Title
Rh(I)-Catalyzed Direct Arylation of Pyridines and Quinolines

Permalink
https://escholarship.org/uc/item/7f38d66v

Author
Berman, Ashley

Publication Date
2009-02-24
Rh(I)-Catalyzed Direct Arylation of Pyridines and Quinolines

Ashley M. Berman, Jared C. Lewis, Robert G. Bergman*, and Jonathan A. Ellman*

Department of Chemistry, University of California and Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720

RECEIVED DATE (automatically inserted by publisher): jellman@berkeley.edu, rbergman@berkeley.edu

The pyridine and quinoline nuclei are privileged scaffolds that occupy a central role in many medicinally relevant compounds. Consequently, methods for their expeditious functionalization are of immediate interest. However, despite the immense importance of transition-metal catalyzed cross-coupling for the functionalization of aromatic scaffolds, general solutions for coupling 2-pyridyl organometallics with aryl halides have only recently been presented.

Direct arylation at the ortho position of pyridine would constitute an even more efficient approach because it eliminates the need for the stoichiometric preparation and isolation of 2-pyridyl organometallics. Progress towards this goal has been achieved by activation of the pyridine nucleus for arylation via conversion to the corresponding pyridine N-oxide or N-iminopyridinium ylide. However, this approach necessitates two additional steps: activation of the pyridine or quinoline starting material, and then unmasking the arylated product. The use of pyridines directly would clearly represent the ideal situation both in terms of cost and simplicity. We now wish to document our efforts in this vein, culminating in an operationally simple Rh(I)-catalyzed direct arylation of pyridines and quinolines.

We recently developed an electron-rich Rh(I) system for catalytic alkylation at the ortho position of pyridines and quinolines with alkenes. Therefore, we initially focused our attention on the use of similarly electron-rich Rh(I) catalysts for the proposed direct arylation. After screening an array of electron-rich phosphine ligands and Rh(I) salts, only marginal yields (<20%) of the desired product were obtained. Much more efficient was an electron-poor Rh(I) system with [RhCl(CO)2] as precatalyst (Table 1).

Table 1. Direct Arylation of 2-Methyl Pyridine

<table>
<thead>
<tr>
<th>entry</th>
<th>additive (equiv)</th>
<th>conc. (M)</th>
<th>temp (°C)</th>
<th>% yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pr(OEt)3 (0.30)</td>
<td>0.8</td>
<td>165</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>none</td>
<td>0.8</td>
<td>165</td>
<td>61</td>
</tr>
<tr>
<td>3</td>
<td>MgO (3.0)</td>
<td>0.8</td>
<td>165</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>N(Pr),Bu (3.0)</td>
<td>0.8</td>
<td>165</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>2.6-lutidine (3.0)</td>
<td>0.8</td>
<td>165</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>2.6-lut-HCl(0.25)</td>
<td>0.8</td>
<td>165</td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td>none</td>
<td>0.15</td>
<td>165</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>none</td>
<td>1.1</td>
<td>165</td>
<td>61</td>
</tr>
<tr>
<td>9</td>
<td>none</td>
<td>0.8</td>
<td>165</td>
<td>63d</td>
</tr>
<tr>
<td>10</td>
<td>none</td>
<td>0.8</td>
<td>175</td>
<td>60c</td>
</tr>
<tr>
<td>11</td>
<td>none</td>
<td>0.8</td>
<td>190</td>
<td>62c</td>
</tr>
</tbody>
</table>

a Refers to the absolute concentration in aryl bromide; *b* determined by GC analysis with hexamethylbenzene as an internal standard; *c* the reaction time was 48 h unless otherwise indicated; *d* 6.0 equiv of 2-methyl pyridine was employed; *e* the reaction time was 24 h.

With a set of optimized conditions in hand, we next set out to investigate the generality of the catalytic direct arylation with a variety of substituted pyridine derivatives (Table 2). Good arylation yields were observed for pyridine derivatives with straight chain (entries 1 and 2), β-branched (entry 3), and α-branched (entry 4) substituents at the C-2 position. Tetrahydroquinoline also provided the arylated product in good yield (entry 5) as did 2,4-dimethylpyridine (entry 6). In contrast, when a substituent at the C-2 position is not present, arylation does not occur (entry 7). This result parallels our previous studies on Rh-catalyzed pyridine alkylation. Consistent with the requirement for C-2 substitution, quinoline is also a highly effective substrate for direct arylation (entry 8). As illustrated in entry 9, the compatibility of the reaction conditions to chloro substitution should enable efficient further elaboration of the arylation product by standard cross coupling methods.

The substrate scope in aryl bromide was also evaluated with quinoline as the coupling partner (Table 3). Both electron-rich and electron-poor aryl bromides are accommodated with equal efficiency (compare for example entries 4 and 11). A variety of useful functional groups are tolerated, including aryl and alkyl ethers (entries 3, 4), chloride (entry 8), fluoride (entry 9), and ketone functionality (entry 10). While cross coupling proceeds smoothly with meta substitution on the aryl bromide ring (see for example entry 1), attempted cross coupling with 2-methylbromobenzene failed to afford product, with only unreacted starting material recovered.
Studies exploring reaction scope were conducted using 5 mol% of the Rh(I) catalyst. However, the reaction can be performed with comparable efficiency employing only 1 mol% of the catalyst. In this case, the reaction was run neat, resulting in complete consumption of the aryl bromide after 24 h and a 68% isolated yield of the arylated product 1e (eq 1).

In summary, we have developed a Rh(I)-catalyzed strategy for the direct arylation of pyridines and quinolines. The heterocycle is used without the need for prefunctionalization, and all reaction components are inexpensive and readily available. The strategy represents an expeditious route to an important class of bis(hetero)aryls and should be of broad utility.

ACKNOWLEDGMENT This work was supported by NIH Grant GM069559 to J.A.E. and the DOE, Office of Basic Energy Sciences, Chemical Sciences Division, U.S. Department of Energy, under Contract DE-AC-02-05CH11231 to R.G.B. A.M.B. was supported by a NRSA postdoctoral fellowship (GM082080).

Supporting Information Available: Experimental procedures and analytical data for all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES

(4) Excess Zn and catalytic Pd/C has been used to prepare 2-phenylpyridine in 52% yield from pyridine and phenyl chloride: Mukhopadhyay, S.; Rothenberg, G.; Gitis, D.; Baidossi, M.; Ponde, D. E.; Sasson, Y. Perkin Trans. 2, 2000, 9, 1809.
(9) The direct arylation of azoles proceeds most efficiently with Rh(I) salts containing alkene rather than CO ligands and requires the addition of either an electron rich trialkylphosphine or a phosphine, see: Lewis, J. C.; Berman, A. M.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 2493.
(10) For use of [RhCl(CO)2]: in a different type of C-H bond functionalization reaction, see: Zhao, X.; Yu, Z. J. Am. Chem. Soc. 2008, 130, 8136.
A Rh(I)-catalyzed direct arylation of pyridine and quinoline heterocycles has been developed. The method provides rapid entry into an important class of \textit{bi}(hetero)aryl products employing inexpensive and readily available starting materials.