Title
Magnetic field dependence of the correlation gap in SmB6

Permalink
https://escholarship.org/uc/item/7f93x7f6

Authors
Cooley, JC
Aronson, MC
Lacerda, A
et al.

Publication Date
1995-02-01

DOI
10.1016/0921-4526(94)00464-7

License
CC BY 4.0

Peer reviewed
Magnetic field dependence of the correlation gap in SmB$_6$

J.C. Cooleya, M.C. Aronsona,*, A. Lacerdab, P.C. Canfieldc, Z. Fiskd, R.P. Guertine

aUniversity of Michigan, Ann Arbor, MI 48109-1120, USA
bNational High Magnetic Field Laboratory, Los Alamos, NM 87545, USA
cAmes Laboratory, Iowa State University, Ames, IA 50011, USA
dLos Alamos National Laboratory, Los Alamos, NM 87545, USA
eTufts University, Medford, MA 02155, USA

Abstract

Magnetoresistance measurements were used to probe the effect of large magnetic fields on the stability of the electronic gap (Δ) in SmB$_6$. Although the free electron Zeeman splitting in an 18 T field is comparable to the ambient pressure Δ, and even exceeds Δ at 45 kbar, Δ is in both cases almost completely unaffected by the magnetic field.

1. Introduction

The stability of the insulating gap in Anderson lattice compounds such as SmB$_6$, YbB$_{12}$, and Ce$_3$Bi$_4$Pt$_3$, under application of high magnetic fields provides a direct test of several available theoretical scenarios. In the mean field solution to the Anderson lattice, the hybridization gap is expected to close continuously with increased magnetic field strength as the Zeeman splitting of the gap edge states increases [1]. It is believed that the magnetic field dependence of the gaps in YbB$_{12}$ [2] and possibly in Ce$_3$Bi$_4$Pt$_3$, [1,3] can be explained by this mechanism. Alternatively, long range RKKY-like magnetic interactions are likely to destabilize the gapped state, leading to a discontinuous transition to a magnetic metallic state in sufficiently large applied field [4]. In both cases, magnetic fields providing Zeeman splitting comparable to the gap magnitude are required to test these predictions.

2. Experimental details

SmB$_6$ is ideal for this study, as its ambient pressure gap of 40 K can be tuned and ultimately destabilized with the application of approximately 50 kbar [5], provided here by a high pressure Bridgman anvil cell. Magnetic fields as large as 18 T were provided by a superconducting solenoid at the National High Magnetic Field Facility, Los Alamos. All experiments were carried out on high quality single crystals, grown from Aluminum flux.

3. Experimental results

In Fig. 1 the temperature dependence of the electrical resistivity of SmB$_6$ in zero magnetic field and in 18 T at an applied pressure of 10 kbar are compared. The magnitudes of the electronic gap determined from these activation plots for the temperature range 4 K–11 K are 30.7 ± 0.4 K ($H = 0$) and 29.5 ± 0.4 K ($H = 18$ T), a remarkably weak magnetic field dependence, considering that the Zeeman splitting associated with a
field of 18 T, and assuming a g-factor of 2.0 is approximately half the electronic gap. Even so, examination of Fig. 1 reveals that the weak negative magnetoresistance observed in SmB$_6$ has its origins in the residual field dependence of the gap, and not in the residual resistivity, as has been previously implied [6].

This relative insensitivity to magnetic fields is even more strikingly demonstrated when high pressures are used to reduce the gap in SmB$_6$. We previously reported [5] that pressure monotonically reduces the electronic gap Δ, which at approximately 50 kbar drops discontinuously to zero. Activation plots of the electrical resistivity in zero field and 18 T are presented in Fig. 2 for a sample of SmB$_6$ carefully tuned to this critical pressure range (45 kbar). Although the gap can only be identified over a small range of temperatures, Δ is significantly more sensitive to applied magnetic field than at 10 kbar, increasing from a zero field value of 11.6 ± 0.2 K to 13.9 ± 0.2 K at 18 T. Nonetheless, this effect is still surprisingly weak, since the free electron Zeeman splitting at 18 T is now larger than the magnitude of the gap itself. Finally, since both the slope and intercept of the linear part of the activation fit are field dependent, we see from Fig. 2 that the positive magnetoresistance observed at the lowest temperatures in the vicinity of the critical pressure must include a substantial contribution from the magnetic field dependence of the residual resistivity, unlike the case at 10 kbar.

4. Discussion

To summarize, we have found that large magnetic fields have surprisingly little influence on the electronic gap in SmB$_6$, indicating an anomalously small coupling of the magnetic field to the gap-edge states. Accordingly, we have found no evidence for any discontinuous change in the ground state of SmB$_6$ on application of large magnetic fields. Both of these results are counter to theoretical predictions [1,4], as well as to previous experimental studies of Kondo insulators like Ce$_3$Bi$_4$Pt$_3$ [3] and YbB$_{12}$ [2], in which the activation gap is rapidly suppressed by the field. Our data also demonstrate that the temperature and pressure dependences of the magnetoresistance in SmB$_6$ are very complex in the vicinity of the gap disappearance, and more detailed studies are currently underway to clarify this point.

Acknowledgements

Work at the University of Michigan was supported by the Office of Basic Energy Sciences, US Department of Energy. Part of the work reported here was performed at the National High Magnetic Field Laboratory, Los Alamos. Ames Laboratory is operated for the US Department of Energy by Iowa State University under contract number W-7405-Eng-82.
References

