Computational Modeling of Chord Fingering for String Instruments

Daniele P. Radicioni (radicion@di.unito.it)
Centro di Scienza Cognitiva - Università e Politecnico di Torino
Via Po, 14 - 10123 Torino, Italy

Vincenzo Lombardo (vincenzo@di.unito.it)
Dipartimento di Informatica - Università di Torino
Corso Svizzera, 185 - 10149 Torino, Italy

Abstract

Fingering is a cognitive process that maps each note on a music score to a fingered position on some instrument. This paper presents a computational model for the fingering process with string instruments, based on a constraint satisfaction approach. The model is implemented in a computer program, which has been tested in an experiment in comparison with three human experts. The results have confirmed the predictions based on a set of constraints that encode the bio-mechanical aspects of the performer’s hand in its interaction with the musical instrument.

Introduction

Music performance involves the transformation of symbolic representations of a score into physical gestures that can operate a music instrument. A model of music performance consists of the interpretation of the score and the application of the gestures to some sound synthesis device that represents the instrument. Gesture modeling is favorably coupled with a physical model of the instrument, since the latter permits a natural representation of the performer/instrument interaction.

Fingering is an essential part of gesture modeling, since it significantly affects the technical and expressive qualities of the sound being produced (Traube et al., 2003). Since fingering defines for each note in the score both the position on the keyboard/fingerboard and the (left hand) finger involved in playing, it sets the parameters that influence the final timbre of the sound during performance. In this paper, we address the modeling of the fingering process for the guitar. The case of guitar, and of string instruments in general, is particularly relevant, since the same note can be played in several positions on the fingerboard.

Fingering is a complex cognitive process of music production that relates a score, together with the technical and "idiomatic" aspects of the instrument for which that score has been conceived, and a performer, with all her/his knowledge upon the piece, the composer’s intentions and the execution style (Clarke et al., 1997; Parncutt et al., 1997). So, fingering involves several competences: musical analysis, for the interpretation of the notes in input, physical constraints, posed by the instrument where the notes have to be played, bio-mechanical constraints, which characterize the possible figures of the hand.

Moreover, modeling the fingering process can contribute to the development of automatic performance environments (Parncutt, 1997). In fact, despite its central role in music performance, scores often lack of fingering indications, considered unnecessary (being common knowledge within a certain musical practice) or an execution choice (Gilardino, 1975a, 1975b). Therefore, a cognitive model may supply this fundamental information.

The fingering problem consists in determining for each note in the score, a position \(<\text{string}, \text{fret}>\) on the fingerboard and a finger of the left hand that presses it. The notion of position provides a unique identifier for the correspondence between the note and the fingerboard. A fingered position is the triple \(<\text{string}, \text{fret}, \text{finger}>\), combining a position with one of the four available fingers. Provided that guitarists do use four fingers of the left hand (from the index to the little finger), \(n\) notes generate up to \(4^n\) different fingerings in the worst case. Since the same note can be found on up to 4 positions (i.e., pairs \(<\text{string}, \text{fret}>\) (Figure 1), this number might grow up to \(16^n\).

From the temporal point of view, fingering can be decomposed into two subproblems: the fingering of melodies, where the notes to be played form a sequence, and the fingering of chords, where multiple notes (2 to 6 in the case of guitar) have to be played simultaneously. The two subproblems are addressed differently. In melody fingering, the fingered position of one note depends on the application of constraints over a sequence of notes, and the model must account for the consistency of subsequent positions; in chord fingering, the fingered position of one note depends on the other notes of the chord, and all the positions must satisfy the constraints applied at the same time. We must also consider that a whole account of fingering includes both melody and chord fingerings, since a melody can consist of both chords and individual notes.

In previous papers we have addressed the melody fingering problem in the reduced case of individual notes (Radicioni et al., 2004); in this paper we approach the chord fingering problem by introducing a novel model based on the constraint satisfaction problem (CSP) framework. CSP framework has been successful in modeling several problems, like map coloring, vision, robotics, job-shop scheduling, diagnosis, spatiotemporal reasoning, etc. (Dechter, 1998). A constraint satisfac-
The models in (Sayegh, 1989), (Parnicutt et al., 1997) and (Radicioni et al., 2004) are fully functional computational models. In this case the models have been implemented in systems that are able to take in input a score and return a sequence of fingered positions (consider, in fact, that both models addressed the melody fingering problem). These models share the principle of penalizing difficulties: fingering is represented like a search for a combination of positions that pursues an overall effort-saving behavior. The model in (Parnicutt et al., 1997) addresses the main ergonomic constraints that pianists meet while playing melodies. The fingering is computed in two steps, with a “generate and test” approach: enumeration of all possible fingerings, and weighting of fingerings according to the degree of difficulty. Weighting is conducted on the basis of a set of 12 rules, each one determining the contribution of some source to an overall difficulty score (e.g., rule 6 slightly discourages the use of ring and little fingers by penalizing their use with a heavier score). In such setting, the lowest rated fingering is "the one that [...] will be used most often in performance" (Parnicutt et al., 1997).

The algorithmic approach proposed by Sayegh (1989) exploits a graph-based representation, with the vertices grouped in layers; for each note, the possible fingered positions, each encoded by a vertex, form a layer; each vertex of a layer is connected to all the vertices of the following layer. Weights on the edges represent the difficulties of a transition from a fingered position to the next. The problem of finding a suitable fingering is represented as the problem of finding a path in the graph, such that the difficulties are minimized. Unfortunately, neither the sources of difficulty (in the form of constraints on bio-mechanical, ergonomic or cognitive factors) nor experimental results on the viability of this approach have been provided by Sayegh. Recent evidence support the fact that performers pursue an overall effort-saving behavior (Parnicutt et al., 1997; Parlitz et al., 1998; Heijink & Meulenbroek, 2002). The graph-based Sayegh’s approach has been recently improved by Radicioni et al. (2004) by introducing the relevant notion of segmentation of a music score and a characterization of the biomechanical constraints (see also below).

The present work proposes a model which attempts to grasp the main physical and bio-mechanical difficulties implied in chord fingering. The overall approach is similar to Parnicutt & colleagues’ for the case of keyboard instruments in melody fingering. The novelties of our approach are the framework in which the problem is encoded, namely the CSP framework, the application to the chord fingering problem and an experimental validation. We now introduce the CSP framework and the encoding of the fingering problem.

Chord fingering modeled as a constraint satisfaction problem

The fingering model takes in input chords described by a score in the traditional western music notation (called *common practice notation* — CPN) and returns in output all the fingerings that satisfy a set of constraints that
are derived from the instrument shape and the anatomy of the hand. The problem is cast in CSP terms, where the variables are the notes indicated in the score, the domains of the variables are the fingered positions (i.e., position on the fingerboard plus a finger of the left hand) and the set of constraints that restrict the possible combinations of fingered positions. In the case several fingerings satisfy such a set of constraints, the model also provides a ranking on comfort accounts. We now introduce the problem cast in CSP and the search strategy that computes the suitable fingerings.

Problem representation

Given that CSP variables are the notes and the domains are the fingered positions, we need to define a suitable set of constraints. Based on guitar handbooks from historical composers (Aguado, 1843) and contemporary teachers (Duarte, 1966), on a review of some of the didactic opuses of the early 19th century guitar composers (Giuliani, 1812; Sor, 1815) and on our musical experience, we devised a set of bio-mechanical constraints that express which combinations of fingered positions could actually be played by a human performer (see Table 1). One note per string expresses the constraint that it is possible to play at most one note at a time on each string, so any position prevents from other placements on the same string; no overlaps ensures that higher-numbered fingers press higher-numbered frets; max spans over finger pairs expresses a maximum span of frets for each pair of fingers, that can never be exceeded. Finally, since a chord can be composed by 2 to 6 fingered positions and the available fingers are only four, we can apply the barré technique, in which a single finger can press more than one position simultaneously. We restrict the use of barré to the index finger: the constraint Barré index states that all the positions of the barré are on the same fret and all the other positions in the chord are in higher numbered frets.

<table>
<thead>
<tr>
<th>Set of constraints</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>One note per string: on each string it is possible to play at most one note at a time.</td>
<td></td>
</tr>
<tr>
<td>No overlaps: higher fingers press higher frets.</td>
<td></td>
</tr>
<tr>
<td>Max span over finger pairs: for each finger pair, there exists a maximum span that can never be exceeded.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>maxSpan</th>
<th>index</th>
<th>middle</th>
<th>ring</th>
<th>little</th>
</tr>
</thead>
<tbody>
<tr>
<td>little</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>ring</td>
<td>3</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>middle</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>index</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

| Barré index: all the positions of the barré are on the same fret and all the other positions in the chord are in higher numbered frets. |

![Figure 2](image_url)

Figure 2: Frame a): The map-coloring problem, consisting of assigning a color (from a set of colors) to each region of the map, such that no two adjacent regions have the same color. Frame b): its equivalent graph.
all the other vertices: an edge connecting two vertices, e.g. \(x \) and \(y \) indicates that while pressing a fingered position related to \(y \), the performer is constrained by pressing a fingered position related to \(x \).

The search strategy

Given a representation in CSP terms, a search strategy is applied to find the assignments to variables that satisfy the constraints. A CSP search strategy propagates constraints statically to yield a simpler problem and then proceeds with a standard depth-first algorithm to ground the variables. In case the algorithm reaches a dead end, backtracking resorts to the last instantiated variable that has alternatives open.

Constraint propagation reduces the size of the variable domains while not affecting the final set of solutions. The graph of the simplified problem satisfies the properties of arc-consistency and path-consistency. Arc-consistency means that given an arc \((V_x, V_y)\) — i.e., connecting the variable \(x \) to the variable \(y \) — it is *arc consistent* if for every value \(i \) in \(D_x \), there is some value \(j \) in \(D_y \) such that the instantiations \(V_x = i \) and \(V_y = j \) are permitted by the binary constraint between \(V_x \) and \(V_y \). Path-consistency (or \(k \)-consistency) means that it is possible to instantiate up to \(k \)-variables consistently. Since path-consistency has an exponential complexity, it is customary to trade-off between the consistency degree and the computational effort via the introduction of the *directional arc-consistency* and *directional path-consistency* (Dechter, 2003). Directionality limits consistency to apply only along a given order on variables: in the case of directional path-consistency that is adopted in this paper, given the order \(x_1, x_2, \ldots, x_n \), the requirement is that for all \(i, j \leq k \) we have that \(\{x_i, x_j\} \) is path-consistent relatively to \(x_k \). Directional path-consistency is useful in the modeling of the fingering process since the search intuitively starts from one fingered position and then proceeds through the order given by the increasing pitch. Increasing pitch provides a natural order over the notes of a chord; the whole western classical harmony theory is grounded on this principle. The application of directional path-consistency to the chord fingering problem implies that the performer considers only a subset of the cartesian product of the fingered positions available for each note of the chord as s/he proceeds in order of increasing pitch.

In particular, the algorithm that checks the directional path-consistency scans the variables in order and retrieves, for each note, the relative domain. Once reached the \(k \)-th variable, the algorithm restricts the domains of the lower variables on the basis of the constraints that involve any \(x_i \leq x_k \) and \(x_k \); the algorithm then iterates the restriction taking as reference the variable \(x_{k-1} \) and restricting the domains of \(x_i \leq x_{k-1} \) — and so on. The same iterative process is executed on pairs of linked variables, thus restricting the combined domains on the basis of the constraints with respect to a higher variable. So, the combined domains of \(x_i \) and \(x_j \) are restricted with respect to the domain of some variable \(x_k \geq x_i \) and \(x_j \). Once the graph has been made directional path-consistent, a *depth-first* search with backtracking occurs. The search follows the natural order, and starts by combining pairs of fingered positions from higher strings (namely, the basses: the sixth and fifth string in Fig. 1), lower frets and lower fingers. Underpinned by the didactic guitar literature (Aguado, 1843; Duarte, 1966), we assume that playing at the lower frets is more comfortable; yet, the first fingers (index, middle) are stronger, and then they are expected to press the strings with more ease (see also Parncutt et al., 1997): the first fingerings that the search finds are expected to be more comfortable than the last ones.

So the search strategy implements a preference for comfortable fingerings, given the evidence that, in absence of higher cognitive constraints like phrasing, performers choose the bio-mechanically easiest solutions (Heijink & Meulenbroek, 2002). This is immediately applicable to cases of chord fingering on spot (out of any musical context), like in pedagogical situations. These cases are considered for the experimental validation described below.

Example

Let us consider the chord presented in Figure 3. The order of variables is \(\{x, y, z\} \). The directional path-consistency algorithm performs two steps: a) the domain of each variable \(i < z \) is revised (that is, restricted) relatively to \(z \); b) each binary constraint (combining the allowed pairs of values from \(i \) and \(j \)) \(R_{ij} \), \(i, j \leq z \) is further revised relative to \(z \). The combinations that are still available after running the algorithm are in Table 2.

Step a: DPC revises (that is, restricts the domain of) \(y \) relatively to \(z \), yielding \(D_y = \{<6,8,1>, <6,8,2>, <6,8,3>, <5,3,1>, <5,3,2>, <5,3,3>\} \); then it revises \(x \) relative to \(z \) and \(y \) relative to \(y \), yielding \(D_x = \{<6,1,1>, <6,1,2>, <6,1,3>\} \).

Step b: inconsistencies are deleted from \(R_{xy} \), obtaining \(R_{xy} = \{<6,1,1>, <5,3,2>, <6,1,1>, <5,3,3>\} \).

When DPC terminates, the graph is directional path-consistent relatively to the order, and the combinations of fingered positions which satisfy the constraints are presented in Table 2: on this new and simpler problem we perform the search.

The depth-first search takes the first entry of the fingered positions in \(R_{xy} \), and searches in \(R_{yz} \) for a combination such that \(y \in R_{xy} = y \in R_{yz} \). Then it is
Table 2: "Legal" combinations after DPC algorithm has terminated. The search is then performed on this simplified problem.

\[
\begin{array}{|c|c|c|}
\hline
R_{xy} & R_{yz} & R_{xz} \\
\hline
\{6, 1, 1\}, \{5, 3, 2\} & \{5, 3, 2\}, \{4, 3, 2\} & \{6, 1, 1\}, \{4, 3, 2\} \\
\{6, 1, 1\}, \{6, 3, 3\} & \{5, 3, 1\}, \{4, 3, 1\} & \{6, 1, 1\}, \{4, 3, 3\} \\
\{6, 1, 1\}, \{5, 3, 3\} & \{5, 3, 2\}, \{4, 3, 3\} & \{6, 1, 1\}, \{4, 3, 4\} \\
\{6, 1, 1\}, \{6, 3, 3\} & \{5, 3, 3\}, \{4, 3, 4\} & \{6, 1, 2\}, \{4, 3, 4\} \\
\{6, 1, 2\}, \{5, 3, 2\} & \{6, 8, 1\}, \{5, 8, 2\} & \{6, 8, 1\}, \{5, 8, 3\} \\
\{6, 1, 2\}, \{6, 3, 3\} & \{6, 8, 2\}, \{5, 8, 3\} & \{6, 8, 2\}, \{5, 8, 4\} \\
\{6, 1, 2\}, \{6, 3, 3\} & \{6, 8, 3\}, \{5, 8, 4\} & \{6, 8, 3\}, \{5, 8, 4\} \\
\hline
\end{array}
\]

checked whether the tuple \(\{x, z\} \in R_{xz} \), (it is a solution) or not (it is a dead-end). Whenever the search reaches a dead end, it performs backtracking to the last instantiated variable that still has alternatives available. In the case exemplified, the search leads to the solutions \(\{6, 1, 1\}, \{5, 3, 2\}, \{4, 3, 3\} \) and \(\{6, 1, 1\}, \{5, 3, 3\}, \{4, 3, 4\} \).

In general, the higher the connectivity of the problem, the smaller the number of solutions, thus more notes compose the chord, the more the performer is constrained: e.g., if the entire F Major chord (F2-C3-F3-A3-C4-F4) spanning over the 6 strings was examined, a single solution would have been found, despite a wider number of possible combinations.

Experimental validation

To the ends of providing a first experimental validation of the model described, we have developed a computer program to evaluate the set of constraints (What is the degree of predictive power of the set of constraints? Does it actually allow to find all the fingering(s) that human performers provide? What is the relation between the model and the experts' results?) and the control strategy (Does the pruning strategy miss any solution given by the human performers? Does the control strategy consider fingered positions in the same order as the human performers?)?

Material. Written fingerings of 3 guitarists, bachelor in guitar performance, were considered. Thirty-four chords composed by 3 to 6 notes were selected: they all admit at least two different fingerings. To avoid ambiguity, each fingered position had to be expressed in the notation \(\langle \text{string, fret, finger} \rangle \).

Procedure. Human performers were requested to write, when possible, three different fingerings for each chord, in the order of preference. The same set of chords was given in input to the implemented model. After the guitarists ended their task, they were requested to indicate whether any fingering computed by the model was not practicable.

Predictions. On the bases of previous literature, we make the following predictions. We expect that 1) all the fingerings computed by the model are recognized to be practicable by the experts (the set of constraints is adequate); 2) the fingerings provided by human experts (that had to indicate only three fingerings) must be a subset of those computed by the model (human performers have further constraints that are not related to biomechanical issues). 3) A weak prediction concerns the order of the control strategy in terms of strings, frets and fingers, which is consistent with the instrumental practice. In this case we predict that the highest ranked fingerings of the model and the experts coincide.

Results. 1) All the fingerings computed by the model have been found viable (100% precision), and 2) include those provided by the experts, except for overall 6 cases (over 218 fingerings computed in total by the model, so 2.73% missing – 97.27% recall); 3) on average over the three experts, the 66.6% of the highest ranked fingerings computed by the model matched the highest ranked by the experts (67.6% of the first expert, 70.6% of the second, 61.7% of the third); making the comparison over the first three fingerings, on average over the three experts 48% of the triplet found by the model matched exactly the triplet provided by the experts (47%, 47%, 50%).

Discussion and conclusion

The analysis of the results informs that the set of constraints, given the restricted conditions of the experiment that does not take into account any musical context, performs well. The 6 missed fingerings are due to a heavy restriction of the Max_span constraint, which forbids large stretches between the middle and ring fingers although these seem realizable by human experts. In fact, the current model does not take into account the diminishing width of frets towards the body end of the fingerboard, thus making the difficulty associated with stretching constant all along.

The control strategy only makes a weak prediction. However, this is more controversial even in the human experts data. In fact, there is a poor homogeneity of the first fingerings provided by the human performers (only in the 67% of the cases they agree on the preferred fingering). If we neglect the finger component of the triple \(\langle \text{string, fret, finger} \rangle \), we can compare the results on the basis of the pairs \(\langle \text{string, fret} \rangle \). Now we find that they agree in the 97% of the cases, and the model agreement raises to the 92.1%. So, the model and the human experts tend to choose the same places on the fingerboard, whereas not always they use the same fingers. Similarly, if we restrict the comparison between experts and model to the cases where the experts exactly agreed on the triplets, the success ratio of the model raises to 75%. A further analysis over the difficult cases of fingerimg, namely those that have received only two fingerings (instead of three) by at least one of the experts (14 over 34), reveals that the model produces exactly the same data in the 71% of cases (against the 48% above).

Several complexity factors were disregarded, which may complete the assessment of the results and help explaining the limitations of the model and suggesting a
guideline for future work. First, chords have been considered as spots, without a context, while we know that fingering is also an expressive mean (Gilardino, 1975a, 1975b; Parn curt et al., 1997; Traube et al., 2003): the experiment has tackled exactly this condition, but the model would perform worse in realistic conditions. Also, tempo plays an important role: fast tempi may determine situations of high task load, which increases the demand for economic fingerings, thus compelling performers towards ‘ingrained finger habits’ (Clarke et al., 1997); slow tempi -and even more the case considered- would make easier achieving an intended expressive or timbral effect. Familiar fingerings may be adopted for new chords (e.g., we refer to the practice of the transposition, which on fretted instruments is a widespread habit). Chords may also be part of musical patterns together with melodic fragments, and such patterns may be learned, stored and retrieved as a block (Drake & Palmer, 2000). This may help explaining some differences, where fingerings provided by performers under the exclusive bio-mechanical aspect are not always preferable. Lastly, it is reasonable to suppose that skilled performers are able to distinguish between more/less salient constraints; for the present, a preference for some sorts of fingerings is implemented by the search strategy.

Although in this paper we report experimental data for the chord fingering subproblem, we are confident that the CSP approach can be successful on modeling the whole of the fingering problem. Future work will address the merging of chord and melody fingering, which leads to consider real pieces from the classical repertoire, and to explore the automatic expressive performance, where the modeling of instrument/performer interactions plays a central role.

Acknowledgments

We’d like to thank Luca Anselma, Diego Magro, Davide Ruzza and three anonymous reviewers for their valuable advices.

References

