Lawrence Berkeley National Laboratory

Recent Work

Title
The plant cell wall decomposing machinery underlies the functional diversity of forest fungi

Permalink
https://escholarship.org/uc/item/7dq3n3h2

Authors
Eastwood, Daniel C.
Floudas, Dimitrios
Binder, Manfred
et al.

Publication Date
2011-07-14
The plant cell wall decomposing machinery underlies the functional diversity of forest fungi

August 5, 2011

Correspondence should be addressed to: Daniel Eastwood: d.c.eastwood@swansea.ac.uk

Daniel C. Eastwood¹, Dimitrios Floudas², Manfred Binder², Andrzej Majcherczyk³, Patrick Schneider⁴, Andrea Aerts⁵, Fred O. Asiegbu⁶, Scott E. Baker⁷, Kerrie Barry⁵, Mika Bendiksby⁸, Melanie Blumentritt⁹, Pedro M. Coutinho¹⁰, Dan Cullen¹¹, Ronald P. de Vries¹², Allen Gathman¹³, Barry Goodell¹⁰,¹⁴, Bernard Henrissat¹⁰, Katarina Ihrmark¹⁵, Hävard Kauserud¹⁶, Annegret Kohler¹⁷, Kurt LaButti¹⁵, Alla Lapidus⁸, José L. Lavin¹⁸, Yong-Hwan Lee¹⁹, Erika Lindquist⁵, Walt Lilly¹³, Susan Lucas⁵, Emmanuelle Morin¹⁷, Claude Murat¹⁷, José A. Oguiza¹⁸, Jongsun Park¹⁹, Antonio G. Pisabarro¹⁸, Robert Riley⁵, Anna Rosling¹⁵, Asaf Salamov⁵, Olaf Schmidt²⁰, Jeremy Schmutz⁵, Inger Skrede¹⁶, Jan Stenlid¹⁵, Ad Wiebenga¹², Xinfeng Xie⁸, Ursula Kües³⁸, David S. Hibbett², Dirk Hoffmeister⁴, Nils Högberg¹⁵, Francis Martin¹⁷, Igor V. Grigoriev⁵, and Sarah C. Watkinson²¹

¹College of Science, University of Swansea, Singleton Park, Swansea SA2 8PP, UK

²Biology Department, Clark University, Worcester, MA 01610, USA

³Georg-August-University Göttingen, Büsgen-Institute, Büsgenweg 2, 37077 Göttingen, Germany

⁴Friedrich-Schiller-Universität, Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany

⁵US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA

⁶Department of Forest Sciences, Box 27, FI-00014, University of Helsinki, Helsinki, Finland.

⁷Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MSIN P8-60, Richland, WA 99352. USA.

⁸Natural History Museum, University of Oslo, PO Box 1172, Blindern, NO-0138, Norway.

⁹Wood Science and Technology, University of Maine, Orono, ME, USA. ¹⁰UMR 6098 CNRS-Universités Aix-Marseille I & II, 13288 Marseille Cedex 9, France
The plant cell wall decomposing machinery underlies the functional diversity of forest fungi

11Forest Products Laboratory, Madison, WI 53726, USA
12CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
13Department of Biology, Southeast Missouri State University, Cape Girardeau, MO, USA
14Department of Wood Science and Forest Products, 230 Cheatham Hall, Virginia Tech. Blacksburg, VA. USA 24061
15Swedish University of Agricultural Sciences, S-750 07 Uppsala, Sweden
16Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway
17UMR 1136, INRA-Nancy Université, Interactions Arbres/Microorganismes, INRA-Nancy, 54280 Champenoux, France
18Public University of Navarre, 31006 Pamplona, Spain
19Department of Agricultural Biotechnology, Seoul National University, Seoul, 151*921.
20University of Hamburg, Leuschnerstr. 91, D-21031 Hamburg, Germany
21Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB. UK

ACKNOWLEDGEMENT:

The work conducted by the US Department of Energy (DOE) Joint Genome Institute is supported by the Office of Science of the DOE under Contract Number DE-AC02-05CH11231. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government, or any agency thereof, or the Regents of the University of California.

Drs J. Schilling, U Minnesota and Dr D. Barbara, U Warwick critically reviewed the manuscript, Tony Marks designed graphics, B Wackler and M. Zomorodi gave technical assistance. Assembly and annotations of S.lacrymans genome are available at http://www.jgi.doe.gov/Serpula and DDBJ/EMBL/GenBank, accession AEQC00000000. Complete microarray expression dataset is available at the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) accession GSE27839. Further financial support is acknowledged as supporting material on Science online

DISCLAIMER:

[LBNL] This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
The plant cell wall decomposing machinery underlies the functional diversity of forest fungi

favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.
The plant cell wall decomposing machinery underlies the functional diversity of forest fungi

Daniel C. Eastwood1‡*, Dimitrios Floudas2‡, Manfred Binder2‡, Andrzej Majcherczyk3‡, Patrick Schneider4‡, Andrea Aerts5, Fred O. Asiegbu6, Scott E. Baker7, Kerrie Barry5, Mika Bendiksby8, Melanie Blumentritt9, Pedro M. Coutinho10, Dan Cullen11, Ronald P. de Vries12, Allen Gathman13, Barry Goodell9,14, Bernard Henrissat10, Katarina Ihrmark15, Hävard Kauserud16, Annegret Kohler17, Kurt LaButti5, Alla Lapidus5, José L. Lavin18, Yong-Hwan Lee19, Erika Lindquist5, Walt Lilly13, Susan Lucas5, Emmanuelle Morin17, Claude Murat17, José A. Oguiza18, Jongsun Park19, Antonio G. Pisabarro18, Robert Riley5, Anna Rosling15, Asaf Salamov5, Olaf Schmidt20, Jeremy Schmutz5, Inger Skrede16, Jan Stenlid15, Ad Wiebenga12, Xinfeng Xie9, Ursula Kües3*, David S. Hibbett2*, Dirk Hoffmeister4*, Nils Högberg15*, Francis Martin17*, Igor V. Grigoriev5*, Sarah C. Watkinson21*

‡These authors contributed equally to this work as first authors
*These authors contributed equally to this work as senior authors
§To whom correspondence should be addressed

1College of Science, University of Swansea, Singleton Park, Swansea SA2 8PP, UK
2Biology Department, Clark University, Worcester, MA 01610, USA
3Georg-August-University Göttingen, Büsgen-Institute, Büsgenweg 2, 37077 Göttingen, Germany
4Friedrich-Schiller-Universität, Hans-Knöll-Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
5US Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
6Department of Forest Sciences, Box 27, FI-00014, University of Helsinki, Helsinki, Finland.
Brown rot decay removes cellulose and hemicelluloses from wood, residual lignin contributing up to 30% of forest soil carbon, and is derived from an ancestral white rot saprotrophy where both lignin and cellulose are decomposed. Comparative and functional genomics of the “dry rot” fungus *Serpula lacrymans*, derived from forest ancestors, demonstrated that the evolution of both ectomycorrhizal biotrophy and brown rot saprotrophy were accompanied by reductions and losses in specific protein families, suggesting adaptation to an intercellular interaction with plant tissue. Transcriptome and proteome analysis also identified differences in wood decomposition.
in *S. lacrymans* relative to the brown rot *Postia placenta*. Furthermore, fungal nutritional mode diversification suggests that the boreal forest biome originated via genetic coevolution of above and belowground biota.

Many Agaricomycete fungi have been sequenced to date (1) permitting comparative and functional genomic analyses of nutritional niche adaptation in the underground fungal networks that sustain boreal, temperate, and some sub-tropical forests (2). Through the sequencing of the brown rot wood decay fungus *S. lacrymans*, we conducted genome comparisons with sequenced fungi including species representing each of a range of functional niches: brown rot and white rot wood decay, parasitism and mutualistic ectomycorrhizal symbiosis.

Only 6% of wood decay species are brown rots (3) but, being associated with conifer wood (4), they dominate decomposition in boreal forests. Their lignin residues contribute up to 30% of carbon in the organic soil horizons (5). Long-lived (6), and with capacity to bind nitrogen and cations (7), these phenolic polymers condition the nutrient-poor acidic soils of northern conifer forests.

Brown rot wood decay involves an initial non-enzymic attack on the wood cell wall (8) generating hydroxyl radicals (·OH) extracellularly via the Fenton reaction:

\[
\text{Fe}^{2+} + \text{H}_2\text{O}_2 + \text{H}^+ \rightarrow \text{Fe}^{3+} + \cdot \text{OH} + \text{H}_2\text{O}
\]

Hydrogen peroxide is metabolically generated by oxidase enzymes, e.g. glyoxal oxidases and copper radical oxidases. The hydroxyl radical has a half life of nanoseconds (8) and is the most powerful oxidising agent of living cells. However, we do not know how it is spatially and temporally targeted to wood cell wall components. Divalent iron is scarce in aerobic environments where the fungus is obligate and the trivalent ion is energetically favored. Phenolates synthesised by brown rot fungi, including *S. lacrymans* (9), can reduce Fe$^{3+}$ to Fe$^{2+}$. Such phenolates may be modified lignin derivatives or fungal metabolites (10). Following initial bond breakages in the cellulose chain, side chain hemicelluloses (arabinan, galactan) are removed, followed by main chains (xylan, mannan (11), with subsequent hydrolysis of cellulose
by synergistic glycoside hydrolases. Residual lignin is demethylated. White rot fungi, by contrast, decompose both cellulose and lignin, with free radical attack theorized to break a variety of bonds in the lignin phenylpropanoid heteropolymer.

S. lacrymans is in the Boletales, along with several ectomycorrhizal lineages (12, fig 1A). *S. lacrymans* is thus phylogenetically distant from brown rot *P. placenta* (*Polyporales*) (13), as well as other sequenced ectomycorrhizal fungi (14, 15), parasites, and white rot wood decomposers (16). We estimated divergence dates in fungal phylogeny using the data set of Binder et al. (2010) (17) (Supplementary Online Materials, Molecular clock analyses), with two well-characterized fungal fossils used to calibrate the minimum ages of the marasmioid (node 10 in fig 1A) and suilloid clades (node 11 in fig 1A). The estimated age of the split between *Serpula* and its ectomycorrhizal sister-group *Austropaxillus* (53.1-15 Mya; fig 1A, table S20) suggests that transition from brown rot saprotrophy to mutualistic symbiosis occurred after rosids (Eurosids I) became widespread ((18), fig 1A). Diversification in fungal nutritional modes occurred alongside diversification of angiosperms and gymnosperms, as these fungi are currently associated with members of both gymnosperms (Pinaceae) and angiosperms (18).

S. lacrymans comprises two subgroups, *S. lacrymans* var *shastensis*, found in montane conifer forest, and *S. lacrymans* var *lacrymans*, cause of building dry rot, which diverged in historic time (19). Two *S. lacrymans* var *lacrymans* complementary monokaryons (haploids of strain S7), S7.9 (A2B2) and S7.3 (A1B1) (20) were sequenced via Sanger and 454 pyrosequencing, respectively. The genome of *S. lacrymans* S7.9 was 42.8 Mbp, containing 12,917 gene predictions. For methodology, genome analysis and annotation, see supplementary materials (21).

We analysed 19 gene families of enzymes for lignocellulose breakdown: carbohydrate active enzymes (CAZy, http://www.cazy.org/, (22) (glycoside hydrolases and carbohydrate esterases) and oxidoreductases (table S9). Losses and expansions in these families were compared across 10 fungi including Agaricomycetes with a range of nutritional modes (fig 1B &
C, table S9). Convergent changes in enzyme complement were found in the two independently-evolved brown rot species, with parallels in the ectomycorrhizal *Laccaria bicolor* (fig S9, table S9). The inferred most recent common ancestor of the Agaricales, Boletales and Polyporales is predicted to be a white rot with 66 to 83 hydrolytic CAZy genes and 27-29 oxidoreductases (fig 1B & C). Brown rot and ectomycorrhizal fungi have the fewest hydrolytic CAZy genes. Brown rot fungi have fewest oxidoreductases, due, not to gene losses, but to gene duplications in white rot species.

Both brown rot and ectomycorrhizal fungi lacked class II peroxidases, used by white rot fungi in depolymerising the non-utilisable lignin matrix of wood to unmask utilisable cellulose embedded within it. This family was expanded in the white rots *Coprinopsis cinerea*, *Phanerochaete chrysosporium* and *Schizophyllum commune*, with 29, 43 & 24 genes respectively, with only 19 each in *S.lacrymans* and *P. placenta*. Oxidoreductases conserved in brown rot fungi included iron and quinone reductases, and multicopper oxidases (fig S9, table S8). Absence of ligninolysis in brown rots raises the question of how they achieve pervasive cellulolysis in wood with the lignin matrix intact.

Glycoside hydrolase (GH) gene families had parallel patterns of losses and expansion in both brown rots and ectomycorrhizas. CAZy families GH5 (endoglucanases, hydrolysing cellulose) and GH28 (pectinases, hydrolysing intercellular cohesive polysaccharides in plant tissues) were expanded in both brown rot species, where they might facilitate intercellular enzyme diffusion, and retained in *L. bicolor*, where they might facilitate intercellular penetration of living roots. Both brown rot species lacked GH7 (endoglucanase/cellobiohydrolase CBHI), and GH61 genes, with unknown function but recently implicated in oxidative attack on polysaccharides (23), were reduced. Interestingly, GH6 (cellobiohydrolase CBHIII) and cellulose binding modules (CBM1), absent from *P. placenta* (13), were present in *S. lacrymans*. One CBM was associated with an iron reductase in a gene (452187) originally derived from a cellobiose dehydrogenase (fig S10).
The general utility of the conserved suite of glycoside hydrolase genes in wood decay by *S. lacrymans* was supported by transcriptomic and proteomic analysis. Carbohydrate active enzymes accounted for 50% of proteins identified (table S22) and 33.9% of transcripts regulated more than 20-fold by *S. lacrymans* growing on pine wood compared with glucose medium (fig S11). Cellulose-, pectin- and hemicellulose-degrading enzymes (GH families 5, 61, 3 and 28) were prominent, and GH5 endoglucanase (Prot id: 433209) and GH74 endoglucanase/xyloglucanase (453342) were upregulated > 100-fold.

We conclude that brown rot fungi have cast off the energetically expensive apparatus of ligninolysis and acquired alternative mechanisms of initial attack. Wood decomposition by *S. lacrymans* may involve metabolically driven non-enzymatic disruption of lignocellulose with internal breakage of cellulose chains by highly localised ·OH radical action. Mycelia in split plates mimicking realistic nutrient heterogeneity (fig S1), produced variegatic acid (VA), an iron-reducing phenolate (fig 2A-C) via the Boletales atromentin pathway, recruited in *S. lacrymans* for the Fenton’s reaction. The genome was rich in secondary metabolism genes (table S24), including a putative atromentin locus (24). Mycelium imports amino acids to sites of wood colonisation (25), consistent with observed upregulation of oligopeptide transporters on wood (table S21). Localising variegatic acid production to well resourced parts of the mycelium could enhance Fenton’s chemistry in contact with wood.

Wood colonisation is presumably followed by co-ordinated induction of the decay machinery revealed in the wood-induced transcriptome (fig 3, fig S11). Glycoside hydrolases and oxidoreductases accounted for 20.7% of transcripts accumulating > 4-fold on wood relative to glucose medium (fig S11, table S21). Iron reduction mechanisms included an enzyme harboring a C-terminal cellulose binding module (Prot id 452187, fig S10), upregulated X122 on wood substrate (fig S11, table S21). This enzyme, present in *Ph.chrysosporium* but absent from *P. placenta* (26), is a potential docking mechanism for localizing iron reductase activity, and hence ·OH generation, on the surface of microcrystalline cellulose. Cellulose-targeted iron
reduction, combined with substrate induction of variegatic acid biosynthesis, might explain the unique ability of brown rot fungi in Boletales to degrade unassociated microcrystalline cellulose, without the presence of lignin (27).

Thus comparative genomics helps us understand the molecular processes of forest soil fungi that drive the element cycles of forest biomes (28). Sequenced forest Agaricomycetes revealed shared patterns of gene family contractions and expansions associated with emergences of both brown rot saprotrophy and ectomycorrhizal symbiosis. In Boletales, loss of aggressive ligninolysis might have permitted brown rot transitions to biotrophic ectomycorrhiza, promoted in soils impoverished in nitrogen by brown rot residues, and by the nutritional advantage conferred by the connection to a mycorrhizal network. *S.lacrymans* and other fungi cultured with conifer roots (29), ensheath *Pinus sylvestris* roots with a mantle-like layer (fig S12), suggesting nutrient exchange.

The chronology of divergences in extant fungal nutritional mode (fig 1A) matches the predicted major diversification in conifers (18), suggesting that the boreal forest biome may have originated via genetic coevolution of above and belowground biota.

References and notes

21. Materials and methods are available as supporting material on *Science* Online.

Acknowledgements: Drs J. Schilling, U Minnesota and Dr D. Barbara, U Warwick critically reviewed the manuscript, Tony Marks designed graphics, B Wackler and M. Zomorrodi gave technical assistance. Assembly and annotations of S.lacrymans genome are available at http://www.jgi.doe.gov/Serpula and DDBJ/EMBL/GenBank, accession AEQC00000000. Complete microarray expression dataset is available at the Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) accession GSE27839. The work conducted by the U.S. Department of Energy Joint Genome Institute and supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Further financial support is acknowledged as supporting material on Science online.

Figure 1. Molecular phylogeny and lignocellulose active gene evolution in the Agaricomycetes A: Chronogram of Agaricomycetes inferred from a combined six-gene data set using Bayesian relaxed molecular clock analyses. Time divergence estimates (in Mya) are presented as 95% highest posterior density (HPD) node bars in light blue color, which describe the upper and lower boundaries of time estimates, and as mean node ages (numbers in bars). The HPD of nodes that were calibrated with fossil ages are in red color and the Serpula-Austropaxillus split is highlighted by a black node bar. The numbering of nodes in bold type corresponds to the tMRCA statistics (time to Most Recent Common Ancestor) summarized in Table S20. B & C: Patterns of gene duplication and loss in 12 lignocellulose active CAZy (B) and 7 oxidoreductase (C) gene families estimated by gene tree/species tree reconciliation analysis (fig S9). Red, blue, and black branches indicate lineages with net expansions, net contractions, or no change in copy number (respectively). Numbers at nodes and along branches indicate estimated copy numbers for ancestral species, and ranges of gains and losses (respectively), estimated using 90% and 75% bootstrap thresholds for gene trees in reconciliations. Bars indicate copy numbers in sampled genomes.

Figure 2: A: Proposed chemical reaction demonstrating iron redox cycling by S. lacrymans secondary products, B: Comparison of HPLC chromatograms of S. lacrymans ethyl acetate extracts as a function of nitrogen supply. Red trace: nitrogen rich medium (+N), black trace: nitrogen depleted minimal medium (-N). The identity of the compounds was confirmed by mass
spectrometry and by their UV-VIS spectrum (1: variegatic acid, 2: xerocomic acid, 3: atromentic acid), **C:** Iron reduction capacity of *S. lacrymans* ethyl acetate extracts (60% variegatic acid, 15% xerocomic acid) measured by the Ferrozine assay (21) and compared with 2,3-dihydroxybenzoic acid (DHBA), a redox chelator used to stimulate Fenton systems.

Figure 3: Schematic overview of the proposed mechanism of wood decay by *S. lacrymans*. Scavenging mycelium colonises a new food source inducing variegatic acid (VA) production and expression of oxidoreductase enzymes which drive hydroxyl radical attack on the lignocellulose composite. Carbohydrate active enzymes (CAZy) gain access to the weakened composite structure and breakdown accessible carbohydrates. Cellulose-binding iron reductase targets ·OH-generating Fenton’s reaction on cellulose chains, releasing chain ends for hydrolysis and assimilation. IR = iron reductase, HQ = hydroxyquinones, CBM = cellulose binding module.