Supporting Data

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site.

Cognitive Profile of LRRK2-Related Parkinson’s Disease

Sindhu Srivatsal, MD, MPH, Brenna Cholerton, PhD, James B. Leverenz, MD, Zbigniew K. Wszolek, MD, Ryan J. Uitti, MD, Dennis W. Dickson, MD, Daniel Weintraub, MD, John Q. Trojanowski, MD, PhD, Vivianna M. Van Deerlin, MD, PhD, Joseph F. Quinn, MD, Kathy A. Chung, MD, Amy L. Peterson, MD, Stewart A. Factor, DO, Kathy Wood-Silverio, Jennifer G. Goldman, MD, MS, Glenn T. Stebbins, PhD, Bryan Bernard, PhD, Beate Ritz, PhD, Rebecca Rausch, PhD, Alberto J. Espay, MD, Fredy J. Revilla, MD, Johanna Devoto, PsyD, Liana S. Rosenthal, MD, Ted M. Dawson, MD, PhD, Marilyn S. Albert, PhD, Ignacio F. Mata, PhD, Shu-Ching Hu, MD, Kathleen S. Montine, PhD, Catherine Johnson, PhD, Thomas J. Montine, MD, PhD, Karen L. Edwards, PhD, Jing Zhang, MD, PhD, and Cyrus P. Zabetian, MD, PhD

1Virginia Mason Neuroscience Institute, Seattle, Washington, USA
2Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
3Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
4Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, Ohio, USA
5Department of Neurology, Mayo Clinic, Jacksonville, Florida, USA
6Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
7Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
8Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
9Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
10Institute on Aging, University of Pennsylvania, Philadelphia, Pennsylvania, USA
11Portland Veterans Affairs Medical Center, Portland, Oregon, USA
12Department of Neurology, Oregon Health and Science University, Portland, Oregon, USA
13Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
14Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
15Department of Epidemiology, School of Public Health, University of California Los Angeles, Los Angeles, California, USA
16Department of Environmental Health Sciences, School of Public Health, University of California Los Angeles, Los Angeles, California, USA
17Department of Neurology, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
18Department of Neurology and Rehabilitation Medicine, University of California Los Angeles, Los Angeles, California, USA

Correspondence to: Dr. Cyrus P. Zabetian, MD, MS, VA Puget Sound Health Care System, GRECC S-182, 1660 S. Columbian Way, Seattle, WA 98108, E-mail: zabetian@u.washington.edu

Funding agencies: This research was supported by the National Institutes of Health (K23 NS069049, P50 NS062684, P50 NS053488, P50 NS058367, P50 NS058377, P50 NS072187, R01 NS065070, R01 NS057967, and U01 NS082320), the U.S. Department of Veterans Affairs Merit Award (101BX005031), the Parkinson’s Disease Foundation, the Nancy and Buster Alvord Endowment, the Jane and Lee Seidman Fund, the Consolidated Anti-Aging Foundation, and gifts from Carl Edward Bolch, Jr. and Susan Bass Bolch. The funding sources did not provide scientific input for the study. The contents of this article do not represent the views of the U.S. Department of Veterans Affairs or the United States Government.

Relevant conflicts of interest/financial disclosures: Nothing to report. Full financial disclosures and author roles may be found in the online version of this article.

Received: 28 August 2014; Revised: 5 December 2014; Accepted: 3 January 2015

Published online 4 February 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/mds.26161
Abstract

Background: Increasing evidence suggests that genetic factors play a role in the variability associated with cognitive performance in Parkinson’s disease (PD). Mutations in the LRRK2 gene are the most common cause of monogenic PD; however, the cognitive profile of LRRK2-related PD is not well-characterized.

Methods: A cohort of 1,447 PD patients enrolled in the PD Cognitive Genetics Consortium was screened for LRRK2 mutations and completed detailed cognitive testing. Associations between mutation carrier status and cognitive test scores were assessed using linear regression models.

Results: LRRK2 mutation carriers (n = 29) demonstrated better performance on the Mini Mental State Examination (P = 0.03) and the Letter-Number Sequencing Test (P = 0.005). A smaller proportion of LRRK2 mutation carriers were demented (P = 0.03).

Conclusions: Our cross-sectional study demonstrates better performance on certain cognitive tests, as well as lower rates of dementia in LRRK2-related PD. Future longitudinal studies are needed to determine whether LRRK2 mutation carriers exhibit slower cognitive decline. © 2015 International Parkinson and Movement Disorder Society

Key Words: cognition; LRRK2; neuropsychological tests; Parkinson’s disease; working memory.

Recent evidence suggests that genetic factors could play an important role in the substantial variation in the pattern of cognitive deficits seen in Parkinson’s disease (PD). The APOE ε4 allele and mutations in the GBA gene are both associated with a higher frequency of dementia in PD yet appear to impact largely distinct cognitive domains before the onset of dementia. Additional information stands to be gained by examining cognition in monogenic forms of PD because the molecular mechanisms underlying neurodegeneration are likely to be more homogenous than those involved in “idiopathic” PD.

Mutations in the leucine-rich repeat kinase 2 (LRRK2; OMIM #609007) gene are the most common cause of monogenic PD. The motor characteristics of LRRK2-associated PD and idiopathic PD are thought to be generally indistinguishable. However, mixed results have been reported with respect to non-motor features, including cognition. Some studies have found that LRRK2 mutation carriers with PD exhibit milder cognitive symptoms and more gradual cognitive decline than non-carriers with PD, whereas others have not. To help reconcile the differences reported in the literature, we compared the performance of LRRK2 mutation carriers and non-carriers on a detailed neuropsychological assessment in a large, well-characterized multicenter PD cohort.

Methods

Subjects

The study included 1,447 participants with PD from eight sites that constitute the PD Cognitive Genetics Consortium, who were screened for known LRRK2 mutations as described previously and in the Suppulsive Data. Participants were required to meet the United Kingdom PD Society Brain Bank clinical diagnostic criteria for PD, with the exception of those from UCLA who satisfied clinical diagnostic criteria for PD as described elsewhere. Four participants failed genotyping, and 21 subjects (all mutation non-carriers) were missing disease duration data and were thus excluded from analyses. Sixty-seven subjects (all mutation non-carriers) who did not complete greater than half of the cognitive measures were excluded from analyses involving continuous measures but not from those involving the categorical diagnostic variable (demented vs. non-demented). The institutional review board of each participating institution approved the study, and all participants provided written informed consent.

Cognitive/Clinical Variables

Seven cognitive tests were administered by at least seven of eight sites, including the Mini Mental State Examination (MMSE) and tests measuring specific cognitive domains: learning/memory (Hopkins Verbal Learning Test-Revised), working memory/executive function (Letter-Number Sequencing Test [LNST] and Trailmaking Parts A and B), language processing (semantic and phonemic verbal fluency), and visuospatial abilities (Benton Judgment of Line Orientation). Motor symptom severity (see Supplemental Data) was obtained at seven of eight sites.

Cognitive data at six of the eight sites were discussed at a clinical consensus diagnosis conference, and participants were diagnosed as demented or non-demented by using all available neuropsychological and clinical data at each site, as described elsewhere. At the two remaining sites, participants were not assigned clinical cognitive diagnoses (Supplemental Data).
Statistical Methods

The association between LRRK2 mutation carrier status and clinical/cognitive variables was assessed by separate linear regression analyses, applying the generalized estimating equation to account for relatedness in the study sample. Exact logistic regression was performed to determine the association between clinically diagnosed dementia and LRRK2 mutation status. Analyses were adjusted for age at testing, sex, site, disease duration (time since diagnosis at UCLA and time since symptom onset at all other sites), and years of education. For analyses involving Trailmaking Part B, Trailmaking Part A was also included as a covariate. Statistical tests were two-tailed; the significance threshold was set at \(P < 0.05 \). Given the exploratory nature of the study, no adjustments for multiple comparisons were made. Stata version 12 was used for all analyses (StataCorp, College Station, TX).

Results

Twenty-nine participants with LRRK2 mutations were identified, including two members from each of three families and three members from another family. Twenty-two were heterozygous for the G2019S mutation, two were homozygous for G2019S, and five were heterozygous for the R1441C mutation. Sample demographic, clinical, and cognitive characteristics for mutation carriers and non-carriers are shown in Table 1. Demographic and clinical data stratified by site are presented in Supplemental Data Table e-1.

Adjusted linear regression results for cognitive test scores are presented in Table 2. LRRK2 mutation carriers performed significantly better than non-carriers on the LNST and MMSE. The effect sizes, shown by the \(\beta \) coefficients, indicate the expected difference in mean LNST scores was 1.19 and in MMSE scores was 0.74, given the same values for all other covariates. Mutation carriers also had less severe motor symptoms, as assessed by the MDS-UPDRS III, than non-carriers. These associations held when the analyses were restricted to G2019S heterozygotes (Supplemental Data Table e-2).

LRRK2 mutation carriers demonstrated a lower prevalence of dementia than non-carriers (4% vs. 19.6%). Exact logistic regression analyses that controlled for age, sex, education, disease duration, and site demonstrated that this difference was statistically significant (Table 2).

Discussion

The current study offers evidence that mutations in the LRRK2 gene might result in differences in cognitive phenotype in PD patients, specifically higher global cognition and lower prevalence of dementia, as well as better working memory (executive) performance when compared with non-mutation carriers. Less severe overall motor dysfunction exhibited by LRRK2 mutation carriers in conjunction with better cognitive test performance suggests the possibility of overall milder disease in these patients, although these findings require replication.

Early descriptive studies suggested that LRRK2 mutation carriers diagnosed with PD might show milder cognitive symptoms in comparison with non-carriers with PD,\(^8,12,15\) whereas in contrast, others found no difference in MMSE scores between LRRK2 mutation carriers and non-carriers with PD.\(^13,14,16,19,32\) In the current study, we observed a significantly lower rate of dementia and higher mean MMSE scores in LRRK2 mutation carriers compared with non-carriers. We also found a notable difference in the range of MMSE scores, such that LRRK2 mutation carriers all had scores of 24 or higher in the absence of differences in mean disease duration. Similar to our findings, Estanga et al.\(^20\) found a lower proportion of dementia cases among LRRK2 mutation carriers compared with non-carriers. We also found a notable difference in the range of MMSE scores, such that LRRK2 mutation carriers all had scores of 24 or higher in the absence of differences in mean disease duration. Similar to our findings, Estanga et al.\(^20\) found a lower proportion of dementia cases among LRRK2 mutation carriers compared with non-carriers, although this difference failed to reach significance. The suggestion that LRRK2 mutations are associated with a lower likelihood of developing cognitive impairment might be explained in part by the neuropathologic features of LRRK2-related PD. Although widely heterogeneous,\(^33,34\) in a recent meta-analysis of 37 LRRK2 mutation-positive autopsy cases with a clinical diagnosis of PD,\(^35\) a substantial proportion (20/37, 54%) lacked Lewy body pathology, and this finding was not restricted to specific LRRK2 mutations. Furthermore, the presence of Lewy body pathology was associated.
TABLE 2. Cognitive test scores and clinical features: LRRK2 mutation carriers vs. non-carriers

<table>
<thead>
<tr>
<th>Cognitive Measures</th>
<th>Scores (raw) Mean (SD)</th>
<th>Standard (z-scores) Mean (SD)</th>
<th>Regression Resultsa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Non-Mutation Carriers</td>
<td>Mutation Carriers</td>
<td>Coeff, Std. Error, 95% CI, P</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>MMSE</td>
<td>27.7 (2.4)</td>
<td>28.6 (1.6)</td>
<td>−1.10 (1.87) −0.42 (1.32)</td>
</tr>
<tr>
<td>Fluency: semantic</td>
<td>17.2 (6.1)</td>
<td>19.9 (6.8)</td>
<td>−0.63 (1.05) −0.17 (1.21)</td>
</tr>
<tr>
<td>Fluency: phonemic</td>
<td>35.6 (14.3)</td>
<td>41.4 (14.6)</td>
<td>−0.09 (1.09) 0.35 (1.34)</td>
</tr>
<tr>
<td>HVLT: total learning</td>
<td>21.4 (6.3)</td>
<td>23.2 (4.8)</td>
<td>−0.82 (1.25) −0.46 (0.91)</td>
</tr>
<tr>
<td>HVLT: delayed</td>
<td>6.8 (3.6)</td>
<td>7.9 (3.3)</td>
<td>−0.98 (1.59) −0.49 (1.42)</td>
</tr>
<tr>
<td>HVLT: RDI</td>
<td>9.3 (2.4)</td>
<td>9.6 (2.5)</td>
<td>N/A −5.45 (1.54) −4.94 (1.30)</td>
</tr>
<tr>
<td>Judgment of line orientation</td>
<td>11.2 (3.0)</td>
<td>11.7 (2.1)</td>
<td>0.71 (2.13) 0.91 (2.02)</td>
</tr>
<tr>
<td>Letter number sequencing</td>
<td>8.4 (3.1)</td>
<td>8.8 (2.3)</td>
<td>−0.06 (1.07) 0.49 (0.84)</td>
</tr>
<tr>
<td>Trailmaking, part B†</td>
<td>143.8 (87.5)</td>
<td>98.9 (78.3)</td>
<td>−1.44 (1.94) −0.55 (2.06)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDS-UPDRS III</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Dementia N (%)</td>
</tr>
</tbody>
</table>

| Cognitive status | Non-Mutation Carriers | Mutation Carriers |
|--------------------| 210 (19.9) | 1 (4.0) | −1.99, −5.76, −0.07, 0.029 |

HVLT, Hopkins Verbal Learning Test- Revised; MDS-UPDRS III, Movement Disorder Society Unified Parkinson’s Disease Rating Scale Part III; MMSE, Mini Mental State Examination; RDI, Recognition Discrimination Index; SD, standard deviation.

*Analyses involving cognitive measures adjusted for age, sex, education, site, and disease duration; Trailmaking, Part B analyses also adjusted for Trailmaking, Part A time. MDS-UPDRS analyses adjusted for age, sex, site, and disease duration. Linear regression analyses were used for continuous measures; exact logistic regression procedures were used to compare proportion of demented/non-demented patients.

Coeff = beta coefficient, indicates the expected change in mean test score when carrying a LRRK2 mutation given the same values for all adjustment covariates.

†When log-transformed scores were used, P = 0.05

‡When cube transformed scores were used, P values remained nonsignificant

§Lower score denotes better performance.

‖When log-transformed scores were used, P values remained nonsignificant.

with a higher proportion of cognitive impairment (including dementia) diagnosed before death, whereas the group without Lewy body pathology displayed a predominantly motor phenotype. Given the association between Lewy body disease and more severe cognitive dysfunction in patients with PD reported by these authors and others,36,37 it is perhaps not surprising that LRRK2 cohorts, which are likely enriched with Lewy body-negative cases, might exhibit overall milder cognitive symptoms.

Importantly, for the first time, we demonstrate a difference between LRRK2 mutation carriers and non-carriers with PD on a sensitive measure of working memory (an executive function). Previous studies that evaluated aspects of executive functioning found no differences in performance between LRRK2 mutation carriers and non-carriers.16-19 Often, however, the more frontally mediated tasks used in these studies involved motor skills or timed task performance. Here, we found a significant difference between LRRK2 mutation carriers and non-carriers on a sensitive working memory task that does not require motor involvement and is not timed. These findings suggest that LRRK2 mutation carrier status might be associated with less impairment on working memory, an area of cognition that is frequently impacted early in PD. This result conflicts with a recently published study20 of LRRK2 R1441G mutation carriers with PD that found no difference across several sensitive cognitive measures, including LNST. However, our sample was largely composed of G2019S carriers (24/29, 83%), suggesting that specific LRRK2 mutations might be associated with differential test performance.
Our study had some limitations. Importantly, this study is cross-sectional; only longitudinal research will provide evidence for whether the overall cognitive course differs between LRRK2 mutation carriers and non-carriers. In addition, although we examined a large, well-defined PD cohort, our sample of LRRK2 mutation carriers remains relatively small. Given the exploratory nature of the study, we did not correct for multiple comparisons. Finally, the pattern of performance across cognitive measures, when looking at raw scores, suggests that we might have lacked adequate power to detect statistically significant differences on several other cognitive tests.

Our findings add to a growing body of evidence that suggests that genetic factors play an important role in determining cognitive performance in PD. Given the near ubiquitous, yet heterogeneous nature of cognitive impairment in PD, identification of subgroups associated with better or worse cognitive outcomes is an important step toward tailoring appropriate interventions, and could inform inclusion for enrollment in long-term cognitive treatment and prevention trials. Future large, longitudinal investigations will be needed to reveal whether LRRK2 mutation carrier status predicts a more stable cognitive course.

Acknowledgements: We thank our research subjects and family members for their participation in this study.

References
Background: The aim of this study was to determine whether age of onset of Parkinson disease (PD) is associated with differences in PD risk and PD age of onset in parents and siblings.

Methods: Clinical and detailed family history data were available for 1,114 PD probands.

Results: Proband age of onset was not associated with differences in PD prevalence or PD age of onset in parents. Proband age of PD onset <50, compared with ≥50 years, was associated with significantly greater risk of PD in siblings (hazard ratio: 2.4; \(P = 0.002; 95\% \) confidence interval: 1.4, 4.1), and proband age of onset was significantly correlated with sibling age of onset (Somer’s D = 0.20; \(P = 0.018\)).

Conclusions: Proband age of PD onset is not associated with differences in parental PD risk. Siblings of PD patients with onset before age 50 are at increased risk of PD and are more likely to have early-onset disease. © 2015 International Parkinson and Movement Disorder Society

Key Words: Parkinson disease; age of onset; family history; familial aggregation; genetics

One of the greatest risk factors for Parkinson disease (PD) is a positive family history.\(^1\)\(^-\)\(^3\) Though many genetic causes and risk factors of PD have been discovered, identified genetic factors currently only account for approximately 20\% to 30\% of disease risk.\(^4\)\(^-\)\(^5\) Another important risk factor for PD is advancing age. Though PD usually emerges later in life, it may occur at any time during adulthood. Previous studies reported that those with early-onset PD were more likely to have a family history of PD, suggesting that there may be a greater genetic contribution in this group of PD patients. The aims of this study were to determine whether, in a large, clinic-based cohort, (1) earlier PD age of onset is associated with a greater likelihood of a family history of PD in parents and siblings and (2) whether probands’ age of onset is associated with the age of onset of affected family members.

Patients and Methods

Between 1996 and 2010, clinical and family history data for 1,114 PD patients observed at the University of Virginia Movement Disorders Clinic (Charlottesville, VA) were collected in a clinical database. Diagnosis of PD was determined by a movement disorders specialist. Each PD patient, the proband, was queried about family history of PD in parents and siblings. For each family member, current age or age at death was recorded. For family members reported to have PD, age at symptom onset and source of diagnosis were recorded. This study was approved by the institutional review board at the University of Virginia.

Risk of Parkinson Disease

PD incidence and prevalence increase rapidly after age 50, and those with onset before 50 have previously been considered to have early onset.\(^6\) In our population, neither probands nor family members had an age of PD onset younger than 30 years. PD risk (PD events/100 person-years) was estimated for mothers, fathers, and siblings at younger (30-50 years) and older (>50 years) ages. PD risk at younger ages was estimated by dividing the number of family members with PD onset between ages 30 and 50 years by total time at risk. Time at risk was defined as the time in years from 30 years of age to either age of onset of PD in affected family members, current age at the time