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ABSTRACT: Spatiotemporal models to estimate ambient exposures
at high spatiotemporal resolutions are crucial in large-scale air pollu-
tion epidemiological studies that follow participants over extended
periods. Previous models typically rely on central-site monitoring data
and/or covered short periods, limiting their applications to long-term
cohort studies. Here we developed a spatiotemporal model that can
reliably predict nitrogen oxide concentrations with a high spatiotem-
poral resolution over a long time span (>20 years). Leveraging the
spatially extensive highly clustered exposure data from short-term
measurement campaigns across 1−2 years and long-term central site
monitoring in 1992−2013, we developed an integrated mixed-effect
model with uncertainty estimates. Our statistical model incorporated
nonlinear and spatial effects to reduce bias. Identified important
predictors included temporal basis predictors, traffic indicators, population density, and subcounty-level mean pollutant
concentrations. Substantial spatial autocorrelation (11−13%) was observed between neighboring communities. Ensemble
learning and constrained optimization were used to enhance reliability of estimation over a large metropolitan area and a long
period. The ensemble predictions of biweekly concentrations resulted in an R2 of 0.85 (RMSE: 4.7 ppb) for NO2 and 0.86
(RMSE: 13.4 ppb) for NOx. Ensemble learning and constrained optimization generated stable time series, which notably
improved the results compared with those from initial mixed-effects models.

1. INTRODUCTION

Exposure to air pollution is associated with acute and chronic
adverse health outcomes, such as respiratory and cardiovascular
morbidity.1,2 Spatiotemporal models that optimally characterize
the environment are crucial to estimate exposures to ambient air
pollutants with high spatiotemporal resolutions for large-scale
epidemiologic studies. However, obtaining reliable estimates of
long-term exposures relies on spatiotemporal models that fully
capture complex temporal structure (e.g., both short and long-
term temporal trends) jointly with multiscale spatial variations
(e.g., regional- and local-scale spatial variations). Developing
such spatiotemporal models is challenging because measurement
data are limited in space and time, and complex, and nonlinear
associations exist between predictors (such as meteorological
and traffic variables) and pollutant concentrations.3

Many earlier studies used land-use regression or conventional
kriging approaches to develop individual spatial models of

exposure that capture details across space but not time. Such
conventional approaches tend to overfit irregularities of the
training data relying on a set of assumptions,4,5 including having
access to an unbiased sample of monitoring sites for the popula-
tion and homogeneity of spatial variation for kriging. When the
temporal variability of exposure is ignored in the modeling
process, especially when statistical assumptions are violated, the
resulting exposure estimates could be affected by large error
causing significant biases or large variance.6,7

In more recent years,3,8−12 air pollution exposure modelers
started to employ the variants of principal components called
empirical orthogonal functions (EOFs)11 for spatiotemporal
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modeling of air pollutants. In the approach, the first and second
principal components accounting for the dominant temporal
structure often explain the majority of the long-term and seasonal
but not the short-term temporal pollutant variation in the study
region. Two of these studies parametrized the temporal basis
functions by incorporating time-invariant spatial variables such
as elevation, distance to the shorelines and meteorological
factors.3,12 However, this two-stage approach generally assumes
spatial-temporal independence and is limited in capturing short-
term temporal variability in its estimates.
Other methods such as Bayesian maximum entropy have been

used to estimate the spatiotemporal concentrations of particulate
matter <10 μm (PM10),

13 particulate matter <2.5 μm (PM2.5),
14

and ozone.15,16 Hierarchical spatiotemporal models have also
been developed for PM with a second-order stationary and
isotropic assumptions of spatiotemporal covariance.8 However,
these methods were based on simulated variograms derived from
limited measurement data subject to overfitting biases, and both
methods only incorporated spatiotemporal covariates predictive
of the means structure to a limited extent.
Here, we developed a novel spatiotemporal modeling frame-

work to estimate nitrogen dioxide (NO2) and nitrogen oxides
(NOx) at a high spatiotemporal resolution over a period of
22 years (1992−2013) using extensive data from government
routine monitoring networks and rich short-term field sampling
campaigns. Routine monitoring data were used to construct the
temporal basis functions and to capture long-term and seasonal
temporal trends of pollutants in the study region. The short-term
samples from three monitoring field campaigns provided
neighborhood scale spatial data that better captured intraurban
spatial variability and spatial autocorrelation than the models
trained just using the routine monitoring data. The modeling
framework consisted of three stages: a generalized additive
mixed model to capture spatiotemporal variability and spatial
autocorrelation at a high resolution, ensemble learning of the
mixed models to reduce uncertainty and to better characterize
variability in prediction, and constrained optimization to ensure
physically- and chemically consistent prediction of concen-
trations.

2. MATERIALS AND METHODS
2.1. StudyDomain.This study region (Supporting Information

(SI) Figure S1) covers the area of southern California south of the
35.6 degree latitude (∼Bakersfield) and includes Los Angeles,
Orange, Riverside, Ventura, Santa Barbara, Mohave, San Diego,
Imperial Counties and most of San Luis Obispo, Kern, and
San Bernardino Counties.
2.2. NO2 and NOx Measurements. Routine measurements

of hourly NO2 and NOx concentrations from 1992 to 2013,
recorded at 51 stations, were retrieved from ambient air mon-
itoring networks operated by the California Air Resources Board,
South Coast Air Quality Management District (SCAQMD),
San Diego Air Pollution Control District (APCD), Antelope
Valley AQMD, Mojave Desert AQMD, Imperial County APCD,
San Joaquin Valley APCD, San Luis Obispo County APCD,
Santa Barbara County APCD, and Ventura County APCD. The
concentrations at these stations were measured using Federal
reference (chemiluminescence NO/NO2/NOx) methods.
Additional data were generated in intensive field measurement

campaigns conducted by the University of Southern California
(USC), University of California Los Angeles (UCLA), and Uni-
versity of California Irvine (UCI), respectively. Passive diffusion-
based Ogawa samplers17 were used to measure NO2 and NOx,

with integrated biweekly samples for the USC and UCLA
data and integrated weekly samples for the UCI data. The USC
data were collected as part of the Intra-Community Variation
campaigns conducted in 12 Children’s Health Study (CHS)
communities in 2005−200618 and eight CHS communities
in 2008−200919 (in total, 2,542 biweekly samples from
1,104 locations). The UCLA data contain 161 samples collected
in Los Angeles County with two biweekly measures (i.e.,
September 16 to October 1, 2006 and February 10−25, 2007).20
The UCI data contain 32 samples collected in south Los Angeles
and Orange counties during 4 weeks (i.e., July 10−18, July 24 to
August 1, November 13−21, and December 4−12 in 2009).21

Since most (about 97%) of the field measurements were
integrated biweekly samples (mainly from USC and UCLA), we
used biweekly averages as the temporal unit of estimation. For
the routinemeasurements, biweekly average concentrations were
calculated from hourly data using a 75% completeness criterion.
For the field measurements, linear interpolation was used to
derive biweekly averages from the UCI weekly data. For a site
with a full temporal coverage, a total of 574 biweekly concen-
trations were calculated from January 1992 to December 2013.
Section 2 and Table S1 of SI provide more details about the

measurements of NO2 and NOx and adjustment for the passive
data from the field campaigns to minimize systematic bias.
SI Figure S1 also shows the locations for the routine and USC
sampling sites [the UCI andUCLA sampling locations concealed
to comply with specific requirements by their Institutional
Review Boards].

2.3. Spatiotemporal Covariates. 2.3.1. Traffic-Related
Covariates. 2.3.1.1. CALINE4-Estimated Concentrations from
Local Traffic Emissions. CALINE4 is a line source dispersion
model that was used to assess the contribution of local motor
vehicle emissions to ambient concentrations.22,23 We used
CALINE4 to computemeanNOx concentrations from emissions
respectively on freeways and nonfreeways. The time-varying
NOx estimates by CALINE4 were derived using the quarterly
average daily traffic volumes and EMFAC2011 (for 1992−
2012)24 and EMFAC2014 (for 2013)25 (see SI Section 3.1 for
details).

2.3.1.2. Traffic Density. Traffic density represents distance-
decayed annual average daily traffic (AADT) volume in both
directions from all roads (freeways/highways and major surface
streets) within a circular buffer. Its values were computed by the
ESRI ArcGIS density function using a kernel with a 300 m search
radius and a 5 m grid resolution. Due to covering a long time
period, the traffic densities were scaled by the South Coast Air
Basin (SoCAB) EMFAC2011 vehicle fleet average NOx emission
factor for 50 mph and 6% heavy-duty vehicle fraction to reflect
the composite trend in traffic volumes and emissions over time
(see SI Section 3.2 of see SI Section 3.2 for details).

2.3.1.3. Distance to Roadways. We calculated the distance
from the sampling location to the centerline of the nearest
roadway by road class based on the ERSI Premium Street Map
road network data. The two directions of travel were represented
as separate line segments for freeways and other moderate and
high volume roads in this data set.

2.3.1.4. Population Density. We calculated block group
population in 300 m buffers based on the 1990, 2000, and 2010
census block data in ArcGIS and linearly interpolated or
extrapolated annual population density for 1992−2013 at the
sampling sites.

2.3.2. Meteorological Covariates. Meteorological covariates
were derived from a high-resolution (4-km) gridded data set of
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surface daily meteorological variables that cover the contiguous
United States from 1979 to 2013.26 Seven meteorological factors
were extracted as predictive variables: minimum and maximum
air temperatures (°C), specific humidity (grams of vapor per
kilogram of air), precipitation (amount of rain per square meter
in 1 h (millimeters, mm)), wind speed (meters/second), wind
direction (degree), near-ultraviolet and near-infrared spectra
(watt/meter2, w/m2).
2.3.3. Elevation and Distance to Shoreline. We obtained

high accuracy elevation (at 30 m resolution) data using
GoogleMap API27 for each sampling location. We also calculated
the shortest distance (meter) to the shoreline of the Pacific
Ocean for each sampling location.

3. MODELING APPROACH
We designed a hierarchical modeling framework (Figure 1) with
three stages: a mixed-effect spatiotemporal model, ensemble
learning, and constrained optimization.
3.1. Stage 1: Mixed-Effect Model to Capture Spatio-

temporal Variability of Pollutant Concentrations. We
designed the mixed-effect model that incorporated nonlinear
relationships, fixed and random effects from multiple predictors,
and spatial autocorrelation to characterize spatiotemporal
variability of NO2 and NOx concentrations.
The spatiotemporal estimate ( f(s,t)) of the concentrations of

NO2 and NOx is quantified using the following formula:
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= + + +

+ + + +
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where s refers to spatial location, t refers to temporal parameter,
β0 represents the long-term mean concentration, f1(t) and f 2(t)
are temporal basis functions that represent long-term and
seasonal trends, f r(s,t) represents annual regional variation in
pollution where regions are defined as the Thiessen polygons
derived from the government routine monitoring stations, xi(s,t)
represents local variability explained by different local predictors
(e.g., CALINE4 estimates, traffic density, population density and
meteorological parameters), fs(rs) represents structured spatial
effects (rs refers to the region where s is located), f re(rs) represents
unstructured spatial effects, and ε represents the residuals.
The seasonal effects ( f1(t) and f 2(t)) reflect the long-term

dominant temporal trend for the study region. We used the
empirical orthogonal functions (EOFs) (a.k.a., independent
temporal basis functions) and the long-term biweekly concen-
trations from the 51 routine monitoring stations to derive the
dominant basis functions. EOFs were used to present lead-
ing modes of spatiotemporal variability of air pollution; their
smoothed curves are often used to reduce noise due to random
fluctuation.11

We used the yearly average pollutant concentrations for each
Thiessen polygon ( f r(s,t)) surrounding each routine monitoring
station to reflect the regional yearly spatial variability (fixed effect
in the model). Thiessen polygons are often used to deter-
mine density of point samples and to build meshes for space-
discretized analyses.28 Spatiotemporal variability due to local
effects (xi(s,t)) was modeled using variables that influence air
pollutant dispersion or reflect the type and strength of emission
sources, including meteorological parameters, traffic-related
variables, population density etc. Traffic-related variables and
population density capture the influence of on-road mobile and

Figure 1. Modeling framework for estimation of the spatiotemporal concentrations of NO2 and NOx.
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area emission sources, whereas meteorological parameters mainly
influence the environmental processes involved in air pollutant
transport, dispersion and removal.
For spatiotemporal factors, we adopted a nonparametric addi-

tive method to model nonlinear effects (see SI Section 4.1 for
details). Degrees of freedom were limited to 10 to minimize
overfitting.
Better characterization of spatial-effect terms in the model

development is important to account for the influence of
neighboring polygons (spatial autocorrelation). In this study, we
used structured spatial random effects to account for spatial
autocorrelation not explained by spatial covariates. Additive
unstructured random effects29 were also included to account for
spatial autocorrelation not fully explained by structured spatial
random effects (e.g., other spatially distributed sources of
pollutants besides traffic emission and population density).
By estimating a structured component and an unstructured com-
ponent, we can distinguish between the two sources of spatial
autocorrelations.30 Our empirical results showed that adding
unstructured random effects slightly improved model perform-
ance (measured by the deviance information criterion) com-
pared to the one with only structured random effects.
Thiessen polygons were constructed around the central points

of the monitoring locations within a certain buffer distance to
simulate spatial effects. By sensitivity analysis, a buffer distance of
500 m was selected as an optimal aggregate option due to its
good balance between accuracy and computing efficiency. In our
model, spatial effects were treated as random variables at the
polygon level and incorporated formally as a component of the
nonparametric additive terms.
Restricted maximum likelihood was used to solve the geo-

additive mixed-effect model. We used the packages of BayesXsrc
and BayesX to solve the mixed model31,32 in the statistics
software R (Version 3.3). SI Section 4.2 presents the formulas
and details about modeling of spatial random effects.
3.2. Stage 2: Ensemble Learning to Reduce Uncertainty

and Variability in Point Prediction. As Stage 2 of the
modeling framework, we designed an algorithm of weighted
bootstrap aggregation33 for the spatiotemporal models to ensure
stable prediction. This algorithm iteratively selected a random
sample of size n (n = 18 096, size of the original training data set)
with replacement, stratified by traffic index (traffic density and
Caline4 estimated concentration), from the original data set, and
90% of the predictors for training. In each iteration, about 63%
and 37% of the original data set were selected to train and test the
model, respectively.34 So, the final result was equivalent to a
63−37% cross validation. We also conducted a sensitivity ana-
lysis where only 2/3 of the predictors were used each time and
the resulting model performed slightly worse (R2 decreased by
about 4%) than when using 90% of the predictors. The selected
samples were used to train multiple different models. The
number of iterations (from 10 to 1,210 by a step of 20) was
determined using cross-validation to minimize the root-mean-
square error (RMSE). The aggregated predictions (mean and
standard deviation) are the weighted means of the outputs of all
trainedmodels, where the weighting is the square of eachmodel’s
R2 (see Section 4.3 for details).
Randomly sampling from both the training data set and the

predictors was used to ensure independence between the
training samples for different models. Given that each model
was trained for different portions of the original data set, the
variance in the predictions can be effectively decreased, as demon-
strated in the literature of machine learning.7,33 Besides the

weighted predicted mean of concentration, the weighted
standard deviation ( SI eq S6) can be obtained, as an uncertainty
indicator to reflect the dispersion of the predicted value.

3.3. Stage 3: Constrained Optimization to Help with
Long-Term Continuous Time Series Estimation. Stage 2 gen-
erated averaged point estimates for specific-location and -time
for which the full set of predictors was available. However,
the predictors, especially the time-varying covariates, may be
temporally incomplete for the entire modeling period. For loca-
tions with a large portion of incomplete time-varying covar-
iates, the predictions from Stage 2 might not fully capture the
dominant seasonal trend. Thus, as Stage 3 of the modeling
framework, we designed constrained optimization to derive
optimal coefficients for the temporal basis functions [ f1(t) and
f 2(t) in eq 1)]. While the temporal basis functions represented
the principle components of temporal variability for the study
region, their coefficients reflected spatial difference in the long
term averages and seasonal variation between different locations.
Using the basis functions with their coefficients, the full time
series of concentrations covering the study period can be sim-
ulated for a target location in the study region. Then, the
corresponding time-specific estimates could be extracted from
the simulated series as adjusted values for the estimates of
Stage 2. In constrained optimization, the point estimates from
Stage 2 were employed to estimate the coefficients of the
temporal basis functions (β0, β1, and β2). Such optimization was
solved through quadratic programming.
The constrained optimization aims to minimize the difference

between the target concentration to be adjusted and the predic-
tion output from Stage 2 subject to certain constraint conditions.

∑= − ̂β = y ymin 1/2 ( )i
s t

st st( 0,1,2)
,

2
i

(7)

β β β̂ = + +y s s f t s f t( ) ( ) ( ) ( ) ( )st 0 1 1 2 2 (8)

where yst is the measurement and/or estimate derived from
ensemble learning in Stage 2, f1(t) and f 2(t) are the temporal
basis functions, and β0, β1 and β2 are the coefficients of the
temporal basis functions to construct the time series of the
concentration over the entire study period.
The following constraints were designed according to a priori

and empirical knowledge,5,35,36 and implemented:
Constraints:

(1) β0 lower ≤ β0 ≤ β0 upper to control the long-term mean and
limit extreme values in prediction;

(2) β1 lower ≤ β1 ≤ 0 to control the seasonal trends (higher in
winter and lower in summer);

(3) β2 lower ≤ β2 ≤ β2 upper to control the scale of seasonal
variation;

(4) β1( f1(t) − f1(t + Δt)) + β2( f 2t) − f 2(t + Δt)) ≥ 0 to
control the decreasing trend in concentrations for the
study domain, where Δt is the difference in time between
the start year (t) and the end year (t+Δt); In this study, we
used a start year of 1993 and an end year of 2013.

(5) NO2(β0(s) + β1(s)f1(t) + β2(s)f 2(t)) < NOx(β0(s) + β1(s)
f1(t) + β2(s)f 2(t)) to ensure that NO2 predictions are
smaller than or equal to NOx.

6) β0(s) + β1(s)f1(t) + β2(s)f 2(t) ≤ Lmax to control the
maximum concentration (Lmax) for NO2 and NOx.

The intervals (βi lower or βi upper) of the beta parameters were
determined from the long-term time series of measurements at
routinemonitoring stations (using outer fence37 to filter the outliers)
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and used to constrain the target functions to get stable seasonal
trends.
3.4. Validation. 3.4.1. Validation for Individual Models.

Prediction errors,R-square (R2), RMSE, relative RMSE [NRMSE=
normalized RMSE = RMSE/(ymax − ymin), and CV RMSE =
coefficient of variation of the RMSD= RMSE/y]̅ were used
to evaluate the individual models. To assess prediction error,
residual plots were also examined for evidence of over- /under-
fitting and heteroscedasticity. Leave-one-subcounty-out cross
validations were conducted. In this validation, all samples within
one subcounty were held out as the validation data while keeping
the remaining data from the other subcounties to train themodel,
and then this resulting model was used to make prediction for the
held-out samples in the subcounties not used to train the model.
The goal of leave-one-subcounty-out cross validation was to
examine the model’s performance across different sub counties
using independent training data set.
Since one important application of the model is to estimate

NO2 and NOx exposure for the subjects residing in the CHS
communities, we also conducted leave-one-community-out
cross validation specifically for the CHS samples. The CHS
monitoring locations were highly clustered in space within each
community, which created challenges in reliably estimating
concentrations at individual sites within certain communities.
We also examined the model performance for each individual
CHS community.
3.4.2. Validation of the Output by Ensemble Learning. In

ensemble learning, using bootstrap aggregation, we employed
about 63.2% of the original data set to train the model to make
predictions for the remaining 36.8% of the data set. Similar
performance measures (R2, RMSE, relative RMSE) as used for
the individual models were calculated using the output from
ensemble learning for all samples and for field sampling cam-
paign data separately.
3.4.3. Validation of Constrained Optimization. For con-

strained optimization, the Pearson’s correlation between the
adjusted biweekly estimates obtained by constrained optimiza-
tion and the observed values were respectively computed
over the long-term study period for each routine monitoring
station. Correlations from all routine monitoring sites then were
summarized.
3.4.4. Application: Lifetime Exposure Estimation for

Children’s Health Study Participants.We employed the trained
spatiotemporal models to make predictions at the CHS subject
locations across southern California. In total, we predicted
1 850 415 biweekly NO2 and NOx concentrations at 10 820

locations for 1992−2013, the time period covering the lifetime
residential histories of CHS participants (5845 unique indi-
viduals in cohort E). Since one of the two major USC field
campaigns occurred in 2005−2006, we obtained the averages for
summer (June−August 2005) and winter (December 2005 to
February 2006) of those years to create maps for visual checks
of spatial and seasonal patterns of pollutant concentrations at
subject locations.

4. RESULTS

4.1. Summary of Measured Concentrations. Table 1
lists the summary statistics of the concentrations and the
sampling locations from routine monitors as well as field
campaigns conducted by USC, UCLA, and UCI. The histograms
(SI Figure S2) show small skewness for NO2 and large skewness
for NOx; thus, we log-transformed NOx to make its distribution
more normal.

4.2. Stage 1 Mixed-Effects Model. The temporal basis
functions were used to capture the seasonal trend of pollutant
concentrations for the study region (SI Figure S3). The first
component of the temporal basis trend accounted for 59% of the
variance for NO2 and 56% of the variance for NOx. The second
temporal basis function explained a lower percentage of variance
(about 9% for NO2 and 8% for NOx).
The selected local spatiotemporal variables made different

contributions to the variance explained in the mixed model
(SI Table S2 where the thresholds are also listed as the filter for
the outliers). Among these factors, CALINE4 NOx on freeways
and traffic density (300 m-5 km) each accounted for 9−13% of
the variance, and population density accounted for 5−11% of the
variance. Wind speed and minimum air temperature together
account for about 7−8% of the variance. The additive mixed
models captured nonlinear associations between predictive
variables and pollutant concentrations (SI Figure S4). Generally,
traffic density, CALINE4 output and population density were
positively and nonlinearly associated with pollutant concen-
trations.
The Thiessen polygons generated with the optimal 500 m

radius were selected for modeling spatial effects (SI Figure S5).
The individual models from Stage 1 achieved an R2 of 0.90 for

NO2 and 0.91 for NOx (RMSE: 2.08 ppb for NO2; 10.02 ppb for
NOx) with the leave-one-subcounty-out cross validation R2

of 0.83 (RMSE: 5.39 ppb) for NO2 and 0.88 for NOx (RMSE
12.42 ppb) (Table 2). The leave-one-community-out validation
specifically for the USC data shows an R2 of 0.71 for NO2 and
0.80 for NOx with the RMSE of 4.51 ppb for NO2 and 9.37 ppb

Table 1. Summary of NO2 and NOx Measurements

distribution of monitoring locations by data
completeness (number of biweekly time periods

with valid data)
mean concentration

(ppb)

source number of monitoring locations ≤100 (100,280] (280,400] >400 NO2 NOx correlation between NO2 and NOx

agencies 51 9 13 7 22 24.3 45.7 0.81
distribution of sampling locations by data
completeness (number of biweekly time

periods with valid data)

mean
concentration

(ppb)

source number of sample locations 1 2 3 4 >5 NO2 NOx correlation between NO2 and NOx

USC ICV1a 987 41 570 376 16.5 36.7 0.85
ICV2a 117 28 71 11 5 2 16.7 27.9 0.87

UCLA 184 184 24.6 56.7 0.84
UCI 32 14 18 18.1 33.2 0.88

aICV: The Intra-Community Variability study.
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for NOx. The validation results for the CHS communities are
presented in SI Table S3 and S4. While the total correlation
between the predicted and observed values was 0.95 (RMSE:
2.54 for NO2; 5.43 for NOx), the model performance was not as
good for CHS communities with the lowest NO2 and NOx
concentrations: Lake Arrowhead and Santa Maria.
4.3. Ensemble Learning and Constrained Optimization

for Stable Prediction of Time Series. Through bootstrap
aggregation, we obtained the optimal number (120) of individual
mixed-effect models. For the total samples, validation results for
the ensemble models showed similar accuracy as individual
models (Table 2); for the field campaign samples, the ensemble
learning generated better results, in particular showing con-
siderable improvement (12% for NO2; 10% for NOx) for the
USC samples, compared with the result of the leave-one-
community-out cross validation (Table 2). The residual plots for
ensemble predictions between the observed values vs residuals
show slight overfitting and no heteroscedasticity (SI Figure S6).
Figure 2 shows the residual plots of the ensemble predictions for
the USC samples. We also examined R2 and RMSE for each
community of the USC samples; worse model performance was
observed for several communities, that is, the Lake Arrowhead
and Santa Maria, and Anaheim. The data (SI Figure S7) show
that Lake Arrowhead and Santa Maria had the lowest concen-
trations of NO2 and NOx and thus the model slightly over-
estimated their concentrations, while Anaheim had the highest
NO2 concentrations and the model slightly underestimated NO2.
The validation for constrained optimization shows a strong

correlation between the simulated time series and the observed
values. The mean and median of Pearson’s correlations between
the simulated time series and observed values for each routine
monitoring station are respectively 0.94 for NO2 (0.96 for NOx)
and 0.97 for NO2 (0.99 for NOx) (SI Figure S8 for the boxplot).
Even for the sites with the lowest correlation (0.55 for NO2;
0.7 for NOx), the simulated temporal trends were basically
consistent with the observed values (SI Figure S9).
Figure 3 presents the plots of observed vs predicted values with

the simulated time series generated by constrained optimization
for one typical monitoring station. Even for the sample locations
with many missing observed values (e.g., with only 4−5 mea-
surements available for the USC sample locations), our approach
can capture the basic temporal trends over the long-term period.
The summer (June to August of 2004) vs winter (December
2004 to February 2005) average concentration estimates
highlight local scale spatial variations with a general declining
trend further away from heavily traveled roads, and higher con-
centration in winter than in summer. Contrast and gradient

variations were also observed within the communities (e.g.,
Anaheim for NO2 in Figure 3; and San Dimas for NOx in SI
Figure S10).

5. DISCUSSION
In this study, we developed a novel hierarchical modeling frame-
work to make robust predictions for spatiotemporal concen-
trations ofNO2 andNOx over 22 years. Our spatiotemporal model
improved over the previous two-stage model approaches3,9,12

that only separated the temporal variability (characterized
by temporal basis functions) from the spatial variability

Table 2. Validation for the Total Samples and the Field Campaign Samples

pollutant correlation R2 RMSE (ppb) NRMSE CV RMSE

regular (all the data used to train the models) NO2 0.95 0.90 2.08 0.02 0.09
NOx 0.96 0.91 10.02 0.03 0.12

leave-one-subcounty- out cross validation NO2 0.91 0.83 5.39 0.06 0.22
NOx 0.94 0.88 12.42 0.04 0.27

ensemble learning validation all the samples NO2 0.92 0.85 4.70 0.05 0.20
NOx 0.93 0.86 13.33 0.02 0.13

USC, UCLA, and UCI samples NO2 0.91 0.82 3.92 0.09 0.23
NOx 0.94 0.88 8.12 0.06 0.21

USC samples NO2 0.91 0.83 3.80 0.09 0.23
NOx 0.95 0.90 7.06 0.05 0.20

leave-one-community-out cross validation for USC samples NO2 0.88 0.71 4.51 0.11 0.28
NOx 0.91 0.80 9.37 0.07 0.26

Figure 2. Plots of the residuals vs the observed values for the ensemble
NO2 (a) and NOx (b) predictions at the USC sampling locations.
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(modeled exclusively by spatial variables), but did not make full
use of the spatiotemporal variables (e.g., meteorological variables
were averaged over the entire study period and treated solely as
spatial variables). In the two-stage models, the first two temporal
basis functions and their coefficients (estimated by spatial
covariates) were used as the dominant predictors. In the two-
stage framework, the model’s performance in prediction was
limited by the total variance that can be accounted for by the
selected temporal basis functions (e.g., only 68% for NO2 and
64% for NOx in the case of this study). Further, the two-stage
models assumed that temporal and spatial variances are distinctly
separable. In practice, it is often difficult to completely separate
the two. Such separation may result in loss of information on
temporal variability in predictors and consequently substantial
uncertainty in prediction. In this study, we developed a flexible
three-stage framework with multiple features to improve model
prediction. First, a nonlinear mixed model was developed to best
capture both regional and local, as well as long-term and short-
term variability in pollutant concentrations in a single model.
Then, ensemble learning and constrained optimization were
implemented to reduce uncertainty, minimize variance in predic-
tion, and generate stable predictions.
The mixed model has a flexible framework making it easy

to incorporate multiple spatiotemporal predictors and spatial
effects. For instance, the model incorporated long-term average
concentrations (intercept), long-term seasonal trends (the first
and second temporal basis functions), regional variation in
concentration (subcounty-level yearly averages) and local-scale
influential predictors. At this stage, the temporal basis functions
and associated coefficients are not the sole basis for the model’s
framework but rather used to represent long-term seasonal
variation predictors for the study region.
Local variability in the environmental processes (e.g., emission,

transport, dispersion, and removal), was represented in our air
pollution model by spatiotemporal covariates including traffic

indicators, population density, and meteorological factors.
In terms of traffic indicators, the CALINE4 and traffic density
predictors incorporated quarterly or annual variations in traffic
volumes, emission, and wind, which was important to capture
temporal variation and trends in local on-road vehicle emissions.
These two predictors accounted for a significant proportion
of the variances, illustrating influence of traffic emissions on
concentrations of NO2 and NOx. Population density, an indirect
measure of emissions, explained 5−11% variance. In comparison,
the meteorological parameters together accounted for 7−8% of
spatiotemporal variability, although CALINE4 also captured part
of the meteorological impact.
Nonlinear models were fit to account for local variability.

Such models captured the critical points where different trends
occurred. For example, in SI Figure S4-a and b, the increase in
concentrations with traffic density was more rapid for traffic
density below 50 than that above 50. Comparisons between
linear and nonlinear models show that the nonlinear model
improved the variance explained by about 19−21%.
In this study, we used Thiessen polygons rather than point-

based kriging to model spatial autocorrelation. An assumption of
kriging is random and even distribution of sample points with
homogeneity of spatial variation.38,39 For this study, many
sampling points from USC were highly clustered and thus not
applicable for kriging. Thiessen polygons remained relatively
stable regardless of the density of samples and distribution
of spatial variation, and are effective in capturing neighborhood
scale spatial variability. Spatial autocorrelation accounted for
a significant portion of the variance.
Most previous exposure models4,40,41 used single data sets to

fit a single model that was then evaluated using cross validation.
The primary drawback of the single learner model, like our
mixed-effect model in Stage 1, is that the model may overfit the
training data and be variable when applied to new locations and
times with their predictors different from the primary range of

Figure 3.Observed vs predicted values, and simulated series of NO2 (a) and NOx (b) for a test location in West Los Angeles (shown as the yellow five-
pointed star in SI Figure S1).
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the training data set. In comparison, the ensemble learner
combines individual predictions from different models, and
thus it minimizes variation in prediction.42,43 In this study, we
trained different mixed models using multiple sets of samples
obtained by bootstrap aggregation with different combinations of

prediction variables. The final prediction was determined by
weighting all outputs of individual models by accuracy, and
the standard deviations of the predictions were derived as
uncertainty indicators. This approach reduces variance and
enhances the reliability of prediction.

Figure 4. Average predicted NO2 in summer (a) and winter (b) in 2005−2006 at USC ICV1 sampling locations in Anaheim, Orange County.
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The leave-one-community-out cross validation shows a good
predictive performance overall. The results varied by individual
community, with better performance in communities with
moderate pollution levels and relatively poor performance in
the mountain communities with lower pollution levels, such
as Lake Arrowhead. As expected, the model is not capable of
accurately predicting the cases having the lower observed
concentration than that of the samples used to train the model.
The coupling of constrained optimization with the temporal

basis functions is useful to simulate reliable long-term time series.
The constrained optimization leveraged a priori and empirical
knowledge (e.g., concentration of NO2 lower than that of NOx,
declining trends for NO2 and NOx over the long period, and
seasonal variation) and a limited number of point estimates to
have an optimal estimation of the parameters for the temporal
basis functions, thus extrapolating the concentrations far (1992−
2013) from our denser measurement campaigns in 2005 or later.
This approach is particularly useful for situations where long-
term time series of exposures are needed but the subject locations
have incomplete predictor variables (e.g., USC sample locations).
This study employed unbalanced sampling data that included

routine measurement data and short-term field campaign
measurements. Ideally, one would rely on high spatiotemporal
resolution measurements (i.e., frequent measurements over the
whole period of 22 years and across the entire study region).
However, a number of our short-term samples were spatially
clustered. To address this concern regarding clustered data, we
made strict leave-one-subcounty-out and leave-one-community-
out cross validations to test the model’s actual performance and
the results were satisfactory (R2: 0.83−0.88). By subsequent
ensemble learning and constrained optimization to decrease bias,
the final predictions at CHS subject locations (Figure 4 and
SI Figure S10) showed fine concentration gradients within each
community, illustrating the model’s capability to estimate within-
community variability.
The study has several limitations. First, this is a model of NO2/

NOx from traffic pollution since the traffic-related predictors
such as CALINE4NOx and traffic density were used, not a model
for prediction of airport or shipping or other stationary com-
bustion sources. For the latter, we need the extra covariates to
capture the corresponding sources in the model. Second, there
is a potential overfitting problem in the nonparametric non-
linear model. We limited the degrees of freedom (10) for the
explanatory variables to decrease overfitting in generalized
additive models. Ensemble learning further reduced overfitting.
Third, not all of the short-term samples were carefully selected
and sited for exposure modeling purposes. Since the USC data
were highly clustered, more Thiessen polygons were constructed
at these locations with a denser sample, whichmay result in better
spatial resolution for these locations than that for the sparse sample
(e.g., overestimation in Lake Arrowhead). Although our method
can be applied to different situations (sparse vs dense sampling),
when additional samples become available, these can be used to
update the model for continual improvement. Fifth, the study
region is confined to southern California and 1992−2013
calendar years only, but the modeling approach is easily gen-
eralizable to other regions and periods.
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