Title
ENERGY GAP IN THE HIGH-TC SUPERCONDUCTOR La1. 85Sr0. 15CuO4.

Permalink
https://escholarship.org/uc/item/7cd503s4

Author
Walter, U.

Publication Date
1987-02-01
ENERGY GAP IN THE HIGH-T_c SUPERCONDUCTOR
La_{1.85}Sr_{0.15}CuO₄

U. Walter, M.S. Sherwin, A. Stacy, P.L. Richards, and A. Zettl

February 1987
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Energy Gap in the High-\(T_c\) Superconductor \(La_{1.85}Sr_{0.15}CuO_4\)

U. Walter\(^{(a)}\), M.S. Sherwin\(^{(a,*)}\), A. Stacy\(^{(b,c)}\), P.L. Richards\(^{(a,c)}\) and A. Zettl\(^{(a)}\)

\(^{(a)}\) Department of Physics, University of California, Berkeley Ca. 94720
\(^{(b)}\) Department of Chemistry, University of California, Berkeley, Ca. 94720
\(^{(c)}\) Materials and Molecular Research Division, Lawrence Berkeley Laboratory, Berkeley Ca. 94720

Abstract

The far infrared (FIR) reflectance of the high-\(T_c\) superconductor \(La_{1.85}Sr_{0.15}CuO_4\) has been measured in the frequency range 15 to 400 cm\(^{-1}\). Below the superconducting onset temperature \(T=36K\), absorption features in the FIR spectrum indicate an energy gap, with a functional form similar to the BCS gap, but with a smaller magnitude.
Very recently, intense scientific interest has focused on the layered Perovskite-structure compounds La-M-Cu-O, with M = Ba or Sr\([1-8]\). Of particular importance are the materials La\(_{2-x}\)Ba\(_x\)CuO\(_4\) and La\(_{2-x}\)Sr\(_x\)CuO\(_4\), with x typically 0.15. These systems show unusual transport and magnetic anomalies\([1-8]\), suggestive of superconducting transitions, with onset temperatures \(T_{\text{CO}}\) as high as 52K under hydrostatic pressure\([7]\) and 37K under ambient pressure\([8]\).

Outstanding features of the La-Ba-Cu or La-Sr-Cu oxides include sharp drops in dc electrical resistivity below \(T_{\text{CO}}\), with zero (or nearly zero) resistance states at lower temperature. In high quality specimens, the transition width is as little as 1.4K\([8]\). Similarly, magnetic susceptibility measurements indicate perfect diamagnetism throughout a substantial volume of the sample, as expected from the Meissner effect of a superconducting ground state.

The nature of the "superconducting" state in these compounds is of great current interest. Important questions address the behavior of the specific heat, the extent of "bulk" superconductivity and the capacity for persistent currents, strength of the electron-phonon coupling, and existence of an energy gap.

We have addressed the question of the energy gap in the anomalous superconducting phase of La\(_{1.85}\)Sr\(_{0.15}\)CuO\(_4\) by means of far infrared (FIR) reflectance measurements, over the frequency range 15 to 400 cm\(^{-1}\). This spectral range is of interest since, in the BCS theory of superconductivity, a transition temperature of order 40K would imply an energy gap of magnitude \(2\Delta = (3.5-4)k_BT_c\), or the order of 100 cm\(^{-1}\). In La\(_{1.85}\)Sr\(_{0.15}\)CuO\(_4\), we find direct evidence that an energy gap exists. The gap first opens at \(T_{\text{CO}}=36K\), and displays a temperature dependence in rough agreement with the predictions of the BCS theory. The absolute magnitude of the gap (extrapolated to \(T=0\)) is, however, substantially smaller than the
BCS prediction. We interpret our results in terms of a gapped superconducting ground state, and discuss possible mechanisms that might lead to a reduction of the gap magnitude.

We have prepared polycrystalline samples of La$_{1.85}$Sr$_{0.15}$CuO$_{4}$ by reaction of La$_2$O$_3$, CuO, and SrCO$_3$. Finely ground powders of the starting materials were pressed into a pellet approximately 1 cm in diameter, and sintered at 1100°C for 44 hours. The finished ceramic-like pellets were 78% dense. We have characterized our samples by careful magnetic susceptibility measurements, employing a SQUID magnetometer. During the measurement, the samples were cooled in a 16 Gauss field. Fig. 1 shows χ_g versus temperature for La$_{1.85}$Sr$_{0.15}$CuO$_{4}$. The sharp break in χ_g signals the onset of the superconducting transition at $T_{co}=36$K. The form of χ_g below T_{co} suggests a transition width of approximately 10K, indicating reasonable sample quality. At low temperature, the volume susceptibility of our samples approaches $\chi_v=-8.0 \times 10^{-2}$ emu/cc. Within experimental error, this value is in exact agreement with that expected for a perfect diamagnet: $\chi_v=-8.0 \times 10^{-2}$ emu/cc.

FIR reflectance measurements were performed with a Michelson interferometer, adapted to a Helium gas flow cryostat to allow sample temperature variations from room temperature to 6K. During the experiment, chopped radiation impinged on the sample surface at near normal incidence. The reflected radiation was lock-in detected with a high sensitivity composite bolometer operated at 1.2K. At each sample temperature for which a reflectance spectrum was recorded, the data was normalized to a polished brass mirror.

Fig. 2 shows a series of normalized reflectance spectra of La$_{1.85}$Sr$_{0.15}$CuO$_{4}$ at selected temperatures above and below $T_{co}=36$K. At 52K, the reflectance R is approximately 86% at 20
cm$^{-1}$, and decreases smoothly with increasing frequency. Above 50K, the reflectance curve
was found to be rather insensitive to temperature. At 36K, R has begun to rise at low frequency,
and is approximately 90% at 20 cm$^{-1}$. At temperatures below approximately 34K, the low
frequency reflectance is unity. In the low temperature regime below T_{co}, the reflectance
follows a consistent behavior. At low frequency, R is near unity and decreases only slightly with
increasing frequency. At moderate frequency, R displays a strong drop at a characteristic
frequency f_0, and begins to flatten out once again at a higher characteristic frequency f_1. At 6K,
f_0 and f_1 are clearly identified at 50 cm$^{-1}$ and 66 cm$^{-1}$, respectively. We also note, at low
temperatures, the presence of a shallow minimum in R near 70 cm$^{-1}$. Between 90 and 400
cm$^{-1}$, the reflectance decreases smoothly with increasing frequency, with no outstanding
features.

Both f_0 and f_1 decrease with increasing temperature above 6K. At and above 36K, f_0 and
f_1 are no longer identifiable. We associate the reflectance feature windowed by f_0 and f_1 in
La$_{1.85}$Sr$_{0.15}$CuO$_4$ with the onset of photon absorption at the superconducting gap energy $h\nu =$
$E_g = 2\Delta$. The absorption feature first appears just below $T_{\text{co}} = 36K$. Below this critical
temperature, the absorption edge at f_0 increases with decreasing temperature, as expected for an
electronic gap that opens at T_{co} and subsequently grows with decreasing temperature.

Fig. 3 shows both f_0 and f_1 plotted versus temperature. Also plotted is f_p, which
corresponds to the frequency of the (negative) peak in the frequency-derivatives of the
reflectance traces of Fig. 2 (the derivative traces are not shown). The derivative method yields
a very accurate measurement of f_p, which lies between f_0 and f_1. The general behavior of the
data of Fig. 3 is similar in form to that predicted by the BCS gap[9]. The solid line in Fig. 3 is the BCS gap, normalized to $T_c = 36K$, but with a zero temperature magnitude of $E_g = 2\Delta = 60$ cm$^{-1}$. This magnitude is approximately 30% smaller than that predicted from the expression[9]

$$2\Delta = 3.5k_B T_c,$$ \hspace{1cm} (1)

for which $E_g(T=0) = 87$ cm$^{-1}$ (using $T_c = T_{CO} = 36K$).

The relatively small magnitude of the zero-temperature gap we observe in La$_{1.85}$Sr$_{0.15}$CuO$_4$ is surprising. The proportionality constant 3.5 in Eq. (1) is appropriate only to the weak-coupling limit, where $N(0)V \ll 1$, with $N(0)$ the density of states at the Fermi level and V the interaction potential. In the strong-coupling limit, inelastic phonon processes give rise to quasi-particle damping which in turn increases the proportionality constant in Eq. (1)[10]. Hence, in the strong coupling limit, Eq. (1) would tend to underestimate the gap magnitude, rather than overestimate it. In La$_{1.85}$Sr$_{0.15}$CuO$_4$, the Debye temperature of $\approx 400K$[11] and $T_c \approx 40K$ would suggest an electron-phonon coupling constant on the order of $g = 0.43$. This is not too different from $g = 0.39$ for lead, a strong coupling superconductor for which $E_g = 4.1k_B T$[12].

We consider the possibility that the absorption we observe in La$_{1.85}$Sr$_{0.15}$CuO$_4$ results from a distribution of BCS-like gap energies within the sample. If a distribution were present, one would associate the upper energy cutoff with T_{CO} and the lower cutoff with T_{c1}, where T_{c1}
represents the low temperature limit of the transition width. In Fig. 1, we identify T_c1 with the flattening out of χ at lower temperatures, hence $T_c1 \approx 25K$. A distribution would suggest that, at temperatures T such that $T_c1 < T < T_c0$, a gap will exist at zero frequency. This is, however, in contrast to the FIR reflectance data of Fig. 2 which shows, at $T=24K$, a well-developed absorption edge near 50 cm$^{-1}$, with no evidence for additional absorption at lower frequency. We do not, therefore, expect a gap distribution to be appropriate to La$_{1.85}$Sr$_{0.15}$CuO$_4$.

Another possibility for a small gap magnitude in a superconductor is a strongly variable density of states near the Fermi energy[13]. In La$_{1.85}$Sr$_{0.15}$CuO$_4$, one might expect the Fermi surface to result from hybridized copper and oxygen bands, with the possibility of density of states fluctuations. However, it remains uncertain if the mechanism of fluctuations in $N(E)$ alone would be sufficiently strong to reduce the gap to the observed value.

It is apparent that La$_{1.85}$Sr$_{0.15}$CuO$_4$ is not a conventional type-II superconductor. A number of novel mechanisms have been suggested[14,15] to account for the observed high T_c anomalies in resistivity and susceptibility, including a superconducting ground state driven by a charge density wave instability[14], and superconductivity with virtual plasmon exchange associated with the quasi-two-dimensional electronic structure[15]. Whether such mechanisms are consistent with the characteristic temperature dependence and magnitude of the superconducting gap we observe, remains to be seen.

In conclusion, we have observed absorption features in the FIR spectrum of La$_{1.85}$Sr$_{0.15}$CuO$_4$ which identify an energy gap in the superconducting state. The development of the gap is consistent with the superconducting onset temperature $T_c0=36K$. On the other hand, the magnitude of the gap is inconsistent with the conventional strong- (or weak) coupling
theory of BCS superconductivity, and suggests novel interaction mechanisms in this unusual material. Complementary measurements of the magnetic field dependence of the gap, in addition to tunneling spectroscopy, should be of importance in understanding the details of the superconducting ground state. Such measurements are presently underway.

We wish to thank Prof. M.L. Cohen for his encouragement and valuable input during the course of this work. This research was supported under NSF grant CHE83-51881 and a grant from E.I. DuPonte de Nemours & Co. (A.S.); the Director, Office of Energy Research, Office of Basic Sciences, Materials Sciences Division of the US Department of Energy, under contract DE-AC03-76SF00098 (P.L.R.); and NSF grant DMR-8400041 (A.Z.). U.W. acknowledges a Postdoctoral Fellowship from the Deutsche Forschungsgemeinschaft, and A.Z. acknowledges support from the Alfred P. Sloan Foundation.
References

* AT&T Bell Laboratories Scholar

9. See, for example, J.R. Schrieffer, Theory of Superconductivity, (Benjamin Cummings, London, 1964)
10. See, for example, D.J. Scalapino, in Superconductivity, Vol. 1, R.D. Parks, ed. (Marcel Dekker, Inc. New York, 1969) p. 541. The argument was first proposed by Wads and Schrieffer.
11. N. Phillips, (private communication)
13. We thank M.L. Cohen for pointing out this mechanism to us.
15. V.Z. Kresin, Phys. Rev. B (submitted)
Figure Captions

1. Magnetic susceptibility of La$_{1.85}$Sr$_{0.15}$CuO$_4$ as a function of temperature. The initial break in the data determines $T_{co}=36K$.

2. Normalized reflectance of La$_{1.85}$Sr$_{0.15}$CuO$_4$ versus frequency at selected temperatures.

3. Characteristic frequencies f_0, f_p, and f_1 (see text) for FIR absorption in La$_{1.85}$Sr$_{0.15}$CuO$_4$, versus temperature. The solid line is the BCS gap, normalized to $T_c=36K$, but reduced in magnitude by 30% from the prediction of Eq. (1).
La$_{1.85}$Sr$_{0.15}$CuO$_4$
La$_{1.85}$Sr$_{0.15}$CuO$_4$
Fig. 3

FREQUENCY (cm\(^{-1}\))

\[\text{La}_{1.85}\text{Sr}_{0.15}\text{CuO}_4 \]

- \(\bigcirc\): \(f_0\)
- \(\oplus\): \(f_p\)
- \(\bullet\): \(f_1\)

T(K)

0 10 20 30 40
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.
LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720