better quantified, and its origins will have to be explained. The present Standard Model does not disallow CP violation but does not explain it either. These studies also have ramifications beyond particle physics.

In 1967, not long after the discovery of CP violation, Andrei Sakharov pointed out that it might explain one of the long-standing riddles of cosmology: why the universe was not born with equal, evenly distributed quantities of matter and antimatter that would annihilate each other whenever they interacted. For some reason, the laws of nature appear to prefer matter over antimatter—a phenomenon that makes possible the physical universe we see every day. Such will be the implications of the research at PEP-II.
Lattice Design

The basic lattice designs of both rings were completed in earlier years; the primary effort during 1992 was, and remains, optimization of the lattices (particularly that of the low-energy ring). Using simulation tools that we had developed to analyze the dynamic behavior of particles circulating in storage rings, we found that the low-energy ring was not as dynamically stable as the high-energy ring. These tools are based on single-particle tracking, and fully account for nonlinearities, magnetic-field imperfections, and magnet-position errors. (Beam-beam interaction is ignored at this stage of the design.)

Significant strides have been made toward understanding the problem. Good dynamic behavior requires a stable aperture at least 10 times the natural beam size. However, one cannot make a positron beam that is of the same quality as the electron beam; its natural emittance and energy spread are each roughly 1.5 times larger. Therefore, all else being equal, one must achieve a larger aperture in the low-energy ring than in the high-energy ring. In addition, the stronger focusing of the low-energy ring requires stronger sextupole magnets in order to correct the linear chromaticity. As a result of this correction, the low-energy ring has more nonlinear chromaticity, as well as a greater tune shift under amplitude variations, than the high-energy ring. All this reduces the available dynamic aperture.

Our present results show that, to control these effects, it is necessary to have a local chromaticity-compensation scheme in both planes near the interaction point. Such a scheme requires sextupole magnets in the interaction-region straight section. They must be placed in such a way as to correct the chromaticity arising from the interaction-region quadrupole magnets without generating higher-order tune shifts. Our simulations have shown this scheme to be the best method of improving the dynamic aperture. As we approach a final design for the interaction region, the challenge we face is to implement this scheme while respecting the geometrical constraints imposed by the existing tunnel and by the relative position of the two rings.

Beam-Beam Interaction Studies

While working on the lattice design, we also intensified our studies of beam-beam effects. We have made a great deal of progress on a simulation approach that complements the lattice studies by providing detailed simulation of beam-beam dynamics but neglecting magnet nonlinearities. These beam-beam studies are based on multiparticle tracking simulations, so they require much more computation than the single-particle dynamic-aperture studies. Ideally we would like to combine the two approaches into one consistent whole; we intend to develop the necessary tools for this unification during 1993.

Most of these studies were based on multiparticle simulations in the linear-lattice approximation. In the ongoing detailed-design effort, a good deal of additional progress has been made on various issues, including the existence of an adequate “working point” in the multivariate parameter space, adequacy of the beam separation at the parasitic collision points, beam-beam interaction during injection, departures from full equality of the four beam-beam parameters, and an experimental proposal at TRISTAN1 to test the effects of the beam-beam force on the closed orbit.

In search of a working point, we performed tune scans over a wider region of the tune plane than we had in the initial effort that produced the 1991 Conceptual Design Report. A working point above the half-integer, with

1 Transposable Ring Intersecting Storage Accelerators in Supercollider in Japan
fractional tunes \((v, v') = (0.04, 0.57)\) for both beams, was shown to give adequate luminosity and has been adopted. The "old" working point, \((v, v') = (0.09, 0.05)\) also gave acceptable beam-beam dynamics, but it was deemed to be too close to the integer, where we would expect to encounter serious closed-orbit instabilities. Ongoing simulations suggest that making the working points slightly different for the two beams will give even better performance.

Because of the relatively close bunch spacing, the bunches experience glancing collisions in the horizontal plane on their way into and out of the interaction point, we call these "parasitic collisions" (PCS). Although each beam experiences several of these collisions, the PC closest to the interaction point is the most disruptive. In the earlier interaction region design, the separation of the two beams at the first PC was specified to be 2.8 mm. Early simulations showed that if this distance were too small, the PCS could be quite detrimental to luminosity. Although the simulations proved that 2.8 mm was adequate, they also showed that if the distance were slightly smaller, the beam blowup could become substantial. For this reason the design of the interaction region has been upgraded to provide a much more comfortable 3.5-mm separation.

When the beams are injected, they are displaced transversely from their nominal orbits by a distance of approximately eight times their diameter. Therefore, if the injection were in the horizontal plane, the beams could collide head on, or almost head on, at the PC points. Simulations showed that, indeed, beam-beam-induced beam blowup was substantial during the first few damping times. When a vertical injection option was simulated, the beam-beam effect was found (as we had expected) to be much less severe, so the design now calls for vertical injection.

The design for PH-II, which is asymmetric in energy, currently uses the same values in both rings for each of the four beam-beam tune shift parameters because this causes the beam-beam dynamics to resemble those of symmetrical colliders, which are well understood. Furthermore, this equality has the practical advantage of constraining many other parameters. Recent simulations suggest, however, that if the beam-beam parameters were somewhat different from each other, luminosity performance could be improved. We have explored two approaches thus far. In the first, the horizontal and vertical beam-beam parameters are kept equal to each other, but are different in the two beams. In the second, the horizontal and vertical beam-beam parameters are different from each other, but are kept equal for the two beams.

Simulations for both cases suggest that better performance can be obtained in the first case by using a slightly smaller beam-beam parameter for the positron beam and in the second case by using a slightly smaller vertical beam-beam parameter for both beams. The possible effects of these choices upon other design parameters have been identified but not yet quantitatively evaluated. Undoubtedly some combination of the two approaches, or a third approach in which all four beam-beam parameters are different, will prove to be optimal, so our studies continue. Already we know from these simulations that the beam-beam dynamics remain well behaved when the four parameters are not equal, indicating that, at least, our initial requirement for equality in these parameters has some room for adjustment.

Because the beams travel in different vacuum chambers in an asymmetric collider, the beam orbits near the interaction point need to be controlled to a much greater degree than in symmetric colliders to ensure head-on colli-
Chemical Dynamics Research Laboratory

Research Prospects

The CDRI, with its advanced lasers, will complement the ALS, which upon completion will be the world's brightest source of soft x-rays for basic and applied research. Collaborative CDRI researchers from industry, universities, and national laboratories will use the unique features of ALS x-ray beams—high spectral brightness and very short pulse length (nanosecond times)—in undulators in the storage ring to provide somewhat spatially coherent radiation (somewhat referred to as "laserlike") that is broadly tunable across the soft x-ray to ultraviolet regions of the electromagnetic spectrum.

The CDRI experimental systems will be used for dynamic, spectroscopic, and structural studies of highly reactive molecules. Many of these are created during the early stages of combustion. These studies will take place in an experimental hall where light from the IRF and infrared chemical lasers, the ALS, and advanced conventional lasers at various wavelengths (Figure 1) can all be directed into experiment stations to study the dynamics of fast-moiving chemical processes in detail. Such fundamental knowledge is crucial for improving the efficiency of combustion and controlling the formation of pollutants, among other issues.

Scientists from other LBL divisions, the University of California at Berkeley, and Sandia National Laboratory Livermore are developing the CDRI research program. Research results will feed directly into U.S. industries concerned with cleaner combustion, alternative fuel supplies, reduced pollution, and improved industrial processes. This is important not only to industry but also to government, since many regions of the nation face significant economic curtailment during the coming decades if air pollution from mobile and stationary sources is not controlled more effectively. The CDRI can provide a foundation of fundamental understanding that will enable long term success in solving these problems.
Research in such areas as gas-phase reaction dynamics, combustion, isotope separation, and industrial processing is generally dependent upon advanced technologies and techniques. The CDRI will bring the key technologies together for the first time. At its heart could be an IREEL, which has been the subject of a great deal of work by our group. The IREEL, together with two ALS beams, optical lasers, and molecular-beam machines, will enable research that has a greater impact on our understanding of pure and applied chemical dynamics.

The CDRI will occupy a new building adjacent to the ALS so that photon beams from both the ALS and the proposed IREEL (which would go in a shielding vault in the basement of the new building) can be delivered to the experimental stations. The ALS beams have been another area of study and development by our group in collaboration with the ALS staff and the Center for X-ray Optics in LBL’s Materials Sciences Division. Advanced optical lasers are being designed by colleagues from both the University of California at Berkeley Chemistry Department and Sandia National Laboratories. These collaborators have been deeply involved in the design of experimental facilities and in the development of the research program.

Since the original conceptual design was published in February 1980, we have revised it to incorporate an accelerator with 500-MHz superconducting rf cavities (Figure 4-2). The primary reason for the move from the less-expensive room-temperature technology was the user requirement for photon-beam wavelength stability. Their requirement for stability to within 1 part in 10⁷ translates into an electron-beam energy fluctuation of less than 5 parts in 10⁴. By reducing cavity losses due to wall resistance to nearly zero, the superconducting accelerator technology also allows continuous-wave (cw) operation. Pulses are desired for the CDRI application, so cw operation is best interpreted as a means of increasing the average power, permitting more data to be obtained in a given time.
Figure 4-2. Recent thinking about the CDRL IRFEl points toward a new design based on 500-MHz niobium-titanium superconducting linac structures. The superconducting technology allows continuous operation (with various pulsed modes and the ability to serve multiple experiments) and lends itself to a recirculation loop. Downstream of the accelerator apparatus shown here, coherent infrared radiation is produced with a variable-gap undulator and an optical cavity with a broadly tunable hole-coupled outcoupling scheme. Also shown here is an indication of how the new design might fit in the basement shielding vault of the CDRL building proposed earlier; the beam dumps are shown but the cryogenic systems, which would be outside the vault, are not.

The pulse train can be tailored to meet the experimenter’s needs in a variety of ways, including synchronization with the ALS pulses. This flexibility will allow simultaneous service to multiple users. The IRFEl’s micropulse duration is 33 ps, with a repetition rate of 6.0 MHz. Infrared radiation is produced with a variable-gap undulator and a 24.6-m-long optical cavity with a broadly tunable outcoupling scheme. Table 4-1 summarizes the parameters of the new IRFEl design.

Particular attention was paid to stability and tunability, which are crucial for the users’ needs. A detailed analysis of the effect of the electron beam fluctuation upon the optical performance was carried out through analytic calculation and numerical simulation. Also studied were various sources of fluctuations in the gun, bunchers, and accelerating sections, as well as feedback and feedforward schemes to reduce these fluctuations. The superconducting design proved superior to the 1990 room-temperature design, which had an electron-beam energy stability of 1 part in 10⁴. Thus the 500-MHz superconducting design appears to be the best choice for our purposes.
Table 4-1. Some Characteristics of the Proposed CDRL IRFEL

<table>
<thead>
<tr>
<th>Accelerator</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>RF frequency (MHz)</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Maximum energy (MeV)</td>
<td>~55</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Micropulse</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FWHM energy spread</td>
<td>0.35% at 55 MeV</td>
<td></td>
</tr>
<tr>
<td>FWHM duration (ps)</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Repetition rate (MHz)</td>
<td>6.6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength λ (µm)</td>
<td>3-50</td>
<td></td>
</tr>
<tr>
<td>Linewidth</td>
<td>transform-limited</td>
<td></td>
</tr>
<tr>
<td>Bandwidth stability δλ/λ</td>
<td>10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Intensity stability δI/I</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>Average power (W)</td>
<td>600</td>
<td></td>
</tr>
</tbody>
</table>

The FEL design must provide wide wavelength coverage while minimizing operational interruptions. At a fixed electron energy, the wavelength can be tuned by about a factor of two by varying the magnet gap of the undulator. For rapid fine tuning, we can change the electron beam energy by +1%, varying the photon wavelength by +2%. By operating the accelerator at any of four different energies (55.3, 39.1, 27.7, or 19.6 MeV) and using these tuning techniques, we can cover a wavelength range of 3 to 50 µm.

The beam reaches about 30 MeV in its first pass through the pair of superconducting rf cavities. With an extra, in-phase recirculation pass, it reaches about 55 MeV, greatly extending the short-wavelength capability of the IRFEL. In another operational mode, the recirculated beam could instead be introduced into the cavities 180° out of phase with the rf. This would decelerate the beam, putting its power back into the rf cavities in a sort of flywheel effect for use on the next pulse. The electron beam, and hence the optical beam, would become quite powerful.

Our work on the recirculation scheme is beginning to address such important issues as isochronous beam transport and safe dumping of energetic, intense beams. We and our potential users are also studying the scientific implications of operation at this high power. The design effort has spawned several experimental programs, including an LBL-Stanford collaboration on development of novel diagnostics for FEL optical pulses, a Stanford-LBL-TRW-BNL collaboration on optimization of superconducting cavities for FEL, an LBL experimental study of hole-coupling and resonator modes, and a joint LBL-CEBAF test bed for demonstrating superconducting IRFEL technologies.

Test Beam Facility

The ALS injection complex includes a traveling-wave linac that produces a 50-MeV electron beam. After the storage ring has been filled, the injection complex will be idle for the useful lifetime of the stored beam, which is expected to be several hours. A variety of interesting experiments could be conducted with that beam, including plasma focusing, tests of accelerator structures, and generation of “chirped” photon pulses. Accordingly the Center is building the Test Beam Facility, a DOE-funded initiative using the ALS linac. The facility will use the linac between injection cycles for a highly productive and cost-effective program in beam physics with minimal disruption to ALS operations.
Many interesting experiments could be performed with this conveniently available, short-pulsed, low-emittance electron beam. These two investigations are planned for the initial research program: a plasma focus program and the generation of short x-ray pulses through Compton scattering.

When a relativistic electron beam passes through a plasma, electromagnetic interactions focus the beam. To date, most work with the plasma-focus concept has involved thin “lenses.” Continuous plasma focusing with thick lenses holds the promise of overcoming the so-called Oide limit—a fundamental limit of focusability arising from statistical emission of high-energy photons in a sharp focusing bend. Our plans include a proof-of-principle test and systematic exploration of plasma-focus ideas generated at our Center. One of the ideas is a long, continuous plasma focus in which diaphragms and differential pumping combine to taper the plasma density. The density will be tapered from about \(1 \times 10^{14}\) to \(5 \times 10^{12}\) cm\(^{-3}\) over a length of 0.5 m. We hypothesize that, at 50 MeV, such a device could focus a beam with a 3-mm cross section into a 400-μm spot. Our scaled proof-of-principle work will involve plasma lengths ranging from 10 to 50 cm, with density tapering from about \(1 \times 10^{11}\) to \(5 \times 10^{13}\) cm\(^{-3}\) over that distance.

Two requirements must be satisfied for an effective plasma focus: the plasma response time must be short compared to the pulse length, and the plasma return currents within the beam must be small. We have calculated parameters for a number of experiments that can be performed using the 50-MeV injector; they will allow careful study of these requirements in both underdense and overdense plasmas. Furthermore, a study of the effect of plasma return currents on the effectiveness of the focusing can provide insight into the usefulness of plasmas in reducing beam-beam interaction.

The design of the plasma source and diagnostics is currently under way. Two candidate sources are an rf discharge source and a photoionization source driven by an excimer laser. The plasma properties will be measured using Langmuir probes and a 65-GHz Michelson interferometer.

Another experiment at the facility will use the ALS linac beam for an ALS-like purpose: the generation of x-rays. Today, the shortness of photon pulses that are produced by either interaction with a magnetic field (synchrotron radiation) or interaction with visible photons (Thomson scattering) is limited by, and comparable with, the shortness of the electron beam. For the ALS linac beam, the shortest photon pulses from a direct collinear interaction would be a few tens of picoseconds long. We have recently hypothesized that a third approach could break through this limit, producing sub-picosecond x-ray pulses.

The new approach, being supported with Laboratory Directed Research and Development funds, is based upon 90° Compton scattering with a visible laser (Figure 4-4). In this configuration, the shortness of the x-ray pulse is limited not by the length of the electron pulse, but rather by the length of the laser pulse or the transit time of the laser pulse across the waist of the focused electron pulse. Therefore it is crucial to focus the electron beam to a narrow waist matching the laser pulse length. A short-pulse solid-state laser \((τ = 200\) fs, \(E = 100-200\) mJ) is being designed by the femtosecond laser laboratory in LBL's Materials Sciences Division. Also being designed is a x-ray detector that offers femtosecond time resolution. In cooperation

* The terms “overdense” and “underdense” indicate whether the plasma is denser than the particle beam or vice versa.
with LBL’s Center for X-ray Optics, we are examining ways to direct the beam onto detectors and experimental apparatus. We are also designing the beamline components required to focus the electron beam to a 70–100 μm spot and then separate it from the x-rays after the interaction point. With the current design parameters, we should be able to produce a 100–300 fs x-ray pulse, containing about 10^5–10^6 photons, with a wavelength that can be varied in the range of 1–10 Å by changing the electron-beam energy.

A variety of other experiments will also be made possible by the facility, including beam-structure interaction studies, investigations of beam-conditioning cavities for FELs, and the “chirping” of conveniently long (10-ps) electron-beam bunches to produce photon pulses much shorter than that.

Figure 4-5 shows the overall layout of the Test Beam Facility. We have been designing the beamline components while studying the proposed experiments and deciding how best to reconcile their somewhat different implications for the magnetic lattice of the transfer line. For example, the plasma-focus experiment requires several transverse measurements of the electron beam (which therefore should be perturbed as little as possible downstream of the focus), whereas the Compton-scattering experiment requires separation of the electron and x-ray beams downstream of the interaction point.

We anticipate that most experiments will be entirely transparent to ALS operations, involving no changes in the electron-gun and linac settings. Some special experiments might call for temporarily changing the relative amplitude and phase settings of the two linac tanks; others might require the gun pulser and the grid voltage to be turned up to their maximum capacity in terms of charge extraction and pulse-train length. The linac will remain under the overall control of the ALS throughout.

A term for a small, rapid change in energy during a pulse, historically based in radio transmission of Morse code.
Figure 4-5. Because the ALS is based on a storage ring, the injector linac will be idle much of the time. This affords a highly cost-effective opportunity to develop a facility for beam-physics research. This diagram shows the probable layout of the Advanced Test Beam Facility, which is now moving from design into construction. The facility will support a variety of experiments, such as plasma focusing of an electron beam and the production of ultrashort x-ray pulses using 90° Compton scattering of a visible laser beam off an electron beam.

Optics Experiments

The Center for Beam Physics has greatly expanded its experimental capabilities with a new optics laboratory that will serve many efforts, including the design of the proposed CDRI IRFEL, and the development of optical components for the Test Beam Facility described in the previous section. Two projects have been carried out thus far: bench testing of the Fox-L code HOLD and development, together with Stanford University, of advanced optical diagnostics for FELs.

Bench Testing of HOLD

Hole coupling was selected for the CDRI IRFEL's optical resonator after extensive computer simulation, primarily using the code HOLD. To validate these simulations, we performed scaled experiments by injecting a visible HeNe laser beam into a stable cavity, as shown in Figure 4-6. We studied two cases: a Gaussian near-concentric symmetric resonator and a hole-coupled resonator with degenerate higher-order modes. The first case, with its simple geometry, allowed direct comparison with analytical results and HOLD output and was also useful for benchmarking the diagnostic equipment. The second case provided an effective means of exercising the code and also yielded intrinsically useful results, since mode degeneracy should be avoided for good FEL operation.
The measurements agreed reasonably well with theoretical and experimental results, indicating that the cavity and the cavity modes were accurately modeled.

Working with colleagues from Stanford University, we designed a novel diagnostic system to measure the spectrum and pulse width of an HHG output. By using an imaging spectrometer and a high-speed single-element detector with an integrating sphere, the system provides spectral and temporal information for each micro-pulse within the pulse train. The system is shown schematically in Figure 17.

Key elements for the spectral diagnostics are the mode-matching telescope, high-resolution spectrometer, imaging telescope, and image dissector. The imaging telescope, located between the spectograph and the image dissector, serves as the magnification of the image that arrives at the dissector, thus allowing the desired spectral resolution to be selected. For pulse width measurement, the system uses single-pulse autocorrelation through non-linear optical mixing in a frequency doubling crystal along with the imaging telescope and the image dissector. Here, the image is that of the region of the nonlinear crystal in which second-harmonic light was generated.

After the spectrometer system was developed in our laboratory, we tested it using HHG beam at several sites in September and October. Preliminary results indicate that the single-element detector with integrating sphere...
Figure 4-7. The LBL-Stanford collaboration in FEL diagnostics has resulted in a system that can perform both spectral analysis and pulse-width measurement of the optical output. Preliminary results from testing with an FEL beam at Stanford have been encouraging.
has the requisite sensitivity and rise time. A micropulse spectrum with 5 spectral "bins," or sets of data in different parts of the spectrum, was obtained. Further improvements to the spectrometer and its user interface will be tested in another FEL run at Stanford early in 1993, and we are also about to begin building the single-pulse autocorrelator system for pulse-width measurements.

Members of the Center for Beam Physics have been involved in the Advanced Light Source from the outset, focusing primarily on the immediate needs of the project but also investigating many basic physics issues involving high-brightness electron storage rings that have numerous insertion devices. Much of this research is highly generic and is relevant, for the most part, to any third-generation source, as well as to storage-ring-based free-electron lasers and to compact damping rings envisioned for high-energy linear colliders.

Because of the high beam current and short bunch length in the ALS, it is important to minimize the beam coupling impedance of the vacuum-vessel components. If this impedance were high, it might excite coupled-bunch and single-bunch instabilities, and the electromagnetic energy deposited in the vacuum vessel by the beam (hundreds of kilowatts are potentially available) might cause excessive heating. Our Beam Electrodynamics group has studied many ALS structures, beginning at the design stage, a process that includes computer modeling and measurements of some actual components by launching waves down a coaxial wire. Our most recent achievement was measuring the higher-order modes of a spare ALS rf cavity. With these measurements we determined the effectiveness of damping (which is accomplished with high-pass filters connected to the input power waveguide) and obtained the data necessary for accurate simulation of coupled-bunch motion.

The information is being put to use in the design of damping systems. In the ALS, bunch-by-bunch damping schemes will be implemented for all three axes so that errors in the position and phase of each bunch can be measured and corrected. Computer simulations and calculations of the beam behavior, which used the data on the higher-order modes of the rf cavity, suggest that the beam instabilities can be safely contained with the proposed feedback systems. Tests of the longitudinal feedback system are planned on the ALS in the near future. This system was developed in cooperation with SLAC, and a similar scheme will be used for the PEP-II collider described earlier in this chapter.

The device that will apply the feedback to the beam is a "kicker," which consists of a pair of coaxial electrodes approximately a quarter-wavelength long connected by half-wavelength delay lines. This structure uses only one-fourth the power of a single-electrode design for a kick of the same amplitude. Low-power measurements of a prototype confirm the predicted performance, and a production unit is being made. Transverse kickers are also being designed.

Accelerator Physics for the ALS

RF Measurements and Feedback Systems
Commissioning Experience

Members of our Center working on the ALS project have been closely involved in the commissioning of the 50-MeV injection linac and the 1.5-GeV booster synchrotron. This process (see Chapter 3 of the AIPR Summary of Activities) is essentially complete; we are now studying the beam dynamics of the injection system and taking as many opportunities as possible to gain operational experience with it. By building our understanding of this complicated system, we will be able to commission the storage ring efficiently in early 1993 and then provide smooth, reliable operations after the facility opens to users.

Beam Electrodynamics

As greater demands are made on the performance of accelerators—such as increased luminosity, as in PEP-II, or lower emittance, as in the ALS—it becomes ever more important to understand potentially disruptive rf phenomena within the beam chamber and to perform various rf "gymnastics" to monitor and control the beam. An area of special interest is the understanding and control of the potentially disruptive electromagnetic interaction between the beam and the conductive walls of the vacuum chamber and various devices. The Beam Electrodynamics group within the Center approaches these problems through analysis, simulation, and experimentation. In 1992 they contributed to PEP-II by leading the design of rf and feedback systems, analyzed beam impedance and feedback issues at the ALS, and continued their history of contribution to the Tevatron by studying a stochastic beam-cooling upgrade.

B-Factory Contributions

The major rf-design challenge posed by PEP-II is control of coupled-bunch motions. In each of the three directions (horizontal, vertical, and longitudinal), these motions have 1658 modes that may be driven strongly by the higher-order resonances of the rf cavities. Each higher-order cavity mode can drive a hundred or so of these motions at a growth rate thousands of times faster than the damping that naturally occurs in the accelerator. The first step toward stabilization is to reduce the shunt impedances of the higher-order modes by several orders of magnitude without corresponding degradation of the desired fundamental mode. Removal of the remaining instabilities will then be within the reach of a practical feedback system. To reduce the shunt impedance of the higher-order modes, we attach waveguides to the cavity to couple these modes to an external resistor.

Figure 4-18 shows a design for such a cavity and a low-power prototype, designed and analyzed with the aid of the Maga code and Kroll-Yu processing of the output. Extensive measurements designed to examine which modes are damped and whether there is interference with the fundamental mode have shown good agreement with expectations; for example, the strongest longitudinal mode, TM_{111}, was predicted to have a loaded Q of less than 30 and was measured to have a loaded Q of approximately 28 (suppressed by more than three orders of magnitude from the unloaded case). We developed a bead-pull perturbation apparatus to measure the impedances of the cavity modes and to map field profiles for mode identification. We are now designing a high-power test model to verify fabrication and
The problem of designing robust control systems for complex mechanical systems is of paramount importance. The problem centers on the design of control algorithms that can effectively handle the inherent nonlinearities and uncertainties present in such systems. Recent advances in control theory have led to the development of advanced control strategies that can be applied to a wide range of mechanical systems. These strategies are designed to ensure stability, robustness, and performance under varying operating conditions. The development of such control algorithms requires a deep understanding of the underlying system dynamics and the implementation of effective feedback mechanisms. The future of control systems in complex mechanical applications is promising, with ongoing research aimed at further improving the performance and reliability of these systems.
Fermilab Antiproton Cooling System

The latest achievement in our ongoing collaboration with Fermilab is the design of a biplanar electrode system for more rapid cooling of the beam for the antiproton source. (LBL was involved in the initial design of pickup and kicker electrodes for this cooling system and has been continually engaged in analyzing the system's performance and seeking ways of improving it.) In earlier years we had demonstrated that, for power-limited cooling systems, it is more efficient and cost-effective to double the number of cooling electrodes than to double the operating frequency, whereupon we developed biplanar electrodes that could effectively double the number of electrodes without using any more space. This scheme, with the existing 2.4 GHz electronics, appeared to yield better results than would a system with uniplanar electrodes and completely reworked 4.8 GHz electronics. Calculations indicate that the resulting performance would exceed the needs of any anticipated upgrade to the Tevatron complex, including the proposed new main injector. The validity of our beam-cooling calculations was affirmed by comparing the results with cooling data from Fermilab. In 1992, we completed a detailed design and cost estimates for the electrode system and began studying the performance of a prototype module. Full production awaits the results of the study and a go-ahead decision by Fermilab.

FEL Accelerating Cavities

As mentioned in the earlier section on the proposed CDRI-IRFEL, minimization of fluctuations in the energy and intensity of an FEL requires stringent maintenance of electron-beam stability. This in turn has implications for the rf cavities in the accelerator and other aspects of the accelerating system. For instance, coupled-bunch motions driven by the higher-order modes of the rf cavity may be excited in a recirculating beam, causing rf voltage fluctuations that make the energy of the beam fluctuate. As part of our collaboration with Stanford, Brookhaven, and TRW, we have performed various experiments in FEL technology.

A two-cell superconducting rf cavity, similar to a cavity of the IRFEL, has been studied extensively with our bead-pull perturbation apparatus in search of higher-order modes. These modes can be damped by putting probes at appropriate locations in the beam, pipes at the ends of the cavity and connecting them to external resistive loads. A similar copper cavity has been used to study a network for input impedance matching and phase adjustment. In 1993, together with Stanford, we will measure the quality factors of the higher-order modes of this niobium cavity at superconducting temperatures.

High-Energy Collider Physics

Of the many ideas that have been proposed for the electron-positron colliders of the next century, the two-beam accelerator, or TBA, appears to be one of the more promising. Figure 4.9 illustrates the concept. The first of the two beams is a "drive" beam, generated by an induction linac, that has high current but relatively low energy (perhaps 1 kA at 10 MeV in a full-scale TBA). This beam is passed through either an undulator based FEL or a relativistic klystron (RK), generating microwave power on the order of 1 GW per meter of length. The power is applied to an adjacent high-gradient acceleration structure, which accelerates a second electron beam to

'Beam cooling means measuring the "temperature" or internal motion of the particles in the beam and applying feedback to reduce this motion, thereby increasing intensity.

4 | 19
Today, the TBA technology is in the early stages of development; designs are being developed and evaluated by researchers in the Center's High-Energy Collider Physics Group, in collaboration with colleagues from LLNL and from KEK, the high-energy physics laboratory in Japan.

Initially the TBA/RK work involved longitudinal bunching of the drive beam. This is adequate for low energies, but at moderate energies (greater than 3 MeV or so) it becomes less effective. To extend our work to higher energies, we have been experimenting with a transverse chopper cavity or "choppertron," built according to our designs by Haimson Research. In 1991 trials, the choppertron produced impressive peak power—some 400 MW—but the pulses at such power levels were less than 10 ns in length. We determined that the problem was beam breakup caused by a spurious higher-order mode generated in the output structure at 13.6 GHz. We have since added a damping structure (Figure 4-10) that removes this higher-order mode; in 3-MeV experiments on the Advanced Technology Accelerator at LLNL, we obtained 30-ns pulses at 120 MW. These pulses had a phase jitter of about 2°, which implies good spectral purity. This satisfying demonstration of high power output from an RK provides a good basis for our continuing R&D program. We are investigating damping structures that could remove the higher-order mode without damping the desired mode, perhaps enabling us to simultaneously achieve the hundreds-of-megawatts power and the tens-of-nanoseconds pulse lengths.

Transversely Modulated RK
Figure 4-10. When the choppertron was equipped with this structure, a highly disruptive higher-order mode was effectively damped, enabling a 30-ns pulse of 11.4 GHz microwaves at 120 MW. The low phase jitter (about ± 2°) indicates good frequency stability. The next step is to improve the efficiency of the damper so that the power level in the fundamental mode returns to the hundreds-of-megawatts level achieved (in much briefer pulses) without the damper. (After LLNL illustrations)

Standing-Wave FEL

The FEL, explored in our original TBA research, remains a proven candidate with great potential. We are developing an idea, called the “standing-wave FEL,” in which the radiation is trapped in a standing-wave rf cavity and beat-coupled to a nearby high-gradient acceleration structure. This concept is currently undergoing intense analysis and theoretical study, with no experimental program anticipated in the near term.

Horizons for the TBA

The work done on the TBA since we conceived of it 10 years ago has validated the basic concept and the use of either an RK or an FEL as the source of rf power. However, there remains a vast amount of research and development before the TBA can be used in high-energy physics. Here are some of the planned near-term investigations.

- Re-acceleration of the “spent” drive beam (useful for economic reasons) will be examined in a planned 1993 experiment at LLNL.
- There is much theoretical and experimental work to be done in extraction of microwaves from the power source. A demonstration of repeated extraction is being studied at LLNL.

4-21
Sensitivity studies to determine the importance of various parameters will be important. A great deal of theoretical work has been done; coming years will see more studies on real apparatus.

Economic matters will be significant in the eventual decision on whether to build a full-scale 1BA and in the technological choices within such a project. We are working with EEL on these issues.

A collaboration with KFK is under way, using an FEL from which up to 30 MW can be extracted at 8.6 GHz.

The gain of a free-electron laser or other resonant electron-beam device is limited by the spread in longitudinal velocity and, hence, the energy spread and emittance of a three-dimensional beam. The electron-beam emittance must be less than the wavelength of the radiation from the device divided by 4π. In practice, the energy spread of the beam is often small, so the beam could be "conditioned" with special rf cavities. These cavities would impart more acceleration to the particles traveling longer paths, reducing the spread in longitudinal velocity. We have analyzed this idea with a simple numerical model for beam transport, assuming ideal rf cavities. We have also analyzed an FEL to evaluate its performance with reduced axial-velocity spread; these studies lead us to expect distinct improvements from beam conditioning. During 1992 we computationally analyzed a cavity geometry that promises to greatly increase the beam-cavity coupling. Experiments to test the feasibility of a beam-conditioning cavity are being planned for the Accelerator Test Facility at Brookhaven National Laboratory.

W. Barr, J. Edghoffer, and S. Chattopadhyay (EEL) and S. Forman (TRW), "Field profile and loading measurements on higher order modes in a two-cell 500 MHz superconducting structure," 14th International Linear Conference (Ottawa, Ontario, Canada, 1992), BNL 32178a (1992)

laser of the proposed chemical dynamics research laboratory at HL. 16th
International Linear Conference (Ottawa, Ontario, Canada, 1992); HL 32824a (1992)

Y H. Chun, “Simple formulae for the optimization of the H. L. gain length as a
function of emittance, betatron wavelength and energy spread.” 14th International Free

Y H. Chun, K J. Kim, and M. Xu, “Calculation of 3D free electron laser gain
comparison with simulation and generalization to elliptical cross section.” 14th
Free Electron Laser Conference (Kobe, Japan, 1992), HL 32296 (1992)

Y H. Chun, K. J. Kim, and M. Xu, “Three-dimensional free electron laser theory
including betatron oscillations.” submitted to

J. N. Corlett and J. Clarke, “New injection kicker magnets for the Daresbury SRS.” in
Proceedings of the 3rd European Particle Accelerator Conference (Berlin, Germany,
1992). pp 1401-1411

J. Dortan and A. Hutton (SLAC), M. Zisman (Beh I), and W. Barletta (BNL). SLAC
asymmetric B factory R&D results, 3rd European Particle Accelerator Conference
(Berlin, Germany, 1992), HL 32898a (1992)

I. Dubshevskaya, “Coherent generation of visible radiation by relativistic electron
beams in a solid space periodic target.” HL 31694 (1991)

F. Forest and K. Hirata, “A contemporary guide to beam dynamics.” HL 32791 (1992),
also published by KEK (1992)

F. Forest and K. Ohmi, “Symplectic integration for complex wiggler,” HL 32792
(1992), also published by KEK (1992)

M. Furman, “Beam beam issues in
asymmetric colliders,” invited talk, in
Proceedings of the International Conference on B Factories. The State of the Art in
Accelerators, Detectors, and Physics
(Stanford, CA, 1992), HL 32561 (1992),
invited talk, Spring Meeting of the American
Physical Society (Washington, DC, 1992),
HL 31752a (1992)

M. Furman, “Beam beam effects in
asymmetric colliders,” abstract for the
Spring Meeting of the American Physical
Society (Washington, DC, 1992)

M. Furman, “Proposal for experiments at
Tasar on beam beam issues for future B
factories,” HL PUB 3332 (1992)

M. Furman, Y H. Chun, and I. Eden (HL),
J. Tennyson and V. Ziemann (SLAC), and
W. Kozanecki (Fermilab and SLAC).
“Beam beam diagnostic from close orbit
distortion.” 15th International High Energy
Accelerator Conference (Hamburg,
Germany, 1992). HL 31880 (1992), Stanford
Linear Accelerator Center SLAC PUB 5472
(1992)

M. Furman, Y H. Chun, and I. Eden (HL),
W. Kozanecki (Fermilab and SLAC), and
J. Tennyson and V. Ziemann (SLAC). “Closed
orbit distortion and the beam beam
interaction,” preliminary draft, HL 32486
(1992)

R. Goffberg and G. Lambertson, “Dynamic
devices: a primer on pickups and kicks,”
chapter in AIP Conference Proceedings Series: Physics of Particle Accelerators
(1992), HL 31664 (1991)

R. Gough, editor, “An initiated free electron laser for the Chemical Dynamics Research
Laboratory design report.” HL PUB 5335
(1992)

R. Gouillard, R. A. Rimmer, and A. Sessler
(HL) and H. Kuk (BNL). Design of rf
conditioner cavities,” 14th International Free
Electron Laser Conference (Kobe, Japan,
1992), HL 32232 (1992)

A. Jackson, “Ideas for future synchrotron
light sources.” European Particle Accelerator
Conference (Berlin, Germany, 1992),
HL 31172 (1992)

I. Johnson, J. M. Byrd, G. Lambertson, and
D. Vegey, “Progress on PEP II multibunch
feedback kickers,” in Proceedings of the
International Conference on B Factories: The
State of the Art in Accelerators, Detectors,
and Physics (Stanford, CA, 1992)
CENTER FOR BEAM PHYSICS

J. S. Wurtele, D. H. Whittum, and A. M. Sessler, "Common analysis of the relativistic klystron and the standing wave free-electron
Publications and Presentations

DATE
FILMED
12/29/93
END