Title
TOTAL CROSS SECTIONS AND DIFFRACTION SCATTERING IN THE 10-100 GeV RANGE ACCORDING TO THE STRIP APPROXIMATION

Permalink
https://escholarship.org/uc/item/7dr0s2xh

Authors
Chew, Geoffrey P.
Teplitz, Vigdor L.

Publication Date
1964-06-19
TOTAL CROSS SECTIONS AND DIFFRACTION SCATTERING IN THE 10 - 100 GeV RANGE ACCORDING TO THE STRIP APPROXIMATION

Geoffrey F. Chew and Vigdor L. Teplitz

June 19, 1964
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
TOTAL CROSS SECTIONS AND DIFFRACTION SCATTERING IN THE 10 - 100 GeV RANGE ACCORDING TO THE STRIP APPROXIMATION

Geoffrey F. Chew and Vigdor L. Teplitz

June 19, 1964

TOTAL CROSS SECTIONS AND DIFFRACTION SCATTERING IN THE 10-100 GeV RANGE

ACCORDING TO THE STRIP APPROXIMATION

Geoffrey F. Chew and Vigdor L. Teplitz
Department of Physics and Lawrence Radiation Laboratory
University of California, Berkeley, California

June 19, 1964

I. INTRODUCTION

The strip approximation to strong interaction dynamics assumes a close connection to exist between small momentum transfer reactions (≈ 2 GeV) at high energies (≥ 10 GeV) and the bound states and resonances observed at low energies (≤ 2 GeV). In the most up to date formulation both phenomena are supposed to be controlled by a relatively small number of high ranking Regge trajectories. An attempt is being made by the authors to solve bootstrap equations that will generate these trajectories and the associated residues. Although this program is still in an early stage, we wish here to report indications that the observed high-energy diffraction scattering is in fact dominated by the top ranking Regge pole.

II. THE EXPERIMENTAL SITUATION

What are the facts to be explained? At the simplest level they are the magnitudes of high energy total cross sections and the widths of the forward peaks in elastic scattering. Unitarity, as expressed for example through the optical model, constrains the total cross section to be ≤ 2πR², where R² ~ (Δt)⁻¹, Δt being the width of the forward peak. (Precisely, we define (Δt)⁻¹ as the logarithmic derivative at t = 0 of dσ/dt, if t is the negative square of
momentum transfer.) It turns out that this limit is closely approached in all the systems experimentally studied. For nucleon-nucleon scattering near 20 GeV lab energy \((\Delta t)_{NN} \approx \frac{1}{10} \text{GeV}^2\), with \(\sigma_{NN}^{\text{tot}} \approx 40 \text{mb}\), while for pion-nucleon scattering* the total cross section is half as large and the peak slightly broader; \((\Delta t)_{\pi N} \approx \frac{1}{7} \text{GeV}^2\).† There are of course differences between \(\pi^+ p\) and \(\pi^- p\) and between \(p p\) and \(p \bar{p}\), but these differences appear to be diminishing as the energy increases and may be ignored in a first approximation. Similarly we may temporarily ignore the small and erratic variations observed for the peak widths.

It is unfortunate that \(\pi \pi\) scattering cannot directly be measured because the dynamical equations here are the simplest. Nevertheless if the Regge pole representation is tentatively accepted then the factorizability of the residues, as pointed out by Gell-Mann and by Gribov and Pomeranchuk, allows the inference of the following high energy \(\pi \pi\) total cross section and forward peak width:

\[
\sigma_{\pi \pi}^{\text{tot}} \approx 10 \text{mb},
\]

\[
(\Delta t)_{\pi \pi} \approx \frac{1}{4} \text{GeV}^2,
\]

a combination which again is near the unitarity limit. The first task of the theory is to explain these two numbers, and it is in this connection that we have results to report.

* In view of the qualitative success of the eightfold way it seems safe to assume that \(KN\) scattering will be understandable if success is achieved for the \(\pi N\) system.

† This number contains a correction by Ahmadzadeh and Sakmar (Phys. Rev. Letters 11, 429 (1963)) and by W. Harita (private communication, Berkeley (1964)) to remove the effect of secondary trajectories. The corresponding correction in the \(NN\) case appears to be negligible.
III. AN APPROXIMATE FORMULA FOR $\pi\pi$ RESIDUES

We proceed immediately to derive an approximate formula for $\pi\pi$ residues, appropriate to both the Pomeranchuk and ρ trajectories. The derivation employs the strip concept but does not neglect inelastic scattering, even in the low energy resonance region.

Let $A^I_\ell(s)$ be the partial wave amplitude for elastic $\pi\pi$ scattering with isotopic spin I at energy squared s, normalized to

$$\left[\frac{s}{s - \hbar m^2}\right]^{1/2} \exp(i \, \delta^I_\ell) \sin \delta^I_\ell \cdot 1 \cdot \frac{1}{s - s'},$$

where δ^I_ℓ is the (complex) phase shift. Following Ref. 2 we write

$$\frac{A^I_\ell(s)}{A^I_\ell(s')} = \frac{N^I_\ell(s)}{D^I_\ell(s)} = B^I_\ell(s) + \frac{1}{\pi} \int_{s_0}^{s_1} ds' \frac{s'}{s - s'} \frac{\text{Im} A^I_\ell(s')}{a_s^2}, \quad (1)$$

where $D^I_\ell(s)$ is cut only across the strip between $s_0 = \hbar m^2$ and s_1, $N^I_\ell(s)$ carrying all the remaining cuts. As explained in Ref. (2) the term $B^I_\ell(s)$ plays somewhat the role of a "potential" and may be calculated from the trajectories and residues of the leading Regge poles.

A Regge pole occurs at a zero of $D^I_\ell(s)$, that is

$$D^I_\ell(s) = 0,$$ \quad (2)

the residue in ℓ of $A^I_\ell(s)$ being given by

$$\beta_\ell(s) = (a_s^2)^I \cdot \gamma_\ell(s) = (a_s^2)^I \cdot \frac{N^I_\ell(s)}{a_s^2} \cdot \frac{\partial}{\partial s} \left[\frac{\partial}{\partial s} D^I_\ell(s) \right]_{\ell=\alpha_\ell(s)} \frac{\partial \alpha_\ell(s)}{\partial s}.$$ \quad (3)

From formula 1) it is possible to show that
\[I_{\alpha_i}(s)(s) = -\frac{1}{\pi} \int_{s_0}^{s_1} \frac{ds'}{s' - s} B_{\alpha_i}(s') I(V) \frac{\text{Im} D_{\alpha_i}(s')}{\text{Im} D_{\alpha_i}(s')}, \]

while
\[\left[\frac{\partial}{\partial s} D_{\ell}^{I}(s) \right]_{\ell=\alpha_i(s)} = \frac{1}{\pi} \int_{s_0}^{s_1} \frac{ds'}{(s' - s)^2} \frac{\text{Im} D_{\alpha_i}(s') I(V)}{\text{Im} D_{\alpha_i}(s')}. \]

Note that inelastic scattering inside the strip has not been neglected.

Now it turns out in all approximations studied so far that for both \(I = 0 \) and \(I = 1 \), when \(\ell \) is near 1, the functions \(B_{\ell}^{I(V)} \) and \(-\text{Im} D_{\ell}^{I} \) are all positive across the strip. Furthermore the "potential" \(B_{\ell}^{I(V)}(s) \) varies slowly. Thus we are led to the basic approximation
\[\frac{\gamma_i(s)}{\alpha_i(s)} \approx (\bar{s}_i - s) B_{\alpha_i}(s)(s_i), \quad s \ll \bar{s}_i, \]

where \(\bar{s}_i \) is some average energy inside the strip. Calculations with plausible choices for \(B_{\ell}^{I(V)} \) support formula (6) and suggest that \(\bar{s}_i \gg 2\text{GeV}^2 \), but a precise value for \(\bar{s}_i \) will not be required immediately.

IV. THE TOTAL \(\pi \pi \) CROSS SECTION

Many applications of formula (6) are possible. Our first application does not require the form of \(B_{\ell}^{I(V)}(s) \) but only the relation
\[B_{\ell}^{I=0(V)}(s) \approx 2 B_{\ell}^{I=1(V)}(s), \quad s \lesssim s_1, \]

a result that follows from the crossing matrix if the high energy "potential" is dominated by \(I = 1 \) exchange. A study of, \(I = 0 \) exchange, to be published elsewhere, confirms the usual assumption that this
contribution to the force for \(s \leq s_1 \) is less important than that of \(I = 1 \). It is taken for granted that \(I = 2 \) exchange is negligible.

Assumption (7) leads to the circumstance that for the Pomeranchuk trajectory and the \(\rho \) trajectory the values of \(\bar{s}_1 \) are roughly the same. Noting that \(\alpha_p(0) = 1 \) while \(\alpha_p(m_p^2) = 1 \), we may combine (6) and (7) to obtain

\[
\frac{\gamma_p(0)}{\alpha_p(0)} \frac{\alpha_p'(m_p^2)}{\gamma_p(m_p^2)} \approx 2 \frac{\bar{s}}{\bar{s} - m_p^2} \approx 2 \tag{8}
\]

if \(\bar{s} >> m_p^2 \). It is easy to verify that

\[
\frac{\gamma_p(m_p^2)}{\alpha_p(m_p^2)} \approx \frac{4 \Gamma_p}{m_p} \tag{9}
\]

where \(\Gamma_p \) is the full width of the \(\rho \), so we find

\[
\gamma_p(0) \approx 8 \frac{\Gamma_p}{m_p} \alpha_p'(0) \tag{10}
\]

The high energy \(\pi\pi \) total cross section, if it is in fact controlled by the Pomeranchuk-Regge pole, is given by

\[
\sigma_{\pi\pi} = 8\pi^2 \gamma_p(0) \tag{11}
\]

so we predict finally that

\[
\sigma_{\pi\pi} \approx 64\pi^2 \frac{\Gamma_p}{m_p} \alpha_p'(0) \tag{12}
\]

The slope of the Pomeranchuk trajectory, assuming that it passes through \(b = 2 \) at the mass of the \(f^0 \), has been estimated by Ahmadzadeh and Sakmar as \(\frac{1}{2} \text{GeV}^{-2} \). Taking \(\Gamma_p = 100 \text{ MeV} \) and \(m_p = 750 \text{ MeV} \), we then find from formula (12):

\[
\sigma_{\pi\pi} \approx 11 \text{ mb}.
\]
V. THE WIDTH OF THE $\pi \pi$ DIFFRACTION PEAK

To estimate the width of the diffraction peak, a more specific assumption must be made about the "potential" $B^{I=0}_p(s)$. In general, high energy dominance of the Pomeranchuk-Regge pole leads to

$$\text{Im} A_{\pi \pi}(s,t) \quad \text{as} \quad s \to \infty \quad \approx \quad \frac{\pi}{3} \left(2\alpha_p(t) + 1 \right) \gamma_p(t) \left(s \over 2q_t^2 \right) \alpha_p(t) \left(s \over 2 \right) \quad \left(s \over 2 \right),$$

for $\alpha_p(t)$ near 1. Using formula (6), we then have

$$\text{Im} A_{\pi \pi}(s,t) \quad \sim \quad (2\alpha_p(t) + 1) \alpha_p'(t) \left(s \over 2q_s^2 \right) \text{Im} B^{I=0}_p(s) \left(s \over 2 \right) \quad \alpha_p(t).$$

The form most commonly used for $B^{I=0}_p(s)$ is that based on exchange of a (fixed spin) ρ:

$$B^{I=0}_\rho(s) \quad \sim \quad (1 + s \over 2q_s^2) \left(q_s^2 \right)^{l+1} \left(1 + \frac{4m^2}{2q_s^2} \right).$$

Although we expect important deviations from this behavior when the potential is carefully calculated, the form (15) may serve to indicate the l dependence of the potential, which is all we need for the shape of the diffraction peak. For $s \sim 2 \text{ GeV}^2$, most of the l dependence of (15) resides in the factor $(q_s^2)^l$, and the weak remaining l dependence in Q_ρ near $l = 1$ is conveniently almost proportional to $(2l + 1)^{-1}$. Thus (14) becomes

$$\text{Im} A_{\pi \pi}(s,t) \quad \sim \quad \alpha_p'(t) \left(s \over 2q_s^2 \right) \alpha_p(t).$$

* The real part of the amplitude is small near $t = 0$.
At this point, evidently, an estimate of \(\bar{s} \) is required as well as an estimate of the shape of the Pomeranchuk trajectory near \(t = 0 \).

From preliminary calculations of trajectories and residues with a variety of "potentials" and strip widths, when the potential and strip width are adjusted to give \(\alpha'_p(0) = 1, \alpha_p^1 \approx \frac{1}{2} \text{GeV}^{-2} \), we find \(\bar{s} \approx 2 \text{GeV}^2 \).

Furthermore, the trajectory for \(t \ll \bar{s} \), is represented roughly by the form

\[
\alpha_p(t) \approx c + \frac{1 - c}{1 - \frac{t}{\bar{s}}},
\]

so

\[
\alpha'_p(t) \approx \frac{\alpha'_p(0)}{(1 - \frac{t}{\bar{s}})^2}.
\]

Taking the logarithmic derivative of \(\alpha \) at \(t = 0 \) we then calculate

\[
a_{\pi\pi} \approx \frac{1}{2} \ln \left(\frac{2s}{\bar{s}} \right),
\]

where \(a_{\pi\pi} = \frac{1}{2} (A_{\pi\pi}^{-1})^{-1} \).

As explained in section II above we expect \((A_{\pi\pi}^{-1})^{-1} \) to be \(\sim 4 \text{GeV}^{-2} \) at an \(s \) corresponding to 20 GeV lab energy for NN scattering. This is \(s \sim 40 \text{GeV}^2 \), so taking \(\bar{s} = 2 \text{GeV}^2 \) we have from (19)

\[
a_{\pi\pi} \approx (0.5 + \frac{1}{2} \ln 40) \text{GeV}^{-2}
\]

\[
\approx 1.7 \text{GeV}^{-2},
\]

not far from the expected 2 GeV\(^{-2}\).

It thus appears that if the strip approximation succeeds in calculating the masses and widths of the \(\rho \) and \(r^0 \) mesons it will
correctly predict both the high energy $\pi\pi$ total cross section and the width of the diffraction peak.

* Note that even to get the correct sign for $\sigma_{\pi\pi}$ and $\alpha_{\pi\pi}$ from a dynamical calculation of the Regge parameters is a non-trivial achievement.

REFERENCES

* This work was performed under the auspices of the U. S. Atomic Energy Commission.

4. M. Gell-Mann, Phys. Rev. Letters 8, 263 (1963);

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.